肉仔鸡对饲料标准磷利用率、可利用磷需要量及小肠磷吸收机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共通过五个系列试验,研究肉仔鸡对饲料原料标准磷利用率、非植酸磷及标准可利用磷的需要量,并用原位结扎灌注肠段法研究无机磷在肉仔鸡小肠各段的吸收规律和机制。
     试验一包括3个试验,旨在建立测定肉鸡对常用饲料原料(豆粕)标准矿物元素(钙、磷、铜、锰和锌)利用率的方法。在试验1中,12只24日龄商品代AA肉仔公鸡用于测定肉仔鸡排空消化道食糜的适宜绝食时间。设1个处理组,包括4个重复,每个重复3只鸡。肉仔鸡自由采食玉米-豆粕型饲粮2小时后截料,然后收集截料后12、24、36或48小时的排泄物。结果表明,肉仔鸡至少绝食24小时才能保证其消化道食糜排空。在试验2中,48只22日龄商品代AA肉仔公鸡分2个处理组(无矿物质和豆粕饲粮组),每个处理组24只鸡(每个处理组6个重复笼,每个重复笼4只鸡)。经过3天的适应期后,24日龄肉仔鸡绝食24小时后饲喂无矿物质或豆粕饲粮4小时,从采食开始收集28小时(截料后24小时)或52小时(截料后48小时)的排泄物用于测定肉仔鸡对豆粕的标准矿物元素利用率。结果表明,测定肉仔鸡对豆粕的标准矿物元素利用率适宜的收集排泄物时间为从采食开始收集排泄物52小时。24日龄肉仔鸡对豆粕的标准钙、磷、铜、锰、锌利用率分别为51.1、50.2、36.3、30.8及49.7%。在试验3中,采用试验2相同的试验方法测定36日龄肉仔鸡对同一豆粕的标准矿物元素利用率。共48只34日龄商品代AA肉仔公鸡分2个处理组(无矿物质和豆粕饲粮组),每个处理组24只鸡(每个处理组6个重复笼,每个重复笼4只鸡),然后适应3天至36日龄进行试验。结果表明,36日龄肉仔鸡对豆粕的标准磷(51.6%)、铜(36.4%)、锰(31.9%)、锌(43.4%)利用率与试验2中的相应测定结果基本一致(P>0.12),但标准钙(41.5%)利用率低于试验2中的测定结果,说明在本试验期间内肉仔鸡日龄对豆粕的标准磷、铜、锰和锌利用率没有显著影响。总之,本试验建立的简单、快速的平衡试验技术新方法可以用于测定肉鸡对常用饲料原料(如豆粕)的标准矿物元素利用率。
     试验二包括2个试验,用于测定肉鸡对玉米、豆粕及玉米-豆粕型饲粮的标准磷利用率,同时验证标准磷利用率在玉米-豆粕型饲粮中的可加性。每个试验均用96只体重相近的22日龄商品代AA肉仔公鸡,分4个处理组(无磷、玉米、豆粕及玉米-豆粕饲粮组),每个处理组24只鸡(每个处理组6个重复笼,每个重复笼4只鸡)。经过3天的适应期后,绝食24小时,然后分别自由采食无磷、玉米、豆粕及玉米-豆粕型饲粮4小时(试验1)或72小时(试验2),收集排泄物28或52小时(试验1)与96或120小时(试验2)(截料后48小时)。试验1的结果表明,收集排泄物52小时(截料后48小时)是测定标准磷利用率适宜的收集排泄物时间。肉仔鸡通过采食无磷饲粮测定的基础内源磷排泄量为123mg/52小时·只。通过基础内源磷校正计算的肉仔鸡对玉米、豆粕的标准磷利用率分别为37.6和50.5%。同时,测定玉米-豆粕型饲粮的标准磷利用率为44.4%,与预测值43.5%相近(P>0.79)。试验2的结果表明,收集排泄物96小时(截料后24小时)是测定标准磷利用率适宜的收集排泄物时间。肉仔鸡通过采食无磷饲粮测定的基本内源磷排泄量为85.4mg/96小时·只。通过基础内源磷校正计算的肉仔鸡对玉米、豆粕的标准磷利用率分别为40.2和52.9%,与试验1的相应测定结果相近(P>0.48),但测定的玉米-豆粕型饲粮的标准磷利用率为39.7%,显著低于预测值46.0%(P <0.001),这可能与肉仔鸡的磷进食量较高有关。试验结果表明,无磷饲粮可用于测定肉仔鸡基础内源磷的排泄量进而用于估测肉鸡对植物性饲料原料的标准磷利用率。但是,关于标准磷利用率在混合饲粮中的可加性还有待进一步研究。
     试验三包括2个试验,用于测定肉仔鸡对无机矿物质磷源(磷酸氢钙、磷酸二氢钙及磷酸二氢钾)的标准磷利用率。每个试验均用96只体重相近的22日龄商品代AA肉仔公鸡随机分成4个处理组(无磷、磷酸氢钙、磷酸二氢钙及磷酸二氢钾饲粮组),每个处理组24只鸡(每个处理组6个重复笼,每个重复笼4只鸡)。经过3天的适应期后,绝食24小时,然后饲喂无磷、磷酸氢钙、磷酸二氢钙及磷酸二氢钾饲粮4小时(试验1)或72小时(试验2),收集排泄物52小时(试验1)或120小时(试验2)(截料后48小时)。试验1的结果表明,肉仔鸡通过无磷饲粮估测的基础内源磷排泄量为109mg/52小时·只。通过基础内源磷校正估测的肉仔鸡对磷酸氢钙、磷酸二氢钙及磷酸二氢钾的标准磷利用率分别为68.7、69.8及76.6%。试验2的结果表明,收集排泄物96小时(截料后24小时)即可用于测定无机矿物质磷源的标准磷利用率。肉仔鸡通过无磷饲粮测定的基础内源磷排泄量为49.2mg/96小时·只。通过基础内源磷校正估测的肉仔鸡对磷酸氢钙、磷酸二氢钙及磷酸二氢钾的标准磷利用率分别为71.8、70.6和78.3%。试验1和2中测定的结果很一致(P <0.001),表明无磷饲粮可以用于测定肉仔鸡基础内源磷的排泄量,且快速平衡法可用于测定肉鸡对无机矿物质磷源的标准磷利用率。
     试验四采用单因子的完全随机试验设计,用540只1日龄商品代AA肉仔公鸡进行试验,研究饲粮不同非植酸磷水平对肉仔鸡生长性能、骨骼发育参数及组织中磷代谢关键功能基因mRNA表达水平的影响,从而估测1-21日龄肉仔鸡玉米-豆粕型饲粮中非植酸磷及标准可利用磷的适宜需要量。试鸡按体重随机分为9个处理组(每个处理组6个重复笼,每个重复笼10只鸡),分别饲喂在玉米-豆粕型基础饲粮(非植酸磷含量实测为0.08%)中以CaHPO4·2H2O形式分别添加磷水平为0.10、0.15、0.20、0.25、0.30、0.35、0.40、0.45及0.50%的处理饲粮。各处理饲粮钙水平保持一致(1.0%)。试验期21天。结果表明,日增重、胫骨抗压强度、胫骨灰分含量、胫骨矿物质含量、胫骨骨密度及中趾骨灰分含量是评价肉仔鸡非植酸磷需要量的敏感指标,其中胫骨矿物质含量及其骨密度为评价肉鸡非植酸磷需要量新的特异敏感指标,而血清及胫骨碱性磷酸酶活性、胫骨灰分磷含量、胫骨灰分钙磷比、中趾骨灰分磷含量、十二指肠钠磷协同转运蛋白(NaP-IIb)mRNA和胫骨非组织特异性碱性磷酸酶(TNAP)mRNA表达水平更适于评价肉鸡对饲粮磷的生物学利用率。同时十二指肠NaP IIb mRNA表达水平受饲粮非植酸磷水平的显著(P <0.03)影响。根据以上敏感反应指标估测1-21日龄肉仔鸡非植酸需要量分别为0.34、0.39、0.37、0.37、0.39及0.36%。综合各指标,1-21日龄肉仔鸡玉米-豆粕型饲粮中非植酸磷适宜需要量为0.39%,标准可利用磷的适宜需要量为0.37%。
     试验五包括2个试验,用原位结扎灌注肠段法研究无机磷在肉仔鸡十二指肠、空肠及回肠的动力学吸收特点及其与NaP-IIb基因表达的相关性。试验1通过研究不同灌注时间点时肉仔鸡小肠各段无机磷吸收率变化的规律,以确定研究肉仔鸡结扎小肠各段磷吸收动力学的适宜灌注时间。用22日龄商品代肉仔公鸡96只,按体重随机分为6个处理组(每个处理组8个重复笼,每个重复笼2只鸡),灌注6mmol/L的无机磷(磷酸二氢钾),共设0、2.5、5、10、20和40分钟6个采样时间点。结果表明,无机磷在肉仔鸡结扎十二指肠、空肠及回肠中的吸收率均随灌注时间的延长而增加,且在0-40分钟内呈渐近线变化;十二指肠磷吸收率在灌注后20分钟时显著(P <0.04)高于空肠和回肠磷吸收率,提示十二指肠可能是肉仔鸡磷吸收的主要部位。由于在20分钟时各肠段磷吸收率均达到了最大吸收率的87.0%以上,故在试验2中采用的适宜灌注时间为20分钟。试验2通过结扎肉仔鸡小肠各段灌注不同磷浓度(0、1.5、3、6、12、24或48mmol/L,磷酸二氢钾),观测无机磷吸收速率与灌注磷浓度之间的关系,揭示无机磷在肉仔鸡小肠各段的吸收动力学模式,并通过小肠各肠段NaP-IIb mRNA表达水平来研究NaP-IIb在结扎肉仔鸡小肠各段磷吸收转运中的作用。用22日龄商品代肉仔公鸡56只,按体重随机分为7个处理组(每个处理组8个重复笼,每个重复笼1只鸡)。肉仔鸡小肠各段磷吸收动力学模型表明,十二指肠磷吸收以饱和载体转运为主,而空肠和回肠磷吸收以非饱和扩散为主。在不同的磷灌注浓度(0、6或48mmol/L)下,十二指肠NaP-IIb mRNA表达水平都显著(P <0.0001)高于空肠和回肠,说明十二指肠磷的饱和载体吸收与其NaP-IIb密切相关。
     综上所述,本研究建立了测定肉鸡对饲料原料和全价饲粮中标准矿物元素利用率的快速平衡试验技术新方法,并以此测得的肉仔鸡对玉米、豆粕、玉米-豆粕型饲粮、磷酸氢钙、磷酸二氢钙及磷酸二氢钾的标准磷利用率分别为37.6、50.5、44.4、68.7、69.8及76.6%;筛选到胫骨矿物质含量及其骨密度是评价肉仔鸡磷需要量的特异性敏感新指标,并用其评价获得的1-21日龄肉仔鸡玉米豆粕型饲粮中非植酸磷适宜需要量为0.39%,标准可利用磷需要量为0.37%;无机磷在肉仔鸡十二指肠中的吸收以饱和载体为主,而在空肠和回肠则以非饱和扩散为主,与其NaP-IIb表达密切相关。以上研究新成果对于我国肉鸡生产中合理、高效使用磷源,以精准满足肉鸡的可利用磷需要量,进而降低饲料成本,减少磷排放对环境的污染,都具有重要的理论和现实指导意义。
Five studies were conducted in this dissertation to investigate the standardized phosphorus (P)availabilities in feedstuffs, non-phytate P and standardized available P requirement, as well as theabsorption mechanism of inorganic P in the ligated small intestine segments of broiler chicks.
     Firstly, three experiments were conducted to develop a procedure for estimating the standardizedmineral (calcium, Ca; phosphorus, P; copper, Cu; manganese, Mn; zinc, Zn) availabilities (SMA) in themost commonly used model ingredient (soybean meal) for broilers. In experiment1, twelve24-d-oldcommercial AA male chicks were used to determine the length needed to empty the total tract of feedresidues during the pre-experimental fasting period. The chicks were randomly allotted to four replicatecages of three chicks per cage. Birds were fed the corn–soybean meal basal diet for2h, then feeds wereremoved and excreta samples were collected for12,24,36or48h after feed withdrawal. The resultsindicated that the excreta collection time of24h after feed withdrawal was sufficient to empty the totaltract of feed residues. In experiment2, forty-eight22-d-old commercial AA male chicks were used todetermine SMA in soybean meal. The chicks were randomly allotted to one of the two treatments(mineral-free or soybean meal diet group) with six replicate cages of four chicks per cage. After3-dacclimation, chicks were fasted for24h and then fed mineral-free or soybean meal diet for4h, andexcreta samples were collected for28h (24h after feed withdrawal) or52h (48h after feed withdrawal).The results showed that the extended excreta collection time of52h was adequate for estimating SMA.The standardized availability values of Ca, P, Cu, Mn and Zn in soybean meal were51.1,50.2,36.3,30.8and49.7%, respectively. In experiment3, a similar bioassay was conducted with forty-eight36-d-oldcommercial AA male chicks to measure SMA in the same soybean meal. Forty-eight34-d-old chickswere randomly allotted to one of the two treatments (mineral-free or soybean meal diet group) with sixreplicate cages of four chicks per cage, then birds recovered and acclimated for3d. The standardizedavailability values of P (51.59%), Cu (36.37%), Mn (31.94%) and Zn (43.37%) were similar (P>0.12)to the results of experiment2except for Ca (41.49%), indicating that the age of birds had no effect onthe standardized availabilities of P, Cu, Mn or Zn in soybean meal. The results from this study suggestedthat this simple and rapid procedure could be used to determine SMA in feedstuffs (e.g. soybean meal)for broiler chicks.
     Secondly, two experiments were conducted to estimate standardized phosphorus (P) availabilities(SPA) of corn, soybean meal (SBM) and corn-soybean meal (C-SBM) diet in broilers chicks, and verifythe additivity of SPA for feed formulation of broilers. Ninety-six22-d-old commercial AA male broilerswith similar bodyweight were used in each experiment. The chicks were randomly allotted to one of thefour treatments (P-free, corn, SBM or C-SBM diets group) for six replicate cages of four chicks per cage.After3-d acclimation, chicks were fasted for24h and then fed P-free, corn, SBM or C-SBM diets,respectively, for4h in experiment1or72h in experiment2, and collected excreta for52h (48h afterfeed withdrawal) in experiment1or120h (48h after feed withdrawal) in experiment2. In experiment1, the results showed that the excreta collection time of52h (48h after feed withdrawal) was adequate forthe estimation of SPA. The basal endogenous P loss (EPL) of chicks fed the P-free diet was estimated tobe123mg/52h per bird. The values of SPA corrected by basal EPL were37.6and50.5%for corn andSBM, respectively. The determined value of SPA for the C-SBM diet was very close (P>0.79) to thepredicted summation of SPA from corn and SBM (44.4vs.43.5%). In experiment2, the results showedthat the excreta collection time of96h (24h after feed withdrawal) was sufficient for the estimation ofSPA. The basal EPL of chicks fed the P-free diet was estimated to be85.4mg/96h per bird. The valuesof SPA corrected by basal EPL were40.2and52.9%for corn and SBM, respectively. The determinedvalue of SPA of the C-SBM diet was lower (P <0.001) than the predicted summation of SPA from cornand SBM (39.7vs.46.0%), which might be due to the effect of higher total P intake. The results from thecurrent study demonstrated that the P-free diet could be used for measuring basal EPL in broiler chicks,and then estimating the SPA values of plant feedstuffs for broiler chicks. However, the additivity of SPAin the diet formulation needs to be further studied.
     Thirdly, two experiments were conducted to estimate standardized phosphorus (P) availabilities(SPA) of dicalcium phosphate (DCP), monocalcium phosphate (MCP) and monopotassium phosphate(KCP) in broilers chicks. Ninety-six22-d-old commercial AA male chicks with similar bodyweight wereused in each experiment. The chicks were randomly allotted to one of the four treatments (P-free, DCP,MCP or KCP diets group) with six replicate cages of four chicks per cage. After3-d acclimation, chickswere fasted for24h and then fed P-free, DCP, MCP or KCP diets, respectively for4h in experiment1or72h in experiment2, and collected excreta for52h (48h after feed withdrawal) in experiment1or120h (48h after feed withdrawal) in experiment2. In experiment1, the basal endogenous P loss (EPL) ofchicks fed the P-free diet was estimated to be109mg/52h per bird. The values of SPA corrected bybasal EPL were68.7,69.8or76.6%for DCP, MCP and KCP, respectively. In experiment2, the resultsshowed that the excreta collection time of96h (24h after feed withdrawal) was sufficient for theestimation of SPA. The basal EPL of chicks fed the P-free diet was estimated to be49.2mg/96h perbird. The values of SPA corrected by basal EPL were71.8,70.6and78.3%for DCP, MCP and KCP,respectively. The results from the current study demonstrated that the P-free diet could be used formeasuring basal EPL in broilers, and then estimating the SPA values of inorganic P sources for broilerchicks.
     Fourthly, one experiment was conducted to investigate the effects of dietary non-phytatephosphorus (NPP) levels on performance, bone characteristics and tissue gene expression of Pmetabolism-related function gene, so as to determine the non-phytate P and standardized available Prequirement of broiler chicks fed a corn-soybean meal basal diet from1to21days of age. A total of540one-day-old commercial AA male chicks were assigned to one of nine treatments (eight replicate cagesof ten chicks per cage) in a completely randomized design. The diets included a basal corn-soybean mealdiet (0.08%of NPP) supplemented with0.10,0.15,0.25,0.30,0.35,0.40,0.45, or0.50%of inorganic Pin the form of CaHPO4·2H2O, respectively. All diets contained the same Ca content of1.0%. The resultsindicated that average daily gain, tibia bone strength, tibia ash percentage, tibia bone mineral content (BMC), bone mineral density (BMD) and middle toe ash percentage were sensitive indices forestimating P requirement of broilers, and tibia BMC and BMD were new specific and sensitive criteriafor estimating the optimal dietary NPP requirement for broiler chicks. Serum and tibia ALP activities,tibia ash P concentration, tibia Ca and P ratio, middle toe ash P concentration, duodenum NaP-IIb andtibia TNAP mRNA levels were suitable for determining dietary P bioavailabilities for broiler chicks. Inaddition, the duodenum NaP-IIb mRNA level was significantly (P <0.03) affected by dietary NPP level.Based on above sensitive response indices, the estimated NPP requirements were0.34,0.39,0.37,0.37,0.39and0.36%, respectively. According to the above results, the NPP requirement was0.39%, and thestandardized available P requirement was0.37%for broiler chicks from1to21days old fed acorn-soybean meal basal diet.
     Finally, two experiments were conducted to study the kinetics of inorganic P absorption in theligated duodenum, jejunum, and ileum intestinal segments of broiler chicks and whether NaP-IIbtransporter was involved. Experiment1was conducted to investigate the P absorption with time, so as todetermined appropriate post-perfusion time in the subsequent experiment. Ninety-six commercial AAmale chicks with similar bodyweight were randomly allotted to one of the six treatments (sixpost-perfusion time points) with eight replicate cages of two chicks per cage. The intestinal loops wereperfused with solutions containing6mmol P/L as KH2PO4, and samples were collected at0,2.5,5,10,20or40min post-perfusion. The results showed that P absorption increased in an asymptotic response topost-perfusion time within40min in the all ligated segments, and P absorption in the duodenum washigher (P <0.04) than that in the other2segments at20min post-perfusion. The results indicated thatthe duodenum might be the main site of P absorption for chicks. In addition, the absorption at20minwas greater than87%of the maximum absorption in each segment. For this reason, the subsequentexperiment was carried out at20min post-perfusion. Experiment2was carried out to study the kineticof P absorption and the mRNA levels of NaP-IIb in the different ligated segments, in order to explain themechanisms of P absorption. Fifty-six commercial AA male chicks with similar bodyweight wererandomly allotted to one of the seven treatments (seven perfusion solutions) with eight replicate cages ofone chick per cage. Intestinal loops were perfused with solutions containing0,1.5,3,6,12,24, or48mmol P/L as KH2PO4. The mRNA levels of NaP-IIb in three intestinal loops in the0,6or48mmol P/Lgroups were analyzed. The kinetic curves showed that P absorption in duodenum depended on a saturatecarrier mediated process, whereas P absorption in the jejunum and ileum occurred with a non-saturatediffusion process. Moreover, the NaP-IIb mRNA levels in the duodenum were higher (P <0.02) thanthat in the ileum or jejunum in the0,6or48mmol P/L groups, further indicating that P absorption in theduodenum occurred mainly by a saturate carrier mediated process.
     In conclusion, series of present studies developed a procedure to determine the SPA in feedstuffs forbroilers chicks, and according to this procedure the estimated SPA values of corn, soybean meal,corn-soybean meal diet, DCP, MCP or KCP were determined as37.6,50.5,44.4,68.7,69.8and76.6%,respectively. The results of current studies also indicated that tibia BMC and BMD were the specificsensitive criteria for estimating NPP requirement of broiler chicks. Based on the new criteria, the optimal NPP requirement of broiler chicks was0.39%, and the standardized available P requirement was0.37%for broiler chicks from1to21days old fed a corn-soybean basal diet. In addition, P absorption in theduodenum depended on a saturate carrier mediated process, in which NaP-IIb transporter might beinvolved, whereas P absorption in the jejunum and ileum occurred with a non-saturate diffusion process.The above new findings in the current studies had important theoretical and practical significances forreasonable and efficient use of P in feed formulation to accurately meet available P requirement inbroiler production, so as to decrease feed cost and reduce environmental pollution from P excretion ofbroilers.
引文
1.白世平.不同形态锰在肉仔鸡小肠中的吸收机理研究[博士学位论文].北京:中国农业科学院,2008.
    2.陈娴,刘国华,刘宏.肉鸭常用植物性饲料原料有效磷评定及可加性研究.动物营养学报,2010,22(4):917-922.
    3.陈娴,刘国华,刘宏.不同方法测定肉鸭内源磷排泄量的比较研究.动物营养学报,2011,23(3):403-409.
    4.陈娴,刘国华,刘宏.套算法评定肉鸭常用植物性饲料原料中总磷真利用率和真有效磷含量.动物营养学报,2011,23(7):1109-1115.
    5.方热军,贺佳,曹满湖,陈娟,李美君,方成堃.日粮磷水平对肉鸡磷代谢及Na/Pi-Ⅱb基因mRNA表达的影响.畜牧兽医学报,2011,42(2):289-296.
    6.方热军.植物性饲料磷真消化率及其真可消化磷预测模型的研究[博士学位论文].四川:四川农业大学,2003.
    7.国家技术监督局. GBT6432-1994.饲料中粗蛋白测定方法.北京:中国标准出版社,1994年7月18日.
    8.韩进诚.1α-OH D3和植酸酶对肉鸡磷代谢的影响及肠道NaP-IIb基因表达调控[博士学位论文].杨凌:西北农林科技大学,2008.
    9.韩进诚,王玉玲,王家庆,施传信,姚军虎.家禽磷营养研究进展与应用.饲料工业,2009,30(15):7-9.
    10.韩有文,吴成坤.代谢试验中收集鸡排泄物的改进方法.东北农业学院学报,1982,2:115-117.
    11.侯水生,黄苇,喻俊英,赵玲.鸡盲肠对饲料磷的消化作用.畜牧兽医学报,1998,29(5):406-411.
    12.黄艳玲.肉仔鸡实用饲粮中锌适宜水平及有机锌源相对生物学利用率研究[博士学位论文].北京:中国农业科学院,2007.
    13.霍启光.动物磷营养与磷源.北京:中国农业科技出版社,2002:28-32.
    14.计峰.用体外法和体内法研究有机锰在肉仔鸡小肠中的吸收特点[博士学位论文].北京:中国农业科学院,2003.
    15.罗发红.不同类型植酸酶对肉仔鸡生产性能和内源磷排泄量的影响[硕士学位论文].北京:中国农业科学院,2007.
    16.罗绪刚.肉仔鸡实用饲粮中锰的适宜水平及其生物学有效率的研究[博士学位论文].北京:中国农业科学院,1989.
    17.罗绪刚,苏琪,黄俊纯,段玉琴.中脚趾骨灰锰含量作为肉仔鸡锰生物学有效性评价指标的可行性研究.黑龙江畜牧兽医,1991,4:1-3.
    18.罗绪刚,丁保安,刘彬,邵桂芝,郭修泉,廖纪朝,苏琪,高福森,余顺祥,呙于明.中型褐壳产蛋鸡饲粮非植酸磷适宜水平的研究.畜牧兽医学报,2002,33(1):1-5.
    19.齐智利,徐淑静,陈玉洁,严峰,李燕,彭健.肉鸭常用饲料原料磷真利用率及真可利用磷预测模型的研究.动物营养学报,2011,23(2):258-265.
    20.苏琪,陆肇海,段玉琴.植物饲料中植酸磷的含量及测定.饲料研究,1983,4:11-13.
    21.苏琪,余顺祥,段玉琴,陆肇海,刘金旭.猪鸡饲料中有效磷的评定及营养性缺磷症的研究.中国农业科学,1984,2:75-82.
    22.屠焰,霍启光.0-3周龄肉仔鸡和蛋用仔公鸡非植酸磷需要量的研究.见:卢德勋,韩友文,编.中国畜牧兽医学会动物营养学分会第六届全国会员代表大会暨第八届学术研讨会论文集.哈尔滨:黑龙江人民出版社,2000,499-506.
    23.屠焰,霍启光,范先国.磷酸氢钙含氟量对其磷相对生物学利用率影响的研究.中国畜牧杂志,1999,35(4):3-5.
    24.屠焰.范先国.霍启光.不同含磷矿物质饲料中磷相对生物学利用率的研究.动物营养学报.2000,12(1):32-37.
    25.王凤来,张曼夫.日粮磷和钙磷比例对小型猪(香猪)血清,肠,骨碱性磷酸酶及血清钙磷的影响[J].动物营养学报,2001,13(1):36-42.
    26.王晋晋,王金荣,付佐龙,娄鹏,任皓.日粮中钙、磷水平对1-3周龄肉鸡骨骼生长的影响.动物营养学报,2010,22(4):1088-1095.
    27.吴妙宗,王海宏,蔡辉益,刘国华.禁食时间对3周龄肉用仔鸡消化道内容物及其排空率变化的影响.中国畜牧杂志,1999,35(5):25-26.
    28.徐运杰,方热军,霍振华,蒋小丰.培养液磷含量和pH对鸡离体小肠磷吸收的影响.中国农学通报,2009,25(7):1-6.
    29.许振英.肉仔鸡对磷的需要量综述.国外畜牧学:猪与禽,1991,3:8-11.
    30.尹兆正,洪建伟,李肖梁,祝春雷.日粮不同无机磷源在肉雏鸡体内生物学效价的比较研究.浙江大学学报(农业与生命科学版),2002,28(5):565-568.
    31.余顺祥,苏琪,段玉琴,陆肇海,刘金旭.生长鸡对植酸盐中磷的利用率测定.中国畜牧杂志,1983,4:8-9.
    32.于昱.不同形态锌在肉仔鸡小肠中的吸收特点及其机理研究[博士学位论文].北京:中国农业科学院,2008.
    33.中华人民共和国农业部. NY/T33-2004.鸡饲养标准.北京:中国农业出版社,2004年8月25日.
    34.中华人民共和国国家质量监督检验检疫总局,中国国家标准管理委员会. GBT6435-2006.饲料中水分和其他挥发性物质含量的测定.北京:中国标准出版社,2006年12月12日.
    35.中华人民共和国国家质量监督检验检疫总局. GBT6437-2002.饲料中总磷的测定分光光度法.北京:中国标准出版社,2002年7月1日.
    36.左建军.非常规植物饲料钙和磷真消化率及预测模型研究[博士学位论文].广州:华南农业大学,2005.
    37.郑树贵,栾新红,董维国.不同肉鸡用植物性饲料总磷真利用率的测定.畜牧与兽医,2007,39(2):14-17.
    38.钟茂.肉仔鸡常用饲料原料中矿物元素生物学利用率研究[硕士学位论文].重庆:西南大学,
    2006.
    39.钟茂,吕林,谢和芳,罗绪刚.体内法评定鸡饲料原料中矿物元素生物学利用率的研究进展.中国畜牧杂志,2007,43(13):44-48.
    40. Adedokun S., O. Adeola, C. Parsons, M. Lilburn, and T. Applegate. Standardized ileal amino aciddigestibility of plant feedstuffs in broiler chickens and turkey poults using a nitrogen-free or casein diet.Poultry Science2008,87(12):2535-2548.
    41. Adedokun S., C. Parsons, M. Lilburn, O. Adeola, and T. Applegate. Standardized ileal amino aciddigestibility of meat and bone meal from different sources in broiler chicks and turkey poults with anitrogen-free or casein diet. Poultry Science2007,86(12):2598-2607.
    42. Adeola O., D. Ragland, and D. King. Feeding and excreta collection techniques in metabolizable energyassays for ducks. Poultry Science1997,76(5):728-732.
    43. Ahmad T., S. Rasool, M. Sarwar, A. Haq, and Z. Hasan. Effect of microbial phytase produced from afungus Aspergillus niger on bioavailability of phosphorus and calcium in broiler chickens. Animal FeedScience and Technology2000,83(2):103-114.
    44. Akaike H. An information criterion (AIC). Mathematical Science1976,14(153):5-9.
    45. al-Masri M. R. Absorption and endogenous excretion of phosphorus in growing broiler chicks, asinfluenced by calcium and phosphorus ratios in feed. British Journal of Nutrition1995,74(3):407-415.
    46. Almeida F., and H. Stein. Performance and phosphorus balance of pigs fed diets formulated on the basisof values for standardized total tract digestibility of phosphorus. Journal of Animal Science2010,88(9):2968-2977.
    47. Almeida F. N., and H. H. Stein. Effects of graded levels of microbial phytase on the standardized totaltract digestibility of phosphorus in corn and corn co-products. Journal of Animal Science2012a,(90):1262-1269.
    48. Almeida F. N., and H. H. Stein. Standardized total tract digestibility of phosphorus in blood products fedto weanling pigs. Revista Colombiana de Ciencias Pecuarias2012b,24(4):617-622.
    49. Amezcua C. M., and C. Parsons. Effect of increased heat processing and particle size on phosphorusbioavailability in corn distillers dried grains with solubles. Poultry Science2007,86(2):331-337.
    50. Amezcua C. M., C. Parsons, and S. Noll. Content and relative bioavailability of phosphorus in distillersdried grains with solubles in chicks. Poultry Science2004,83(6):971-976.
    51. Angkanaporn K., V. Ravindran, and W. Bryden. Additivity of apparent and true ileal amino aciddigestibilities in soybean meal, sunflower meal, and meat and bone meal for broilers. Poultry Science1996,75(9):1098-1103.
    52. Applegate T., R. Angel, and H. Classen. Effect of dietary calcium,25-hydroxycholecalciferol, or birdstrain on small intestinal phytase activity in broiler chickens. Poultry Science2003,82(7):1140-1148.
    53. Ashton W. M., C. Evans, and P. C. William. Phosphorus compounds of oats. II.-The utilisation of phytatephosphorus by growing chicks. Journal of the Science of Food and Agriculture1960,11(12):722-727.
    54. Bai S. P., L. Lu, X. G. Luo, and B. Liu. Kinetics of Manganese Absorption in Ligated Small IntestinalSegments of Broilers. Poultry Science2008,87(12):2596-2604.
    55. Baird F., and M. MacMillan. Use of toes rather than tibiae in AOAC chick method of vitamin Ddetermination. Journal of the Association of Official Analytical Chemists1942,25:518-524.
    56. Bandegan A., W. Guenter, D. Hoehler, G. Crow, and C. Nyachoti. Standardized ileal amino aciddigestibility in wheat distillers dried grains with solubles for broilers. Poultry Science2009,88(12):2592-2599.
    57. Bar A., D. Shinder, S. Yosefi, E. Vax, and I. Plavnik. Metabolism and requirements for calcium andphosphorus in the fast-growing chicken as affected by age. British Journal of Nutrition2003,89(1):51-61.
    58. Bardet C., C. Vincent, M. C. Lajarille, T. Jaffredo, and J. Y. Sire. OC‐116, the chicken ortholog ofmammalian MEPE found in eggshell, is also expressed in bone cells. Journal of Experimental ZoologyPart B: Molecular and Developmental Evolution2010,314(8):653-662.
    59. Bergwitz C., and H. Jüppner. Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23.Annual Review of Medicine2010,61:91-104.
    60. Berndt T., and R. Kumar. Novel mechanisms in the regulation of phosphorus homeostasis. Physiology2009,24:17-25.
    61. Bessey O. A., O. H. Lowry, and M. J. Brock. A method for the rapid determination of alkalinephosphatase with five cubic millimeters of serum. Journal of Biological Chemistry,1946,164(1):321-329.
    62. Biber J., N. Hernando, I. Forster, and H. Murer. Regulation of phosphate transport in proximal tubules.European Journal of Physiology2009,458(1):39-52.
    63. Birge S. J., and R. C. Avioli. Intestinal phosphate transport and alkaline phosphatase activity in the chick.American Journal of Physiology-Endocrinology And Metabolism1981,240(4): E384-E390.
    64. Bonjour J. P., and H. Fleisch. Tubular adaptation to the supply and requirement of phosphate. S. G.Massry and H. Fleisch ed. Renal Handling of Phosphate. New York: Plenum,1980:243-264
    65. Boskey A., T. Wright, and R. Blank. Collagen and bone strength. Journal of Bone and Mineral Research1999,14(3):330-335.
    66. Boulter J., and H. McMichael. Modification of polyethylene glycol estimation suitable for use with smallmammals. Gut1970,11(3):268-270.
    67. Boyd R., D. Hall, and J. Wu. Plasma alkaline phosphatase as a criterion for determining biologicalavailability of phosphorus for swine. Journal of Animal Science1983,57(2):396.
    68. Bozdogan H. Model selection and Akaike's information criterion (AIC): The general theory and itsanalytical extensions. Psychometrika1987,52(3):345-370.
    69. Bourdillon A., B. Carré, L. Conan, J. Duperray, G. Huyghebaert, B. Leclercq, M. Lessire, J. McNab, and J.Wiseman. European reference method for the in vivo determination of metabolisable energy with adultcockerels: reproducibility, effect of food intake and comparison with individual laboratory methods.British Poultry Science1990,31(3):557-565.
    70. Bronner F., and J. H. Yost. Saturable and nonsaturable copper and calcium transport in mouse duodenum.American Journal of Physiology-Gastrointestinal and Liver Physiology1985,249(1): G108-G112.
    71. Broz J., P. Oldale, A. H. Perrin-Voltz, G. Rychen, J. Schulze, and C. S. Nunes. Effects of supplementalphytase on performance and phosphorus utilisation in broiler chickens fed a low phosphorus diet withoutaddition of inorganic phosphates. British Poultry Science1994,35(2):273-280.
    72. Bryden W. L., and X. Li. Amino acid digestibility and poultry feed formulation: expression, limitationsand application. Revista Brasileira de Zootecnia2010,39:279-287.
    73. Bulbul S.M. Factors affecting mineral availability from ingredients of animal origin with the chick.PhDDissertation. Vancouver: University of British Columbia,1980.
    74. Chami, D., P. Vohra, and F. Kratzer. Evaluation of a method for determination of true metabolizableenergy of feed ingredients. Poultry Science1980,59:569-571.
    75. Chan D.Y. The nutritive value of barley for broilers. PhD Dissertation. Vancouver: University of BritishColumbia,1983.
    76. Chen R., G. Xue, P. Chen, B. Yao, W. Yang, Q. Ma, Y. Fan, Z. Zhao, M. C. Tarczynski, and J. Shi.Transgenic maize plants expressing a fungal phytase gene. Transgenic Research2008,17(4):633-643.
    77. Condomina J., T. Zornoza-Sabina, L. Granero, and A. Polache. Kinetics of zinc transport in vitro in ratsmall intestine and colon: interaction with copper. European Journal of Pharmaceutical Sciences2002,16(4-5):289-295.
    78. Cook S., K. Scott, and P. Abelson. The deposition of radio phosphorus in tissues of growing chicks.Proceedings of the National Academy of Sciences of the United States of America1937,23(9):528-533.
    79. Coon C., S. Seo, and M. Manangi. The determination of retainable phosphorus, relative biologicalavailability, and relative biological value of phosphorus sources for broilers. Poultry Science2007,86(5):857-868.
    80. Cordell D., J. O. Drangert, and S. White. The story of phosphorus: Global food security and food forthought. Global Environmental Change2009,19(2):292-305.
    81. Cowieson A. J., T. Acamovic, and M. R. Bedford. The effects of phytase and phytic acid on the loss ofendogenous amino acids and minerals from broiler chickens. British Poultry Science2004,45(1):101-108.
    82. Crenshaw T. D. Calcium, phosphorus, vitamin D, and vitaminK in swine nutrition. A. J. Lewis and L. L.Southern, ed. Swine Nutrition.2nd ed. CRC Press, Washington, DC.2001:187-212.
    83. Cross H. S., and M. Peterlik. Calcium and inorganic phosphate transport in embryonic chick intestine:triiodothyronine enhances the genomic action of1,25-dihydroxycholecalciferol. The Journal of Nutrition1988,118(12):1529-1534.
    84. CVB. Veevoedertabel (Livestock Feed Table). Central Bureau for Livestock Feeding (CVB), Lelystad,the Netherlands.2004.
    85. Daghir N., and M. Farran. Phosphorus requirements of laying hens under different managementconditions. Poultry Science1983,62:1407.
    86. Daghir N., M. Farran, and S. Kaysi. Phosphorous Requirements of Laying Hens in a SemiaridContinental Climate. Poultry Science1985,64(7):1382-1384.
    87. Danisi G., and H. Murer. Inorganic phosphate absorption in small intestine. Comprehensive Physiology1991,12:323-336.
    88. David V., A. Martin, A. M. Hedge, and P. S. N. Rowe. Matrix extracellular phosphoglycoprotein (MEPE)is a new bone renal hormone and vascularization modulator. Endocrinology2009,150(9):4012-4023.
    89. De Groote G., and G. Huyghebaert. The bio-availability of phosphorus from feed phosphates for broilersas influenced by bio-assay method, dietary Ca-level and feed form. Animal Feed Science and Technology1997,69(4):329-340.
    90. Denbow D., V. Ravindran, E. Kornegay, Z. Yi, and R. Hulet. Improving phosphorus availability insoybean meal for broilers by supplemental phytase. Poultry Science1995,74(11):1831-1842.
    91. Denbow D. M., E. A. Grabau, G. H. Lacy, E. Kornegay, D. R. Russell, and P. F. Umbeck. Soybeanstransformed with a fungal phytase gene improve phosphorus availability for broilers. Poultry Science1998,77(6):878-881.
    92. Dhandu, A.S., and R. Angel. Broiler nonphytin phosphorus requirement in the finisher and withdrawalphases of a commercial four phase feeding system. Poultry Science2003(82):1257-1265.
    93. Dilger R. N., and O. Adeola. Estimation of true phosphorus digestibility and endogenous phosphorus lossin growing chicks fed conventional and low-phytate soybean meals. Poultry Science2006,85(4):661-668.
    94. Dobbie H., R. J. Unwin, N. J. R. Faria, and D. G. Shirley. Matrix extracellular phosphoglycoproteincauses phosphaturia in rats by inhibiting tubular phosphate reabsorption. Nephrology DialysisTransplantation2008,23(2):730-733.
    95. Douglas M., C. Peter, S. Boling, C. Parsons, and D. Baker. Nutritional evaluation of low phytate and highprotein corns. Poultry Science2000,79(11):1586-1591.
    96. Edwards H. M. Phosphorus.1. Effect of Breed And Strain on Utilization of Suboptimal Levels ofPhosphorus in the Ration. Poultry Science1983,62(1):77-84.
    97. Edwards H. M., Jr. Dietary1,25-dihydroxycholecalciferol supplementation increases natural phytatephosphorus utilization in chickens. The Journal of Nutrition1993,123(3):567-577.
    98. Edwards Jr H. Studies on the efficacy of cholecalciferol and derivatives for stimulating phytate utilizationin broilers. Poultry Science2002,81(7):1026-1031.
    99. Edwards Jr H., and M. Gillis. A chromic oxide balance method for determining phosphate availability.Poultry Science1959,38(3):569-574.
    100. Eeckhout W., and M. De Paepe. Total phosphorus, phytate-phosphorus and phytase activity in plantfeedstuffs. Animal Feed Science and Technology1994,47(1-2):19-29.
    101. Eeckhout W., and M. Paepe. The digestibility of three calcium phosphates for pigs as measured bydifference and by slope‐ratio assay. Journal of Animal Physiology and Animal Nutrition,1997,77(1‐5):53-60.
    102. El Boushy A., and A. Van Marle. The effect of climate on poultry physiology in tropics and theirimprovement. World Poultry Science Journal1978,34(3):155-171.
    103. El Boushy A. R. Available phosphorus in poultry:2. Effect of phosphorus in diet on performance ofchicks, bone composition and strength, and calcium and inorganic phosphorus in blood plasma.Netherlands Journal of Agricultural Science1979,27:184-189.
    104. Eto N., M. Tomita, and M. Hayashi. NaPi-mediated transcellular permeation is the dominant route inintestinal inorganic phosphate absorption in rats. Drug Metabolism and Pharmacokinetics2006,21(3):217-221.
    105. Fan M., and W. Sauer. Additivity of apparent ileal and fecal phosphorus digestibility values measured insingle feed ingredients for growing-finishing pigs. Canadian Journal of Animal Science2002,82(2):183-191.
    106. Fan M. Z., T. Archbold, W. C. Sauer, D. Lackeyram, T. Rideout, Y. Gao, C. F. de Lange, and R. R.Hacker. Novel methodology allows simultaneous measurement of true phosphorus digestibility and thegastrointestinal endogenous phosphorus outputs in studies with pigs. The Journal of Nutrition2001,131(9):2388-2396.
    107. Fernández J. A. Calcium and phosphorus metabolism in growing pigs. II. Simultaneous radio-calciumand radio-phosphorus kinetics. Livestock Production Science1995,41(3):243-254.
    108. Fernandes J. I., F. R. Lima, C. X. Mendonca, Jr., I. Mabe, R. Albuquerque, and P. M. Leal. Relativebioavailability of phosphorus in feed and agricultural phosphates for poultry. Poultry Science1999,78(12):1729-1736.
    109. Forbes R. M., and J. W. Erdman Jr. Bioavailability of trace mineral elements. Annual review of Nutrition1983,3(1):213-231.
    110. Fox J., and A. Care. Stimulation of duodenal and ileal absorption of phosphate in the chick bylow-calcium and low-phosphorus diets. Calcified Tissue International1978,26(1):243-245.
    111. Friedlander G. Welcome to MEPE in the renal proximal tubule. Nephrology Dialysis Transplantation2010,25(10):3135-3136.
    112. Fritz J., and T. Roberts. Use of toe ash as a measure of calcification in the chick. Journal of theAssociation of Official Analytical Chemists1969,51(3):591-594.
    113. Fritz J., T. Roberts, J. Boehne, and E. Hove. Factors affecting the chick’s requirement for phosphorus.Poultry Science1969,48(1):307-320.
    114. Fuchs R., and M. Peterlik. Pathways of phosphate transport in chick jejunum. Pfl¨1gers Archiv EuropeanJournal of Physiology1979a,381(3):217-222.
    115. Fuchs R., and M. Peterlik. Vitamin D-induced transepithelial phosphate and calcium transport by chickjejunum. Effect of microfilamentous and microtubular inhibitors. FEBS letters1979b,100(2):357-359.
    116. Gagne P., and C. Dayton. Best regression model using information criteria. Journal of Modern AppliedStatistical Methods2002,1:479-488.
    117. Gao C., Q. Ma, C. Ji, X. Luo, H. Tang, and Y. Wei. Evaluation of the compositional and nutritionalvalues of phytase transgenic corn to conventional corn in roosters. Poultry Science2012,91(5):1142-1148.
    118. Gardiner E. The relationship between dietary phosphorus level and the level of plasma inorganicphosphorus of chicks. Poultry Science1962,41(4):1156-1163.
    119. Gardiner E. Relationship of energy, phosphorus and breed of chicken to growth and food efficiency.British Poultry Science1971,12(1):31-39.
    120. Gillis M., L. Norris, and G. Heuser. Studies on the biological value of inorganic phosphates. The Journalof Nutrition1954,52(1):115-125.
    121. Giral H., Y. Caldas, E. Sutherland, P. Wilson, S. Breusegem, N. Barry, J. Blaine, T. Jiang, X. X. Wang,and M. Levi. Regulation of rat intestinal Na-dependent phosphate transporters by dietary phosphate.American Journal of Physiology-Renal Physiology2009,297(5): F1466-1475.
    122. Golovan S. P., R. G. Meidinger, A. Ajakaiye, M. Cottrill, M. Z. Wiederkehr, D. J. Barney, C. Plante, J. W.Pollard, M. Z. Fan, and M. A. Hayes. Pigs expressing salivary phytase produce low-phosphorus manure.Nature Biotechnology2001,19(8):741-745.
    123. Golub E. E., and K. Boesze-Battaglia. The role of alkaline phosphatase in mineralization. CurrentOpinion in Orthopaedic,2007b,18(5):444-448.
    124. Goseki-Sone M., A. Yamada, K. Asahi, A. Hirota, I. Ezawa, and T. Iimura. Phosphate depletion enhancestissue-nonspecific alkaline phosphatase gene expression in a cultured mouse marrow stromal cell lineST2. Biochemical and Biophysical Research Communications1999,265(1):24-28.
    125. Hall L., R. Shirley, R. Bakalli, S. Aggrey, G. Pesti, and H. Edwards Jr. Power of two methods for theestimation of bone ash of broilers. Poultry Science2003,82(3):414-418.
    126. Han J. C., X. D. Yang, T. Zhang, H. Li, W. L. Li, Z. Y. Zhang, and J. H. Yao. Effects of1alpha-hydroxycholecalciferol on growth performance, parameters of tibia and plasma, meat quality, andtype IIb sodium phosphate cotransporter gene expression of one-to twenty-one-day-old broilers. PoultryScience2009,88(2):323-329.
    127. Hansen N. M., R. Felix, S. Bisaz, and H. Fleisch. Aggregation of hydroxyapatite crystals. Biochimica etBiophysica Acta1976,451(2):549-559.
    128. Harrold R. L., W. D. Slanger, C. N. Haugse, and R. L. Johnson. Phosphorus bioavailability in the chick:effects of protein source and calcium level. Journal Animal Science1983,57(5):1173-1181.
    129. Hattenhauer O., M. Traebert, H. Murer, and J. Biber. Regulation of small intestinal Na-P(i) type IIbcotransporter by dietary phosphate intake. American Journal of Physiology1999,277(4Pt1): G756-762.
    130. Havenstein G., P. Ferket, and M. Qureshi. Growth, livability, and feed conversion of1957versus2001broilers when fed representative1957and2001broiler diets. Poultry Science2003,82(10):1500-1508.
    131. Hemme A., M. Spark, P. Wolf, H. Paschertz, and J. Kamphues. Effects of different phosphorus sources inthe diet on bone composition and stability (breaking strength) in broilers. Journal of Animal Physiologyand Animal Nutrition2005,89(3-6):129-133.
    132. Hempe J. M., and R. J. Cousins. Effect of EDTA and zinc-methionine complex on zinc absorption by ratintestine. The Journal of Nutrition1989,119(8):1179-1187.
    133. Hessle L., K. A. Johnson, H. C. Anderson, S. Narisawa, A. Sali, J. W. Goding, R. Terkeltaub, and J. L.Millán. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1are centralantagonistic regulators of bone mineralization. Proceedings of the National Academy of Sciences2002,99(14):9445-9449.
    134. Hester P., M. Schreiweis, J. Orban, H. Mazzuco, M. Kopka, M. Ledur, and D. Moody. Assessing bonemineral density in vivo: dual energy X-ray absorptiometry. Poultry Science2004,83(2):215-221.
    135. Hilfiker H., O. Hattenhauer, M. Traebert, I. Forster, H. Murer, and J. Biber. Characterization of a murinetype II sodium-phosphate cotransporter expressed in mammalian small intestine. Proceedings of theNational Academy of Sciences1998,95(24):14564-14569.
    136. Holman W. A new technique for the determination of phosphorus by the molybdenum blue method.Biochemical Journal1943,37(2):256-259.
    137. Horvat-Gordon M., F. Yu, D. Burns, and R. Leach Jr. Ovocleidin (OC116) is present in avian skeletaltissues. Poultry Science2008,87(8):1618-1623.
    138. Hoshii H., and M. Yoshida. Comparison of phosphorus availabilities estimated biologically based on toeash content and carcass phosphorus retention [chickens]. Japanese Poultry Science1977,14(6):279-283.
    139. Houston B., A. J. Stewart, and C. Farquharson. PHOSPHO1-A novel phosphatase specifically expressedat sites of mineralisation in bone and cartilage. Bone2004,34(4):629-637.
    140. Huber K., R. Hempel, and M. Rodehutscord. Adaptation of epithelial sodium-dependent phosphatetransport in jejunum and kidney of hens to variations in dietary phosphorus intake. Poultry Science2006,85(11):1980-1986.
    141. Huff W. Discrepancies between bone ash and toe ash during aflatoxicosis. Poultry Science1980,59(10):2213-2215.
    142. Hurwitz S. Estimation of New Phosphorus Utilization by the “Slope” Method. The Journal of Nutrition1964,84(1):83-92.
    143. Hurwitz S., and A. Bar. Site of vitamin D action in chick intestine. American Journal ofPhysiology-Legacy Content,1972,222(3):761-767.
    144. Hurwitz S., and A. Bar. The sites of calcium and phosphate absorption in the chick. Poultry Science,1970,49(1):324-325.
    145. Huttunen M. M., I. Tillman, H. T. Viljakainen, J. Tuukkanen, Z. Q. Peng, M. Pekkinen, and C. J. E.Lamberg‐Allardt. High dietary phosphate intake reduces bone strength in the growing rat skeleton.Journal of Bone and Mineral Research2007,22(1):83-92.
    146. Hyden S. A turbidimetric method for the determination of higher polyethylene glycols in biologicalmaterials. Kungl Lanthbrukshogskolans Annaler1955,22:139-145.
    147. Ji F., X. Luo, L. Lu, B. Liu, and S. Yu. Effect of manganese source on manganese absorption by theintestine of broilers. Poultry Science2006,85(11):1947-1952.
    148. Jongbloed A., and N. Lenis. Environmental concerns about animal manure. Journal of Animal Science1998,76(10):2641-2648.
    149. Karimi A., M. Bedford, G. Sadeghi, and Z. Ghobadi. Influence of dietary non-phytate phosphorous levelsand phytase supplementation on the performance and bone characteristics of broilers. Revista Brasileirade Ciência Avícola2011,13(1):43-51.
    150. Karr-Lilienthal L., P. Utterback, C. M. Amezcua, C. Parsons, N. Merchen, and G. Fahey Jr. Relativebioavailability of phosphorus and true amino acid digestibility by poultry as affected by soybeanextraction time and use of low-phytate soybeans. Poultry Science2005,84(10):1555-1561.
    151. Karunajeewa H. The supplemental value of some inorganic sources of phosphorus for broiler chickens.Australian Journal of Experimental Agriculture1975,15:766-772.
    152. Ketaren P., E. Batterham, E. B. Dettmann, and D. Farrell. Phosphorus studies in pigs. British Journal ofNutrition1993,70(1):289-311.
    153. Khoshniat S., A. Bourgine, M. Julien, P. Weiss, J. Guicheux, and L. Beck. The emergence of phosphateas a specific signaling molecule in bone and other cell types in mammals. Cellular and Molecular LifeSciences2011,68(2):205-218.
    154. Kilburn J., and H. Edwards Jr. The effect of particle size of commercial soybean meal on performanceand nutrient utilization of broiler chicks. Poultry Science2004,83(3):428-432.
    155. Kim B. G., J. W. Lee, and H. H. Stein. Energy concentration and phosphorus digestibility in wheypowder, whey permeate, and low-ash whey permeate fed to weanling pigs. Journal of Animal Science2012,90(1):289-295.
    156. Kim E., C. M. Amezcua, P. Utterback, and C. Parsons. Phosphorus bioavailability, true metabolizableenergy, and amino acid digestibilities of high protein corn distillers dried grains and dehydrated corngerm. Poultry Science2008,87(4):700-705.
    157. Kim W., L. Donalson, A. Mitchell, L. Kubena, D. Nisbet, and S. Ricke. Effects of alfalfa andfructooligosaccharide on molting parameters and bone qualities using dual energy X-ray absorptiometryand conventional bone assays. Poultry Science2006,85(1):15-20.
    158. Knowlton K., J. Radcliffe, C. Novak, and D. Emmerson. Animal management to reduce phosphoruslosses to the environment. Journal of Animal Science2004,82(13suppl): E173-E195.
    159. Kuro-o M. Phosphate and klotho. Kidney International2011,79: S20-S23.
    160. Lan G., N. Abdullah, S. Jalaludin, and Y. Ho. Efficacy of supplementation of a phytase-producingbacterial culture on the performance and nutrient use of broiler chickens fed corn-soybean meal diets.Poultry Science2002,81(10):1522-1532.
    161. Ledwaba M., and K. Roberson. Effectiveness of twenty-five-hydroxycholecalciferol in the prevention oftibial dyschondroplasia in Ross cockerels depends on dietary calcium level. Poultry Science2003,82(11):1769-1777.
    162. Lemme A., V. Ravindran, and W. Bryden. Ileal digestibility of amino acids in feed ingredients forbroilers. World's Poultry Science Journal2004,60(4):423-438.
    163. Leourneau-Montminy M. P., A. Narcy, P. Lescoat, J. F. Bernier, M. Magnin, C. Pomar, Y. Nys, D.Sauvant, and C. Jondreville. Meta-analysis of phosphorus utilisation by broilers receiving corn-soyabeanmeal diets: influence of dietary calcium and microbial phytase. Animal2010,4(11):1844-1853.
    164. Leske K., and C. Coon. The development of feedstuff retainable phosphorus values for broilers. PoultryScience2002,81(11):1681-1693.
    165. Leske K. L., and C. N. Coon. A bioassay to determine the effect of phytase on phytate phosphorushydrolysis and total phosphorus retention of feed ingredients as determined with broilers and laying hens.Poultry Science1999,78(8):1151-1157.
    166. Leytem A., B. Willing, and P. Thacker. Phytate utilization and phosphorus excretion by broiler chickensfed diets containing cereal grains varying in phytate and phytase content. Anim Feed Sci Tech2008a,146(1-2):160-168.
    167. Leytem A. B., P. Kwanyuen, and P. Thacker. Nutrient excretion, phosphorus characterization, andphosphorus solubility in excreta from broiler chicks fed diets containing graded levels of wheat distillersgrains with solubles. Poultry Science2008b,87(12):2505-2511.
    168. Li Y., D. Ledoux, T. Veum, V. Raboy, and D. Ertl. Effects of low phytic acid corn on phosphorusutilization, performance, and bone mineralization in broiler chicks. Poultry Science2000,79(10):1444-1450.
    169. Li Y., D. Ledoux, T. Veum, V. Raboy, K. Zyla, and A. Wikiera. Bioavailability of phosphorus in lowphytic acid barley. The Journal of Applied Poultry Research2001,10(1):86-91.
    170. Lillie R. J., P. F. Twining, and C. A. Denton. Calcium and phosphorus requirements of broilers asinfluenced by energy, sex and strain. Poultry Science1964,43(5):1126-1131.
    171. Lima F. R., C. X. Mendonca Junior, J. C. Alvarez, J. M. Garzillo, E. Ghion, and P. M. Leal. Biologicalevaluations of commercial dicalcium phosphates as sources of available phosphorus for broiler chicks.Poultry Science1997,76(12):1707-1713.
    172. Liu J., D. R. Ledoux, and T. L. Veum. In vitro procedure for predicting the enzymatic dephosphorylationof phytate in corn-soybean meal diets for growing swine. Journal of Agricultural and Food Chemistry1997,45(7):2612-2617.
    173. Liu S., A. Gupta, and L. D. Quarles. Emerging role of fibroblast growth factor23in a bone-kidney axisregulating systemic phosphate homeostasis and extracellular matrix mineralization. Current Opinion inNephrology and Hypertension2007,16(4):329-335.
    174. Liu, S., S. Li, L. Lu, J. Xie, L. Zhang, Y. Jiang, and X. Luo. Development of a procedure to determinestandardized mineral availabilities in soybean meal for broiler chicks. Biological Trace Element Research2012, doi10.1007/s12011-012-9332-x
    175. Long P. H., S. R. Lee, G. N. Rowland, and W. M. Britton. Experimental rickets in broilers: gross,microscopic, and radiographic lesions. I. Phosphorus deficiency and calcium excess. Avian Diseases1984,28(2):460-474.
    176. Lumpkins B., A. Batal, and N. Dale. Evaluation of distillers dried grains with solubles as a feedingredient for broilers. Poultry Science2004,83(11):1891-1896.
    177. Luo X. G. Prediction of phosphorus digestibility in plant feedstuffs and a maize-soybean meal diet forgrowing pigs using an in vitro dialysis procedure. Proceedings of International Conferences on PigProduction1998:269-272.
    178. Maenz D. D., and H. L. Classen. Phytase activity in the small intestinal brush border membrane of thechicken. Poultry Science1998,77(4):557-563.
    179. Manangi M. K., and C. N. Coon. Phytate phosphorus hydrolysis in broilers in response to dietaryphytase, calcium, and phosphorus concentrations. Poultry Science2008,87(8):1577-1586.
    180. Marks J., E. S. Debnam, and R. J. Unwin. Phosphate homeostasis and the renal-gastrointestinal axis.American Journal of Physiology-Renal Physiology2010,299(2): F285-F296.
    181. Matsumoto T., O. Fontaine, and H. Rasmussen. Effect of1,25-dihydroxyvitamin D-3on phosphateuptake into chick intestinal brush border membrane vesicles. Biochimica et Biophysica Acta(BBA)-Biomembranes1980,599(1):13-23.
    182. McCance R., and E. Widdowson. Activity of the phytase in different cereals and its resistance to dry heat.Nature1944,153:650.
    183. Mitchell R. D., and H. Edwards Jr. Effects of phytase and1,25-dihydroxycholecalciferol on phytateutilization and the quantitative requirement for calcium and phosphorus in young broiler chickens.Poultry Science1996,75(1):95-110.
    184. Mohammed A., M. Gibney, and T. Taylor. The effects of dietary levels of inorganic phosphorus, calciumand cholecalciferol on the digestibility of phytate-P by the chick. British Journal of Nutrition1991,66(2):251-259.
    185. Morgan D. B. Calcium and phos phorus transport across the intestine. Maiabsorption,eds., R. H.Girdwood and A. N. Smith. Williams&Wilkins, Baltimore,1969:73.
    186. Mornet E., E. Stura, A. S. Lia-Baldini, T. Stigbrand, A. Ménez, and M. H. Le Du. Structural evidence fora functional role of human tissue nonspecific alkaline phosphatase in bone mineralization. Journal ofBiological Chemistry2001,276(33):31171-31178.
    187. Murer H., N. Hernando, I. Forster, and J. Biber. Proximal tubular phosphate reabsorption: molecularmechanisms. Physiological Reviews2000,80(4):1373-1409.
    188. Nelson T. The utilization of phytate phosphorus by poultry--a review. Poultry Science1967,46(4):862-871.
    189. Nelson T. S. The hydrolysis of phytate phosphorus by chicks and laying hens. Poultry Science1976,55(6):2262-2264.
    190. Nemere I. Apparent nonnuclear regulation of intestinal phosphate transport: effects of1,25-dihydroxyvitamin D3,24,25-dihydroxyvitamin D3, and25-hydroxyvitamin D3. Endocrinology1996a,137(6):2254-2261.
    191. Nemere I. Parathyroid hormone rapidly stimulates phosphate transport in perfused duodenal loops ofchicks: lack of modulation by vitamin D metabolites. Endocrinology1996b,137(9):3750-3755.
    192. Nemere I., and D. Larsson. Does PTH have a direct effect on intestine? Journal of Cellular Biochemistry2002,86(1):29-34.
    193. NRC. National Research Council. Nutrient Requirements of Domestic Animals. No.1. NutrientRequirements of Poultry.7th ed. Washington, DC: Natl. Acad. Sci.,1977.
    194. NRC. National Research Council. Nutrient Requirements of Poultry.8th rev. ed. Washington, DC:National Academy Press,1984.
    195. NRC. Nutrient Requirements of Poultry.9th rev. ed. Washington, DC:National Academy Press,1994.
    196. Nwokolo E. A nutritional assessment of African yam bean Sphenostylis stenocarpa (Hochst ex A. Rich)Harms, and bambara groundnut Voandzeia subterranea L. Journal of the Science of Food and Agriculture1987a,41(2):123-129.
    197. Nwokolo E. Nutritional evaluation of pigeon pea meal. Plant Foods for Human Nutrition1987b,37(4):283-290.
    198. Nwokolo E., and D. Bragg. Biological availability of minerals in rapeseed meal. Poultry Science1980,59(1):155-158.
    199. Nwokolo E., and D. Bragg. Influence of phytic acid and crude fibre on the availability of minerals fromfour protein supplements in growing chicks. Canadian Journal of Animal Science1977,57(3):475-477.
    200. Nwokolo E., D. Bragg, and W. Kitts. A method for estimating the mineral availability in feedstuffs.Poultry Science1976,55(6):2217-2221.
    201. Nwokolo E., and J. S. Sim. Nutritional assessment of defatted oil meals of melon (Colocynthis CitrullusL.) and fluted pumpkin (Telfaria occidentalis Hook) by chick assay. Journal of the Science of Food andAgriculture1987,38(3):237-246.
    202. Nys Y. B., A. Sauver, P. Oya, and Mongin. Effect of different levels of dietary sodium and phosphorus on4or7week chick growth performances. Nutrition Reports International1983,28:325.
    203. O’Rourke W. F., P. H. Phillips, and W. W. Cravens. The phosphorus requirements of growing chickensand laying pullets fed practical rations. Poultry Science1955,34(1):47-54.
    204. O’Rourke W. F., P. H. Phillips, and W. W. Cravens. The phosphorus requirements of growing chickens asrelated to age. Poultry Science1952,31(6):962-966.
    205. Ollayos R. W., and A. W. Winkler. Urinary excretion and serum concentration of inorganic phosphate inman. Journal of Clinical Investigation1943,22(2):147-154.
    206. Onyango E., P. Hester, R. Stroshine, and O. Adeola. Bone densitometry as an indicator of percentagetibia ash in broiler chicks fed varying dietary calcium and phosphorus levels. Poultry Science2003,82(11):1787-1791.
    207. Orban J., and S. da Roland. Response of four broiler strains to dietary phosphorus above and below therequirement when brooded at two temperatures. Poultry Science1990,69(3):440-445.
    208. Orimo H. The mechanism of mineralization and the role of alkaline phosphatase in health and disease.Journal of Nippon Medical School2010,77(1):4-12.
    209. Paik I. Application of phytase, microbial or plant origin, to reduce phosphorus excretion in poultryproduction. Asian-Australasian Journal of Animal Sciences2003,16(1):124-135.
    210. Peeler H. Biological availability of nutrients in feeds: availability of major mineral ions. Journal ofAnimal Science1972,35(3):695-712.
    211. Peeler H., T. Nelson, and N. Storer. The effect of energy on the phosphorus requirements of the chick.Poultry Science1960,39:1282.
    212. Pen J., T. C. Verwoerd, P. A. Van Paridon, R. F. Beudeker, P. J. M. Van Den Elzen, K. Geerse, J. D. VanDer Klis, H. A. J. Versteegh, A. J. J. Van Ooyen, and A. Hoekema. Phytase-containing transgenic seeds asa novel feed additive for improved phosphorus utilization. Nature Biotechnology1993,11(7):811-814.
    213. Perwad F., N. Azam, M. Y. H. Zhang, T. Yamashita, H. S. Tenenhouse, and A. A. Portale. Dietary andserum phosphorus regulate fibroblast growth factor23expression and1,25-dihydroxyvitamin Dmetabolism in mice. Endocrinology2005,146(12):5358-5364.
    214. Pettey L. A, G. L. Cromwell, M. D. Lindemann. Estimation of endogenous phosphorus loss in growingand finishing pigs fed semi-purified diets. Journal Animal Science2006,84:618-626
    215. Pesti D. G. M., D. Vedenov, J. Cason, and L. Billard. A comparison of methods to estimate nutritionalrequirements from experimental data. British Poultry Science2009,50(1):16-32.
    216. Peter C. M., and D. H. Baker. Bioavailability of phosphorus in corn gluten feed derived fromconventional and low-phytate maize. Animal Feed Science and Technology2002,95(1):63-71.
    217. Peterlik M. Phosphate transport by embryonic chick duodenum stimulation by vitamin D3. Biochimicaet Biophysica Acta (BBA)-Biomembranes,1978,514(1):164-171.
    218. Petersen G. I., and H. H. Stein. Novel procedure for estimating endogenous losses and measurement ofapparent and true digestibility of phosphorus by growing pigs. Journal of Animal Science2006,84(8):2126-2132.
    219. Pirgozliev V., M. R. Bedford, O. Oduguwa, T. Acamovic, and M. Allymehr. The effect of supplementarybacterial phytase on dietary metabolisable energy, nutrient retention and endogenous losses in precisionfed broiler chickens. Journal of Animal Physiology and Animal Nutrition2012,96(1):52-57.
    220. Potter L., M. Potchanakorn, V. Ravindran, and E. Kornegay. Bioavailability of phosphorus in variousphosphate sources using body weight and toe ash as response criteria. Poultry Science1995,74(5):813-820.
    221. Powell S., S. Johnston, L. Gaston, and L. Southern. The effect of dietary phosphorus level and phytasesupplementation on growth performance, bone-breaking strength, and litter phosphorus concentration inbroilers. Poultry Science2008,87(5):949-957.
    222. Qian H., E. Kornegay, and D. Denbow. Utilization of phytate phosphorus and calcium as influenced bymicrobial phytase, cholecalciferol, and the calcium: total phosphorus ratio in broiler diets. PoultryScience1997,76(1):37-46.
    223. Quamme G. A. Phosphate transport in intestinal brush-border membrane vesicles: effect of pH anddietary phosphate. American Journal of Physiology-Gastrointestinal and Liver Physiology1985,249(2):G168-G176.
    224. Quarles L. D. FGF23, PHEX, and MEPE regulation of phosphate homeostasis and skeletalmineralization. American Journal of Physiology-Endocrinology and Metabolism2003,285(1): E1-E9.
    225. Raboy V. Progress in breeding low phytate crops. The Journal of Nutrition2002,132(3):503S-505S.
    226. Rama Rao S. V., V. Ramasubba Reddy, and V. Ravindra Reddy. Non-phytin phosphorus requirements ofcommercial broilers and White Leghorn layers. Animal Feed Science and Technology1999,80(1):1-10.
    227. Ramon I., P. Kleynen, J. J. Body, and R. Karmali. Fibroblast growth factor23and its role in phosphatehomeostasis. European Journal of Endocrinology2010,162(1):1-10.
    228. Ravindran V., S. Cabahug, G. Ravindran, P. Selle, and W. Bryden. Response of broiler chickens tomicrobial phytase supplementation as influenced by dietary phytic acid and non-phytate phosphorouslevels. II. Effects on apparent metabolisable energy, nutrient digestibility and nutrient retention. BritishPoultry Science2000,41(2):193-200.
    229. Ravindran V., E. Kornegay, L. Potter, B. Ogunabameru, M. Welten, J. Wilson, and M. Potchanakorn. Anevaluation of various response criteria in assessing biological availability of phosphorus for broilers.Poultry Science1995,74(11):1820-1830.
    230. Ravindran V., P. C. Morel, G. G. Partridge, M. Hruby, and J. S. Sands. Influence of an Escherichiacoli-derived phytase on nutrient utilization in broiler starters fed diets containing varying concentrationsof phytic acid. Poultry Science2006,85(1):82-89.
    231. Ravindran V., G. Ravindran, and S. Sivalogan. Total and phytate phosphorus contents of various foodsand feedstuffs of plant origin. Food Chemistry1994,50(2):133-136.
    232. Razzaque M. S., and B. Lanske. The emerging role of the fibroblast growth factor-23-klotho axis in renalregulation of phosphate homeostasis. Journal of Endocrinology2007,194(1):1-10.
    233. Remmenga M. D., G. A. Milliken, D. Kratzer, J. R. Schwenke, and H. R. Rolka. Estimating themaximum effective dose in a quantitative dose-response experiment. Journal of AnimalScience,1997,75(8):2174-2183.
    234. Renfro J. L., and N. B. Clark. Parathyroid hormone effect on chicken renal brush-border membranephosphate transport. American Journal of Physiology-Regulatory, Integrative and ComparativePhysiology1984,247(2): R302-R307.
    235. Robbins K., A. Saxton, and L. Southern. Estimation of nutrient requirements using broken-lineregression analysis. Journal of Animal Science2006,84(13suppl): E155-E165.
    236. Roberts S., S. Narisawa, D. Harmey, J. L. Millán, and C. Farquharson. Functional Involvement ofPHOSPHO1in Matrix Vesicle-Mediated Skeletal Mineralization. Journal of Bone and Mineral Research2007,22(4):617-627.
    237. Rojas O. J., and H. H. Stein. Digestibility of Phosphorus by Growing Pigs of Fermented andConventional Soybean Meal Without and With Microbial Phytase. Journal of Animal Science2012,90(5):1506-1512.
    238. Rowe P. S. N. The wrickkened pathways of FGF23, MEPE and PHEX. Critical Reviews in Oral Biology&Medicine2004,15(5):264-281.
    239. Rowland L. O., R. H. Harms, H. R. Wilson, I. J. Ross, and J. L. Fry. Breaking strength of chick bones asan indication of dietary calcium and phosphorus adequacy. Proceedings of the Society for ExperimentalBiology and Medicine. Society for Experimental Biology and Medicine1967,126(2):399-401.
    240. Rutherfurd S., T. Chung, and P. Moughan. The effect of microbial phytase on ileal phosphorus andamino acid digestibility in the broiler chicken. British Poultry Science2002,43(4):598-606.
    241. Rutherfurd S. M., T. K. Chung, P. C. Morel, and P. J. Moughan. Effect of microbial phytase on ilealdigestibility of phytate phosphorus, total phosphorus, and amino acids in a low-phosphorus diet forbroilers. Poultry Science2004,83(1):61-68.
    242. Sabbagh Y., S. P. O'Brien, W. Song, J. H. Boulanger, A. Stockmann, C. Arbeeny, and S. C. Schiavi.Intestinal npt2b plays a major role in phosphate absorption and homeostasis. Journal of the AmericanSociety of Nephrology2009,20(11):2348-2358.
    243. Saddoris K. L., J. C. Fleet, and J. S. Radcliffe. Sodium-dependent phosphate uptake in the jejunum ispost-transcriptionally regulated in pigs fed a low-phosphorus diet and is independent of dietary calciumconcentration. The Journal of Nutrition2010,140(4):731-736.
    244. Sales J., and G. Janssens. The use of markers to determine energy metabolizability and nutrientdigestibility in avian species. World's Poultry Science Journal2003,59(3):314-327.
    245. SAS. SAS/STAT User's Guide. Version8: SAS Institute Cary, NC,1999.
    246. Schiller L. R., C. A. S. Ana, J. Porter, and J. S. Fordtran. Validation of polyethylene glycol3350as apoorly absorbable marker for intestinal perfusion studies. Digestive Diseases and Sciences1997,42(1):1-5.
    247. Schreiweis M., J. Orban, M. Ledur, D. Moody, and P. Hester. Effects of ovulatory and egg laying cycleon bone mineral density and content of live White Leghorns as assessed by dual-energy X-rayabsorptiometry. Poultry Science2004,83(6):1011-1019.
    248. Schreiweis M., J. Orban, M. Ledur, D. Moody, and P. Hester. Validation of dual-energy X-rayabsorptiometry in live White Leghorns. Poultry Science2005,84(1):91-99.
    249. Sebastian S., S. Touchburn, E. Chavez, and P. Lague. Efficacy of supplemental microbial phytase atdifferent dietary calcium levels on growth performance and mineral utilization of broiler chickens.Poultry Science1996a,75(12):1516-1523.
    250. Sebastian S., S. P. Touchburn, E. R. Chavez, and P. C. Lague. The effects of supplemental microbialphytase on the performance and utilization of dietary calcium, phosphorus, copper, and zinc in broilerchickens fed corn-soybean diets. Poultry Science1996b,75(6):729-736.
    251. Shafey T., and M. W. McDonald. The effects of dietary calcium, phosphorus, and protein on theperformance and nutrient utilization of broiler chickens. Poultry Science1991,70(3):548-553.
    252. Sharpley A. Agricultural phosphorus, water quality, and poultry production: are they compatible? PoultryScience1999,78(5):660-673.
    253. Shimada T., H. Hasegawa, Y. Yamazaki, T. Muto, R. Hino, Y. Takeuchi, T. Fujita, K. Nakahara, S.Fukumoto, and T. Yamashita. FGF‐23is a potent regulator of vitamin D metabolism and phosphatehomeostasis. Journal of Bone and Mineral Research2004a,19(3):429-435.
    254. Shimada T., M. Kakitani, Y. Yamazaki, H. Hasegawa, Y. Takeuchi, T. Fujita, S. Fukumoto, K. Tomizuka,and T. Yamashita. Targeted ablation of Fgt23demonstrates an essential physiological role of FGF23inphosphate and vitamin D metabolism. Journal of Clinical Investigation2004b,113(4):561-568.
    255. Shirley R., and H. Edwards Jr. Graded levels of phytase past industry standards improves broilerperformance. Poultry Science2003,82(4):671.
    256. Sibbald I. A bioassay for true metabolizable energy in feedingstuffs. Poultry Science1976,55(1):303-308.
    257. Sibbald I. The clearance time and rate of passage of feed residues. Poultry Science1980,59(2):374-377.
    258. Silver J., and T. Naveh-Many. Phosphate and the parathyroid. Kidney International,2009,75(9):898-905.
    259. Simons P., H. Versteegh, A. W. Jongbloed, P. Kemme, P. Slump, K. Bos, M. Wolters, R. Beudeker, and G.Verschoor. Improvement of phosphorus availability by microbial phytase in broilers and pigs. BritishJournal of Nutrition1990,64(2):525-540.
    260. Sooncharernying S., and H. M. Edwards JR. Phytate content of excreta and phytate retention in thegastrointestinal tract of young chickens. Poultry Science1993,72(10):1906.
    261. Spencer J., G. Allee, and T. Sauber. Phosphorus bioavailability and digestibility of normal andgenetically modified low-phytate corn for pigs. Journal of Animal Science2000,78(3):675-681.
    262. Stein H., M. Boersma, and C. Pedersen. Apparent and true total tract digestibility of phosphorus in fieldpeas (Pisum sativum L.) by growing pigs. Canadian Journal of Animal Science2006,86(4):523-525.
    263. Stein H., C. Kadzere, S. Kim, and P. Miller. Influence of dietary phosphorus concentration on thedigestibility of phosphorus in monocalcium phosphate by growing pigs. Journal of Animal Science2008,86(8):1861-1867.
    264. Stein H., B. Sève, M. Fuller, P. Moughan, and C. De Lange. Invited review: Amino acid bioavailabilityand digestibility in pig feed ingredients: Terminology and application. Journal of Animal Science2007,85(1):172-180.
    265. Steiner T., R. Mosenthin, B. Zimmermann, R. Greiner, and S. Roth. Distribution of phytase activity, totalphosphorus and phytate phosphorus in legume seeds, cereals and cereal by-products as influenced byharvest year and cultivar. Animal Feed Science and Technology2007,133(3):320-334.
    266. Sterling K. G., D. V. Vedenov, G. M. Pesti, and R. I. Bakalli. Economically optimal dietary crude proteinand lysine levels for starting broiler chicks. Poultry Science2005,84(1):29-36.
    267. Summers J. D. Precision phosphorus nutrition. The Journal of Applied Poultry Research1997,6(4):495-500.
    268. Szczurek W. Practical validation of efficacy of the standardized ileal digestible amino acid values in dietformulation for broiler chickens. Journal of Animal and Feed Sciences2010,19:590-598.
    269. Talaty P., M. Katanbaf, and P. Hester. Bone mineralization in male commercial broilers and itsrelationship to gait score. Poultry Science,2010,89(2):342-348.
    270. Tamim N., R. Angel, and M. Christman. Influence of dietary calcium and phytase on phytate phosphorushydrolysis in broiler chickens. Poultry Science2004,83(8):1358-1367.
    271. Tanaka T., A. Mizumoto, S. Muramatsu, E. Mochiki, N. Haga, H. Suzuki, and Z. Itoh. Postprandialnormal saline intake delays gastric emptying of solids in conscious dogs (partial involvement of CCK inits mechanism). Digestive Diseases and Sciences1999,44(8):1516-1524.
    272. Taylor A. N. In vitro phosphate transport in chick ileum: effect of cholecalciferol, calcium, sodium andmetabolic inhibitors. The Journal of Nutrition1974,104(4):489-494.
    273. Thomas D., and V. Ravindran. Mineral retention in young broiler chicks fed diets based on wheat,sorghum or maize. Asian-Australasian Journal of Animal Sciences2010,23:68-73.
    274. Thompson A. Mineral availability and techniques for its measurement. Proceedings of the NutritionSociety1965,24(1):81-88.
    275. Thorp B., and D. Waddington. Relationships between the bone pathologies, ash and mineral content oflong bones in35-day-old broiler chickens. Research in Veterinary Science1997,62(1):67-73.
    276. Tilgar V., P. Kilgas, A. Viitak, and S. J. Reynolds. The rate of bone mineralization in birds is directlyrelated to alkaline phosphatase activity. Physiological and Biochemical Zoology2008,81(1):106-111.
    277. Timmons J. R., J. M. Harter-Dennis, and A. E. Sefton. Evaluation of nonuniform application of phytase(simulated) on growth performance and bone quality in broiler chicks. Journal of Applied PoultryResearch2004,13(2):311-318.
    278. Twining P., R. Lillie, E. Robel, and C. Denton. Calcium and phosphorus requirements of broiler chickens.Poultry Science1965,44(1):283-296.
    279. Van der Klis J. D., H. A. J. Versteegh. Phosphorus nutrition in poultry. P. C. Garnsworty, J. Wiseman, andW. Haresign, ed. Recent Advances in Animal Nutrition. U.K. Nottingham: Nottingham University Press,1999,71–83.
    280. Vasan P., N. Dutta, A. Mandal, and K. Sharma. Influence of Caecectomy on the Bioavailability ofMinerals from Vegetable Protein Supplements in Adult Roosters. Asian-Australasian Journal of AnimalSciences2008,21(8):1178-1182.
    281. Virkki L. V., J. Biber, H. Murer, and I. C. Forster. Phosphate transporters: a tale of two solute carrierfamilies. American Journal of Physiology-Renal Physiology2007,293(3): F643-654.
    282. Viveros A., A. Brenes, I. Arija, and C. Centeno. Effects of microbial phytase supplementation on mineralutilization and serum enzyme activities in broiler chicks fed different levels of phosphorus. PoultryScience2002,81(8):1172-1183.
    283. Viveros A., C. Centeno, A. Brenes, R. Canales, and A. Lozano. Phytase and acid phosphatase activitiesin plant feedstuffs. Journal of Agricultural and Food Chemistry2000,48(9):4009-4013.
    284. Waldroup P., C. Ammerman, and R. Harms. Comparison of the requirements of battery and floor grownchicks for calcium and phosphorus. Poultry Science1962,41(5):1433-1436.
    285. Waldroup P., C. Ammerman, and R. Harms. The relationship of phosphorus, calcium, and vitamin D3inthe diet of broiler-type chicks. Poultry Science1963a,42(4):982-989.
    286. Waldroup P. W. Nutritional approaches to reducing phosphorus excretion by poultry. Poultry Science1999,78(5):683-691.
    287. Waldroup P. W., C. B. Ammerman, and R. H. Harms. Calcium and phosphorus requirements of finishingbroilers using phosphorus sources of low and high availability. Poultry Science1963b,42(3):752-757.
    288. Waldroup P. W., J. H. Kersey, E. A. Saleh, C. A. Fritts, F. Yan, H. L. Stilborn, R. C. Crum, Jr., and V.Raboy. Nonphytate phosphorus requirement and phosphorus excretion of broiler chicks fed dietscomposed of normal or high available phosphate corn with and without microbial phytase. PoultryScience2000,79(10):1451-1459.
    289. Waldroup P. W., R. Wmitchell, and Z. B. Johnson. The phosphorus needs of young broiler chicks inrelationship to dietary nutrient density level. Poultry Science1975,54:436-441.
    290. Walser M. Ion association. VI. Interactions between calcium, magnesium, inorganic phosphate, citrateand protein in normal human plasma. Journal of Clinical Investigation1961,40(4):723-730.
    291. Wasserman R., and A. Taylor. Intestinal absorption of phosphate in the chick: effect of vitamin D3andother parameters. The Journal of nutrition1973,103(4):586-599.
    292. Wedekind K., S. Yu, and G. Combs. The selenium requirement of the puppy. Journal of AnimalPhysiology and Animal Nutrition2004,88(9-10):340-347.
    293. Werner A., and R. K. Kinne. Evolution of the Na-P(i) cotransport systems. American Journal ofPhysiology-Regulatory, Integrative and Comprehensive Physiology2001,280(2): R301-312.
    294. Widmer M. R., L. M. McGinnis, and H. H. Stein. Energy, phosphorus, and amino acid digestibility ofhigh-protein distillers dried grains and corn germ fed to growing pigs. Journal of Animal Science2007,85(11):2994-3003.
    295. Williams B., S. Solomon, D. Waddington, B. Thorp, and C. Farquharson. Skeletal development in themeat-type chicken. British Poultry Science2000,41(2):141-149.
    296. Woyengo T., E. Kiarie, and C. Nyachoti. Metabolizable energy and standardized ileal digestible aminoacid contents of expeller-extracted canola meal fed to broiler chicks. Poultry Science2010,89(6):1182-1189.
    297. Wolde-Tsadick N. S.. Nutrient availability of wheat feed screenings in broiler diet. PhD Dissertation,Vancouver: University of British Columbia,1983.
    298. Yan F., R. Angel, and C. M. Ashwell. Characterization of the chicken small intestine type IIb sodiumphosphate cotransporter. Poultry Science2007,86(1):67-76.
    299. Yan F., C. Keen, K. Zhang, and P. Waldroup. Comparison of methods to evaluate bone mineralization.The Journal of Applied Poultry Research2005,14(3):492-498.
    300. Yan F., J. H. Kersey, and P. W. Waldroup. Phosphorus requirements of broiler chicks three to six weeksof age as influenced by phytase supplementation. Poultry Science2001,80(4):455-459.
    301. Yan F., and P. Waldroup. Nonphytate phosphorus requirement and phosphorus excretion of broiler chicksfed diets composed of normal or high available phosphate corn as influenced by phytase supplementationand vitamin D source. International Journal of Poultry Science2006,5(3):219-228.
    302. Yao J., J. Han, S. Wu, M. Xu, L. Zhong, Y. Liu, and Y. Wang. Supplemental wheat bran and microbialphytase could replace inorganic phosphorus in laying hen diets. Czech Journal of Animal Science2007,52(11):407-413.
    303. Yi Z., E. Kornegay, V. Ravindran, and D. Denbow. Improving phytate phosphorus availability in cornand soybean meal for broilers using microbial phytase and calculation of phosphorus equivalency valuesfor phytase. Poultry Science1996,75(2):240-249.
    304. Yoshida M., and H. Hoshii. Re-evaluation of requirement of calcium and available phosphorus forstarting meat-type chicks. Japanese Poultry Science1982:101-109.
    305. Young K. A., V. Raboy, J. R. Wilcox, and G. S. Premachandra. Isolation of high seed inorganic P,low-phytate soybean mutants. Crop Science2000,40(6):1601-1605.
    306. Yu Y., L. Lu, X. Luo, and B. Liu. Kinetics of zinc absorption by in situ ligated intestinal loops of broilersinvolved in zinc transporters. Poultry Science2008,87(6):1146-1155.
    307. Zanini S., and M. Sazzad. Effects of microbial phytase on growth and mineral utilisation in broilers fedon maize soyabean-based diets. British Poultry Science1999,40(3):348-352.
    308. Zhang W., S. E. Aggrey, G. M. Pesti, H. M. Edwards, Jr., and R. I. Bakalli. Genetics of phytatephosphorus bioavailability: heritability and genetic correlations with growth and feed utilization traits in arandombred chicken population. Poultry Science2003,82(7):1075-1079.
    309. Zyla K., D. R. Ledoux, and T. L. Veum. Complete enzymic dephosphorylation of corn-soybean mealfeed under simulated intestinal conditions of the turkey. Journal of Agricultural and Food Chemistry1995,43(2):288-294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700