生物质颗粒燃料制粒机数字化设计及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农作物秸秆固化成型技术以及成型机械设备的研究对于推动秸秆资源综合利用和加速建设资源节约型和环境友好型社会具有重要意义。秸秆颗粒燃料环模制粒机以生产效率高,操作简便和颗粒成型密度可调等特点适用于大规模工业化生产,其产品可代替煤和石油用于供暖和发电,具有广泛的应用前景。以发展生物质能资源化利用技术为背景,针对秸秆颗粒燃料生产中的关键机械装备,开展环模制粒机数字化设计和制粒机工作性能与影响因素间关系的试验研究,为环模制粒机的设计与应用提供理论依据和实际指导。
     在分析环模制粒机设计参数对其工作性能影响的基础上,对制粒机关键部件的设计参数进行研究,进而确定了制粒机总体设计方案和关键部件的设计参数。以疲劳破坏理论为依据,根据制粒机压辊工作过程中的受力分析,确定了压辊数目。对数字化造型、特征与参数化造型技术和数字化装配理论进行了分析,采用基于特征的参数化造型技术建立了环模制粒机零部件的三维实体模型,确定了制粒机设计中的关键参数以及参数间关系。在此基础上进行了数字化装配,得到了环模制粒机整机的数字化模型及零部件二维工程图,为制粒机的仿真和分析奠定了基础。
     根据牛顿定理和拉格朗日定理推导出制粒机多体系统动力学方程,归纳了求解方程所用微分-代数方程的求解算法。通过专用接口模块MECH/Pro将制粒机环模模型导入ADAMS/View进行动力学仿真。通过分析比较不同压辊数目下环模运动全过程中螺旋输送器所受扭矩及其与环模连接副间的作用力,得出压辊数目为4时环模受力较为合理的结论。分析并确定了环模弹塑性变形中的应力-应变关系为等向硬化的Von Mises模型条件下弹塑性增量的本构关系,建立了各变形阶段的有限元方程。利用ANSYS软件进行有限元分析,得出了秸秆制粒过程中环模上应力和位移的分布规律,为制粒机环模的设计提供了参考。
     通过单因素试验和二次回归正交旋转组合试验,确定了含水率、秸秆原料粒径和发酵时间对颗粒燃料成粒率、抗跌碎强度和单位产量耗电量的影响规律,并建立了颗粒燃料成粒率、抗跌碎强度和单位产量耗电量与影响因素间关系的回归方程。经显著性检验、各因素贡献率分析及回归方程优化求解,确定了各回归方程与实际情况拟合显著,得出各试验因素对试验指标影响的重要程度及顺序,得到各因素的最优水平值并对优化分析结果进行试验验证,结果表明理论最优解与试验值吻合程度较高,为制粒机的设计和应用提供了理论依据。
     以Visual C++6.0软件为开发平台,研发了环模制粒机数字化设计系统软件,实现了环模制粒机从三维实体造型、参数化设计、性能参数计算、结构性能仿真分析和人机交互等智能设计全过程。通过分析玉米秸秆颗粒燃料总成本费用,计算了环模制粒机的投资回收期与净现金流量,并对其进行经济效益、社会效益及生态效益分析,结果表明,秸秆颗粒燃料生产线具有良好的经济效益、社会效益及生态效益。
Study on Crop straw curing technology and molding machinery have the importantsignificance for promoting the comprehensive utilization of straw resources and acceleratingthe construction of resource-saving&environment-friendly society. Ring mold pelletizer ofgranular burning stoff is characterized by its high efficiency, simple operation and pelletformation density adjustable applicable to large-scale industrial production,product canreplace coal and oil for heating and power generation, has a broad application prospect. As thebackground of development of biomass energy utilization technology, carry out study on ringmold pelletizer digital design and experiment of the relationship between pelletizer workperformance and influence factors in the production of the straw pellet fuel, to providetheoretical basis and practical instruction for design and application of ring mold pelletizerequipment.
     On the basis of the analysis of the ring mold pelletizer design parameters on its effect ofwork performance research pelletizer design parameters, which determined pelletizer overalldesign scheme and key components design parameters. Based on the fatigue failure theory,according to stress analysis of pelletizer roller work process, determine the number of roller.Analysis of digital modeling technology, features and parametric modeling technology, anddigital assembly theory, three-dimensional solid models of the pelletizer parts is establishedbased on feature parametric modeling technology, and then determine the key parameters ofring mold pelletizer and the relationship between the parameters. Whole prototype of thepelletizer with digital function obtained through digital assembly and parts two-dimensionalengineering drawings are also obtained, which laid the foundation for the simulation andanalysis of pelletizer.
     According to Newton's theorem and Lagrange theorem derive dynamics equation ofmultibody system of pelletizer, and sum up the method to solve the equation by differentialalgebraic equations solving algorithm. Dynamics simulation analyzes through transmittingring mold pelletizer model into the ADAMS/View by using the interface software MECH/Pro.It is concluded that the roller number in4ring mold stress more reasonable through the analysis and comparison torque of spiral conveyer and the interaction force with ring moldconnection pair at different number rollers in the whole process of ring mold movement. Todetermine ring mold elastic-plastic deformation of the stress-strain relationship iselasto-plastic incremental constitutive relationship under the conditions of isotropic hardeningVon Mises model, and establishing the finite element equation of deformation stage. By use ofANSYS software finite element analysis, it is concluded that stress and displacementdistribution in ring mold pelletizing process, which provide reference for the design ofpelletizer’s ring mold.
     Through single factor experiment and quadratic regression orthogonal rotatingcombination experiment determine moisture content, straw raw material particle size andfermentation time have influence rule on granulation rate, dropping strength and powerconsumption, established regression equation of granulation rate, dropping strength andpower consumption to influence factors. After significance test, contribution rate analysis ofeach factor and optimal solution of regression equation, identify various regression equationand the actual situation fitting, obtain the impact of important degree and order for variousexperiment factors to indicators, get the optimal level of various factors and the optimumvalue analysis result is verified by experiment, the results show that the theoretical optimalsolution and experimental values consistent with much higher, which provide the basis fordesign and application of pelletizer.
     Digital design system software for ring mold pelletizer is developed which realizedintelligence digital design with functions of three-dimensional solid modeling, parametricdesign, performance parameters calculation, simulation analysis of structure performance andhuman-computer interaction. Through the analysis of corn straw pellet fuel total cost, tocalculate investment payback period and net cash flow of ring mold pelletizer, and to analyzeits economic benefit, social benefit and ecological benefit, the results show that, pelletizerproduction line has the good economic benefit, social benefit and ecological benefit.
引文
1.毕于运,高春雨,王亚静等.2009.中国秸秆资源数量估算.农业工程学报,25(12):211-217.
    2.毕于运,王道龙,高春雨等.2008.中国秸秆资源评价与利用.北京:中国农业科学技术出版社.
    3.车战斌.2005.生物质就地及时压缩成型技术.新能源技术,(1):28-31.
    4.陈立平,张云清,任为群等.2005.机械系统动力学分析及ADAMS应用教程.北京:清华大学出版社.
    5.陈彦宏,武佩,田雪艳等.2010.生物质致密成型燃料制造技术研究现状.农机化研究,(1):206-211.
    6.陈益涵.2008.机械系统数字化装配仿真研究.武汉理工大学硕士学位论文.
    7.陈永生,沐森林,朱德文等.2006.生物质成型燃料产业在我国的发展.太阳能,(4):16-18.
    8.程佩芝,赵东,张建中等.2005.玉米秆碎料模压成型密度的试验研究.研究与探索,(5):19-22.
    9.单泉,陈砚,汪殿龙等.2008.Pro/ENGINEER Wildfire4.0(中文版)参数化设计从入门到精通.北京:机械工业出版社.
    10.邓凡平.2007.ANSYS10.0有限元分析自学手册.北京:人民邮电出版社.
    11.邓勇,史建新,董富民.2004.环模制粒机中环模的有限元分析.粮食与饲料工业,(4):110-113.
    12.董彬.1999.挤压造粒环模模板压缩孔深度的研究.磷肥与复肥,(4):53.
    13.董玉平,高名望,孙启新.2005.秸秆类生物质固化成型有限元模拟.山东大学学报(工学版),35(5):9-13.
    14.杜兴强.2007.会计学.北京:中国人民大学出版社.
    15.杜中华,狄长春,贾长治.2002.ADAMS的若干使用技巧.机械与电子,(3):74-75.
    16.杜中华,王兴贵,狄长春.2002.用PRO/E和ADAMS联合建立复杂机械系统的仿真模型.机械,29(4):153-154.
    17.杜中华,薛德庆,赵迎红.2003.PRO/E和ADAMS传递过程中若干问题的讨论.机械与电子,(2):68-70.
    18.段佐亮.1995.我国作物秸秆燃烧甲烷、氧化亚氮排放量变化趋势(1990-2020).农业环境保护,14(3):111-116.
    19.樊峰鸣,张百良,李保谦等.2005.大粒径生物质成型燃料物理特性研究.农业环境科学学报,24(2):398-402.
    20.方旭明,沈桂宇.1996.环模式制粒机的环模与压辊非常规磨损的分析及其解决措施.饲料工业,17(9):11-14.
    21.高建辉.2009.基于ANSYS的生物质成型关键部件动静态特性研究.山东大学硕士学位论文.
    22.高名望.2005.松散生物质热压成型有限元模拟与分析.山东大学硕士学位论文.
    23.高祥照,马文奇,马常宝等.2002.中国作物秸秆资源利用现状分析.华中农业大学学报,21(3):242-247.
    24.葛正浩.2010.ADAMS2007虚拟样机技术.北京:化学工业出版社.
    25.郭津津,武钢,王占亭等.2006.基于Pro/TOOLKIT异步模式的Pro/E二次开发技术研究及应用.组合机床与自动化加工技术,(8):32-34.
    26.郭康权,佐竹隆显,吉崎繁.1994.农林废弃植物粉碎后的压缩特性.农业工程学报,1,(10)(增刊):139-145.
    27.国家发展和改革委员会.2007.《可再生能源中长期发展规划》.
    28.洪军.2004.工程经济学.北京:高等教育出版社.
    29.侯红玲,赵永强,魏伟锋.2005.基于ADAMS和ANSYS的动力学仿真分析.现代机械,(4):62-63.
    30.胡建军,雷廷宙,何晓峰等.2008.小麦秸秆颗粒燃料冷态压缩成型参数试验研究.太阳能学报,29(2):241-245.
    31.胡建军.2008.秸秆颗粒燃料冷态压缩成型实验研究及数值模拟.大连理工大学博士学位论文.
    32.胡于进,王璋奇.2009.有限元分析及应用.北京:清华大学出版社.
    33.黄传海.1991.环模颗粒机的环模强度.饲料工业,12(l):14.
    34.黄明权,张大雷,姜洋等.1999.影响生物质固化成型因素的研究.农村能源,(1):17-18.
    35.回彩娟.2006.生物质燃料常温高压致密成型技术及成形机理研究.北京林业大学硕士学位论文.
    36.姜洋,郭军,王忠诚等.2006.生物质致密成型设备生产颗粒燃料技术及经济分析.可再生能源,(4):81-83.
    37.蒋剑春,刘石彩,戴伟娣等.1999.林业剩余物制造颗粒成型燃料技术研究.林产化学与工业,19(3):25-30.
    38.景仁坤.2005.基于Pro/Engineer的三维参数化设计研究与开发.武汉理工大学硕士学位论文.
    39.孔雪辉.2010.生物质固化成型环模磨损实验研究及数值模拟.东北林业大学博士学位论文.
    40.李本帅.2011.气吸式精密播种机的数字化设计研究.沈阳农业大学硕士学位论文.
    41.李成华,何波.2007.铲式玉米精密播种机仿真及虚拟设计.北京:中国农业大学出版社.
    42.李海兵,李令芳.2005.颗粒机环模特性及应用.饲料工业,26(15):7-9.
    43.李军,邢俊文,覃文洁.2002.ADAMS实例教程.北京:北京理工大学出版社.
    44.李美华,愈国胜.2005.生物质成型技术研究现状.木材加工机械,(2):36-40.
    45.李世国,李强.2004.Pro/ENGINEER Wildfire中文版范例教程.北京:机械工业出版社.
    46.李世国.2003.Pro/TOOLKIT程序设计.北京:机械工业出版社.
    47.李咏洪.2005.Pro/Engineer的参数化零件二次开发研究与实现.中国测试技术,31(1):101-103.
    48.李云雁,胡传荣.2008.试验设计与数据处理(第二版).北京:化学工业出版社.
    49.李增刚.2006.ADAMS入门详解与实例.北京:国防工业出版社.
    50.林清安.2003.Pro/E零件装配与产品设计.北京:清华大学出版社.
    51.刘建军.2004.循环对称结构的有限元分析.西北工业大学硕士学位论文.
    52.刘江省,姚英学,赵焕菊.2004.数字化装配技术.先进制造技术,23(5):33-36.
    53.吕江南.红麻料片的压缩特性及压力与压缩密度的数学模型.1998.农业机械学报,29(2):83-86
    54.罗娟,侯书林,赵立欣等.2010.典型生物质颗粒燃料燃烧特性试验.农业工程学报,26(5):220-226.
    55.马孝琴.2002.生物质(秸秆)成型燃料燃烧动力学特性及液压秸秆成型机改进设计研究.河南农业大学博士学位论文.
    56.穆伟航,陶雷,戚锁红.2009.秸秆固化燃料技术现状与应用前景.推广天地,(3):41.
    57.倪进峰,徐诚.2004.Pro/E与ADAMS的复杂模型传递方法.机械工程师,(9):15-16.
    58.潘爱民,王国印.2009. Visual C++技术内幕(第四版).北京:清华大学出版社.
    59.齐从谦,甘屹,王士兰.2010.Pro/E野火5.0产品造型设计与机构运动仿真.北京:中国电力出版社.
    60.秦玉宝.1989.对环模式颗粒机基本参数的分析.饲料工业,(2):41-42.
    61.申树云.2008.生物质颗粒成型环模特性研究.山东大学硕士学位论文.
    62.盛奎川,吴杰.2003.切碎棉杆高密度压缩成型的试验研究.浙江大学学报:农业与生命科学版,29(2):139-142
    63.盛奎川,吴杰.2004.生物质成型燃料物理品质和成型机理的研究进展.农业工程学报,20(2):242-245.
    64.石博强,申焱华,宁晓斌等.2007.ADAMS基础与工程范例教程.北京:中国铁道出版社.
    65.孙旭清.2009.环模制粒机的主体结构优化研究.江南大学硕士学位论文.
    66.田宜水,孟海波.2008.农作物秸秆开发利用技术.北京:化学工业出版社.
    67.汪海波,章瑞春.2007.我国农作物秸秆资源的分布、利用与开发策略.山东省农业管理干部学院学报,23(2):164-165.
    68.汪惠群,郑建荣.2004.在ADAMS软件中虚拟样机的参数化建模与分析.机械制造,10(42):41-43.
    69.王波,李汝萃,高丽霞等.2004.玉米秸秆的压缩特性及其压力与压缩密度的数学模型.农机化研究,(l):160-162
    70.王春光.1999.高密度压捆时牧草在压缩室内的受力与变形研究.农业工程学报,15(4):55-59.
    71.王国强,张进平,马若丁.2002.虚拟样机技术及其在ADAMS上的实践.西安:西北工业大学出版社.
    72.王恒,宁汝新,张旭等.2004.农业机械数字化设计与制造技术的应用.计算机辅助设计与图形学学报,16(6):869-872.
    73.王慧,陆萍,吴云玉等.2010.基于COSMOS的生物质颗粒机环模寿命分析.农机化研究,8(8):193-196.
    74.王慧.2011.基于生物质碾压成型机理的成型能耗影响因素研究.山东大学硕士学位论文.
    75.王建祥,蔡红珍.2008.生物质压缩成型燃料的物理品质及成型技术.农机化研究,(1):203-205.
    76.王久臣,戴林,田宜水等.2007.中国生物质能产业发展现状及趋势分析.农业工程学报,23(9):276-282.
    77.王民,郭康权.1993.秸秆制作成型燃料的试验研究.农业工程学报,9(1):99-103.
    78.王秋华.1994.我国农村作物秸秆资源化调查研究.农村生态环境,10(4):67-71.
    79.王新玉.2003数字化设计.北京:机械工业出版社.
    80.王艳云,吴杰.2005.粉碎棉秆含水率对压缩成型的影响.农机化研究,(9):164-165.
    81.吴创之,马隆龙.2003.生物质能现代化利用技术.北京:化学工业出版社.
    82.吴创之,周肇秋,阴秀丽等.2009.我国生物质能源发展现状与思考.农业机械学报,40(1):91-99.
    83.吴劲锋.2008.制粒环模磨损失效机理研究及优化设计.兰州理工大学博士学位论文.
    84.吴云玉.2010.基于生物质固体成型机理研究的环模疲劳寿命分析.山东大学硕士学位论文.
    85.肖宏儒,陈永生,宋卫东.2006.秸秆成型燃料加工技术发展趋势.农业装备技术,32(2):11-13.
    86.肖宏儒,宋卫东,钟成义等.2009.生物质成型燃料加工技术分析研究.中国农机化,(5):65-68.
    87.谢光辉,王晓玉,任兰天.2010.中国作物秸秆资源评估研究现状.生物工程学报,26(7):855-863.
    88.邢蕾,王述洋.2005.秸秆压缩成型实验与分析.佳木斯大学学报(自然科学版),23(4):574-576.
    89.徐军民,王艳霞.2005.基于Pro/E的三维参数化零件设计.浙江科技学院学报,17(1):18-21.
    90.徐中儒.1997.回归分析与试验设计.北京:中国农业出版社.
    91.薛守义.2006.弹塑性力学.北京:中国建材工业出版社.
    92.杨敏,殷晨波,姜涛.2005.Pro/E与ADAMS之间图形数据传递方法.中国工程机械学报,(7):332-335.
    93.杨明韶.2002.粗纤维物料压缩过程的-般流变规律的探讨.农业工程学报,18(1):136-137.
    94.杨升明.2007.铲式玉米精密播种机的数字化设计.沈阳农业大学硕士学位论文.
    95.杨宇.2010.铲式精密播种机数字化设计方法及关键技术研究.沈阳农业大学博士学位论文.
    96.姚宗路,赵立欣,Ronnback M等.2010.生物质颗粒燃料特性及其对燃烧的影响分析.农业机械学报,41(10):97-102.
    97.张百良,李保谦,赵朝会等.1999.HPB-I型生物质成型机的应用研究.太阳能学报,20(3):234-238.
    98.张百良,李保谦.1999.HPB-I型生物质成型机的应用研究.太阳能学报,20(3):234-237.
    99.张百良,王许涛,杨世关.2008.秸秆成型燃料生产应用的关键问题探讨.农业工程学报,24(7):296-300.
    100.张超,张益华.2004.Pro/E二次开发技术在齿轮三维参数化设计中的应用.机械制造与研究,33(6):13-15.
    101.张朝晖.2008.ANSYS11.0结构分析工程应用实例解析(第二版).北京:机械工业出版社.
    102.张继春.2003. Pro/ENGINEER二次开发实用教程.北京:北京大学出版社.
    103.张培栋,杨艳丽,李光全等.2007.中国农作物秸秆能源化潜力估算.可再生能源,25(6):80-83.
    104.张姝玉,王述洋,周贯平.2006.基于Pro/E与ADAMS传递过程的探讨.林业机械与木工设备,34(6):27-28.
    105.赵宏,褚怀德,张忠君.2003.20CrMnTi合金钢弹性模量泊松比切变模量测量实验研究.试验技术与试验,43(4):23-24.
    106.赵丽娟,李世旭,刘杰.2006.基于Pro/E与ADAMS协同仿真中的图形数据交换.机械与电子,(12):78-80.
    107.赵青玲,张培远,刘俊红.2006.原料含水率及成型直径对秸秆成型燃料耐久性的影响.环境污染与防治,28(12):911-913
    108.钟华平,岳燕珍,樊江文.2003.中国作物秸秆资源及其利用.资源科学,25(4):62-67.
    109.朱金波.2007.Pro/ENGINEER Wildfire3.0工业产品设计完全掌握.北京:兵器工业出版社.
    110. Bellinger P L, McColly H F.1961.Energy requirements for forming hay pellets.AgriculturalEngineering,42(5):180-181.
    111. Bhattacharya S.C., Augustus Leon M., Mizanur Ralinlan Md.2002. A Study on improved biomassbriquetting. Energy for Sustainable Development:67-71.
    112. Bock R G, Puri V M, Mabeek H B.1989. Stress-relaxation Response of Wheat and Masse. Trans.ofASAE,32(5):1701-1708.
    113. Butler B J, McColly H F.1959. Factors affecting the pelleting of hay. Agricultural Engineering,40(8):442-446.
    114. Butler J L.1985.Energy comparisons in processing coastal bermuda grass and alfalfa. Transactions ofAmerican Society of Agricultural Engineers,8(2):175-179.
    115. Cheng P, Tushar H Dani, Rajit Gash.1997.Multisensory user interface for virtual reality-basedcomputer-aided design system.Computer Aided Design,29(10):709-728.
    116. David J, Kruglinskl, Scot Wing, et al.1998.Inside Visual C++. Microsoft Press.
    117. Devedzic V.1999.A survey of modern knowledge modeling techniques.Expert System withApplication,17(4):275-294.
    118. Esaki H, Satake T, Guo K.1986. Compressive characteristics on the forming of the pellet andwafer.Journal of the Japanese Society of Agricultural Machinery,48(1):83-90.
    119. Fudos I, Hoffmann C M.1997.A Graph Constructive approach to solving systems of geometricconstraints.ACM Transactions on Graphics,16(2):179-216.
    120. Fung P.Y.H., Kirschbaum M.U.F., Raison R.J.,et al.2002.The potential for bioenergy production fromAustralian forests,its contribution to national greenhouse targets and recent developments inconversion processes.Biomass and Bioenergy,22:223-236.
    121. Gustafson A S, Kjelgaard W L.1963.Hay pellet geometry and stability. Agricultural Engineering,4(8):442-445.
    122. Hartman N.200l.Electromagnetic, thermal and structual analysis of RF cavities using ANSYS.Proceedings of the IEEE Particle Aecelerator Conference, v2:912-914.
    123. Jayaram S, Connacher H, Lyons K.1997.Virtual assembly using virtual reality techniques.ComputerAided Design.29(8):575-584.
    124. Li JF,Hu RQ,Song YQ,et al.2005.Assessment of sustainable energy potential of non-plantationbiomass resources in China.Biomass and Bioenergy,29:167-177.
    125. Lindley J A, Vossoughi M.1989.Physical properties of biomass briquets.Transactions of the ASAE,32(2):361-366.
    126. Mani S, Tabil L G, Sokhansanj S.2006.Effects of compressive force, particle size and moisture contenton mechanical properties of biomass pellets from grasses.Biomass and Bioenergy,30(7):648-654.
    127. Mehrdad A, Rolf G, Paul G.2008.The influence of raw material characteristics on the industrialpelletizing process and pellet quality. Fuel Processing Technology,89:1442-1447.
    128. Merwn F, Senthil A. K., Bok S. H.,et al.2004.Developing distributed applications for integratedproduct and process design.Computer-Aided Design,36(8):679-689.
    129. Mohsenin N, Zaske J.1976.Stress relaxation and energy requirements in compassion ofuncongolidated materials.J Agric. Engng. Res,21(l):193-205.
    130. Morimotoy, Hayashit, Takeit.1991.Mechanical behavior of Powder during compaction in a mouldwith variable cross sections. The International Journal of Plasticity,(7):567-605.
    131. Morl K, Osakada K.1987.Analysis of the foring process of sintered power materials by a rigid-plasticfinite element method.Int J Mech sci,29(4):229-238.
    132. Nikolaychuk O, Yurin A.2008.Computer-aided identification of mechanical system’s technical statewith the aid of case-based reasoning. Expert Syst Appl,34:635-642.
    133. O′Dogherty M J, Gilbertson H G, Gale G E.1989.Measurements of the physical and mechanicalproperties of wheat straw.4th international conference on the physical properties of agriculturalmaterials, German democratic republic,9:608-613.
    134. O′Dogherty M J, Wheeley J A, Clements K.1982.The effect of moisture content, recharge and rate ofloading on the compression of wheat and seed rape straw to high densities in closed cylindrical dies.National Institute of Agricultural Engineering.
    135. O′Doguerty M J, Wheeler J A.1984.Compression of straw to high densities in closed cylindricaldies.Agricultural Engineering Research,(29):61-72.
    136. Parametric Technology Corporation.2004.Pro/ENGINEER Wildfire2.0Pro/TOOLKIT User’sGuide.USA, PTC.
    137. Parametric Technology Corporation.2004.Pro/ENGINEER Wildfire2.0Pro/TOOLKIT ReleaseNotes.USA, PTC.
    138. Peleg K.1983. A rheological model of nonlinear viscoplastic solids. The Junrnal of Rheology,27(5):411-431.
    139. Rhen C,Gref R,Sjstrm M,et al.2005.Effects of raw material moisture content,densification pressureand temperature on some properties of Norway spruce pellets.Fuel Processing Technology,87(1):11-16.
    140. Rowe J.2004.Pro/ENGINEER wildfire2.0-New user interface makes powerful capabilities moreaccessible.Cadalyst,21(8):30-34.
    141. Sehyun M, Han S.2001.Knowledge-based parametric design of mechanical products based onconfiguration design method.Expert Systems with Applications,21(2):99-107.
    142. Shan F, Ling X, Li L C.2001.An object-oriented intelligent design tool to aid the design ofmanufacturing systems.Knowledge-Based Systems,14(5-6):225-232.
    143. Tabil L G, Sokhansanj S, Tyler R T.1997.Performance of different binders during alfalfa pelleting.Canadian Agricultural Engineering,39(1):17-23.
    144. Xu X.Y, Wang Y. Y.2002.Multi-model technology and its application in the integration ofCAD/CAM/CAE.Journal of Materials Processing Technology,129(1-3):563-567.
    145. Burmistrova M F, Komolkova T, Klemn N,etal.1963.Physico-mechanical properties of agriculturalcrops. Israel Program for Scientific translations. TT61-312, Jerusalem:250.(Russian)
    146. Busse W.1966.Das Verdichten von Halmgutern mit hohen Normaldrucken(The compression of foragewith high normal Pressures).Fortschrittberichte der VDI Zeitschriften, Verein Deutsche Ingenieure,Reihe14(l),VDI-Verlag,Dusseldorf.(Russian)
    147. Mewes E.1958.Zum verhalten von Pressgutern in Prestopfen.Landteehnische Forshung,8(6):158-164.(German)
    148. Sachat H O.1959.Der Stand der forschung anf dem Gebit der Heuund Strophressen. Landtechn,99(3):68-76.(German)
    149. Skalweit H.1938.Krafte und BeansPruehungen in StohPressen.Konstrueture-Kursus RKTL,Sehrift88,Berlin.(German)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700