不同钾基因型烤烟(株系)的表型差异及钾素营养特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
烟叶含钾量低一直制约着我国烟叶的品质。由于我国钾资源匮乏,钾肥利用率低,且通过增施钾肥提高烟叶含钾量的效果不显著,因此,选育高钾基因型的烤烟(株系),是提高烟叶含钾量的一条有效途径。本试验采用砂培试验,以导入了外源富钾基因的K2、K3、K5、K7、K9等5个高钾基因型烤烟(株系)和K326(CK)为供试材料,研究了2个供钾水平(0.6mmol/L和6.0mmol/L)下,不同钾基因型烤烟(株系)的生长表现和对介质溶液中钾的吸收、积累、分配等方面的差异,探讨了高钾基因型烤烟(株系)与K326对钾吸收利用的差别。主要研究结果如下:
     1.在不同供钾水平下,5个不同高钾基因型烤烟(株系)的株高、叶面积、叶长宽比和叶间距等农艺性状指标都明显优于对照K326,其中以K7和K9表现最佳,K2和K5次之,K3最小;高钾基因型烤烟(株系)的干物质量均大于K326,其中K5、K7和K9的干物质量较大,表明高钾基因型烤烟(株系)的农艺学性状比K326具有明显的优势,且干物质量也随着生长优势的凸显而增大。
     2.由于受烟株干物质和钾积累强度的综合影响,不同高钾基因型烤烟(株系)的烟叶含钾量的变化各不相同。在烟苗移栽25d,与高供钾水平相比,低供钾水平下高钾基因型烤烟(株系)含钾量的降幅大于K326,降幅在83.81%~88.83%;而在移栽45d,K5的钾吸收积累量的降幅小于K326,其它4个高钾基因型烤烟(株系)的钾吸收积累量的降低幅度均大于K326,其降幅为89.62%~92.85%,但各株系间的差异不显著。因此,随着烟株生长发育的推进,K5在移栽45d能维持较高的钾水平,对提高烟叶的含钾量有利。在低供钾条件下,烟苗移栽25d,高钾基因型烤烟(株系)的钾吸收积累量均大于K326;而到移栽45d,K2和K7的钾吸收积累量显著小于K326。移栽45d与移栽25d相比,K326、K2和K7的钾吸收积累量均有下降,但K2和K7的降低幅度均小于K326,而K3、K5和K9的钾吸收积累量呈上升趋势。说明K3、K5和K9具有良好的吸钾能力和吸钾潜力。
     3.高供钾水平下,高钾基因型烤烟(株系)的根系活力高,其中尤以K9的优势最为明显。在低供钾条件下,移栽25d,各基因型烤烟(株系)的根系活力均大于高供钾水平,而根体积、根系总吸收面积和活跃吸收面积均小于高供钾水平;移栽45d,各不同基因型烤烟(株系)的根体积和根系活力均低于高供钾水平,而K9根系总吸收面积和活跃吸收面积高,分别比高供钾水平下高9.22%和70.08%;K2和K7根系活跃吸收面积也增大,增幅分别为:15.87%和75.90%,说明在生育后期,在钾素营养供应水平较低的生长环境中,K2、K7和K9都能维持良好的根系吸收特征,从而加强烟株对钾的吸收与积累。
     4.高钾基因型烤烟(株系)与K326相比,其根系的最大吸收速率(Vmax)值大,对钾的亲和力(Km)和钾最低吸收浓度(Cmin)值小,表明其对钾的亲和力较强,不仅能在低钾的环境中更好地吸收利用介质中的钾,而且能在高钾的环境中,快速地吸收利用介质中的钾。在不同的高钾基因型烤烟(株系)中,以K7和K9的根系Vmax值最大,Km最高,Cmin最小,其次是K2和K5,K3则较差。因此,不同高钾基因型烤烟(株系)对钾的吸收动力学特征存在明显的差异,这些差异,可以作为品种筛选的依据之一。
The low potassium content in tobacco leaves has constantly restricted the quality of tobacco in our country. As the potassium resource scarcity and the poor utilization efficiency of potash fertilizer, breeding the high K genotypes of flue-cured tobacco is an efficient way to enhance the potassium content in tobacco. The experiment applied the sand cultivate way, tested materials are 5 flue-cured tobacco named K2、K3、K5、K7、K9 which,imported K-rich gene and the check sample is K326. The materials was cultivated under the two potassium levels,0.6mmol/L and 6.0mmol/L, the growth characteristics of different genotypes tobacco and the absorption of potassium in soil solution, accumulation, distribution and the differences between the K-rich potassium genotypes and K326 in absorbing and utilization efficiency were studied. The main results are as follows:
     1. Under all potassium levels, the plant height, leaf area, leaf aspect ratio and leaf spacing of high-K genotypes tobacco are all greater than K326, in which K7 and K9 perform best, K2 and K5 ranking second,and then the K3. Meanwhile, the amount of dry matter of high-K genotypes tobacco is also higher than K326, among which K5, K7 and K9 are comparatively higher. It showed that the high-K genotype tobacco having an advantage than K326 on the agronomic characteristics, and the dry mass is increased along with the phenotype advantages.
     2. Influenced by dry mass and potassium accumulation intensity, the main range of variation on potassium content of tobacco leaves of different potassium efficient genotypes tobacco are different.25 days after transplanting, compared with the high potassium level, K-rich potassium genotypes decline more than K236 under the low potassium level, the range is between 83.81% to 88.83%.45 days'after transplanting, the declining of accumulation of potassium in the K-rich potassium genotypes to the exclusion of K5 are slower than K326, decreased by 89.62% to 92.85%, and the difference is unsignificant. Therefore, with the growth and develepment of tobacco plant, K5 can keep the high potassium level 45 days after transplanting, which helps to improve the cointent of potassium in tobacco.. On the conditions of low K, the accumulation of potassium in the K-rich potassium genotypes is more than K326 25 days after transplanting, moreover, the accumulation of potassium in K2 and K7 is obviously less than K326 25 days to 45 days after transplanting. Comparing in transplanting 45 days with 25 days, the accumulation of potassium in K326, K2 and K7 is declined, and the decreasing extent of K2 and K7 is less than K326, and that the accumulation of potassium in K3,K5 and K9 is increased. It shows that K3,K5 and K9 have a good ability and potential of absorbing potassium.
     3. On the condition of high K, potassium efficient genotypes tobacco have higher root activity, and K9 is the best. After 45 days'transplanting,on the low potassium levels, the root activity of different genotypes tobacco is higher than the high potassium levels, and the root volume, root total and active absorption area of different genotypes tobacco are lower than the high potassium levels. After 45 days'transplanting on the low potassium levels, the root volume and root activity of different genotypes tobacco is lower than the high potassium levels, and K9 got larger root total and active absorption area, which is respectively larger by 9.22% and 70.08% than the high potassium level.K2 and K7 got larger root active absorption area, by 15.87% and 75.90% respectively. It indicates that K2、K7 and K9 possess characteristic of root morphology which is beneficial for the absorption and accumulation of potassium in the low potassium environment in latter growth period.
     4. Compared high-K genotypes of flue-cured tobacco with K326, the root of the former has a bigger Vmax value, the smaller Km and Cmin value. It indicated that the potassium efficient genotype have the higher affinity to potassium, it can absorb and utilize patassium under any potassium level. In different high-K genotypes of flue-cured tobacco, K7 and K9 have the biggest Vmax value, the highest affinity to potassium (Km) and the lowest concentration absorption of potassium the smallest (Cmin), secondly, the K2,K5. and K3 are minimal.So,it indicated that the absorbing dynamics of potassium of potassium efficient genotypes tobacco is distinct to screen high potassium genotypes flue-cured tobacco.
引文
[1]Patterson S, Jensen P. Variation among species and varieties in uptake and utilization of potassium[J]. Plant and Soil,1983,72:231-237
    [2]Zhang G, Chen J, Eshetu A T. Genotype variation for potassium uptake and utilization efficiency in wheat[J]. Nutrition Cycling Agro ecosystem,1999,54:41-48
    [3]George M S, Lu G Q, Zhou W J. Genotypic variation for potassium uptake and utilization efficiency in sweet potato(Ipomoea batatas L.)[J]. Field Crops Research,2002,77:7-15
    [4]Munson R D. Potassium in agriculture [M]. FAN Qinzhen, ZHENG Wenqin, trans. Beijing: Science Press,1995:277-360,814-829
    [5]Hanks S N Jr. Collins W K. Principles of flue-cured Tobacco Production[M]. N. C State University by N C. USA,1983
    [6]Bowing J D, Bowan D E. Role of Potash in growth and nutrition of Maryland tobacco USDA[J]. Tech. Bull.1947:933
    [7]曹志洪,胡国松,周秀如,等.土壤供钾特性和烤烟的钾肥有效施用[J].烟草科技,1993(2):33-37
    [8]汪邓民,范思锋.钾素对烤烟成熟生理变化及成熟度影响的研究[J].植物营养与肥料学报,1999,5(3):244-248
    [9]杨铁钊,彭玉富.富钾基因型烤烟钾积累特征研究[J].植物营养与肥料学报,2006,12(5):750-753
    [10]郭强,赵久然,滕海涛.不同玉米基因型对钾素吸收利用的研究[J].玉米科学,2000,8(1):74-76
    [11]黄建国,杨邦俊,袁玲.小麦不同品种吸收钾离子的动力学研究[J].植物营养与肥料学报,1995,3(1):38-43
    [12]李廷轩,马国瑞.籽粒苋富钾基因型筛选研究[J].植物营养与肥料学报,2003,9(4):473-479
    [13]刘国栋,刘更另.籼稻耐低钾基因型筛选[J].作物学报,2002,28(2):161-166
    [14]Shea P F, Gerloff G C, Gabelman W H. Differing efficiencies of potassium utilization in strains of snap beans, Phase olds vulgarize L[J]. Plant and Soil,1968,28(2):337-346
    [15]牛佩兰,石屹,刘妤宝,等.烟草基因型间钾效率差异研究初报[J].烟草科技,1996,(1):33-35
    [16]杨铁钊,杨志晓,林娟,等.不同烤烟基因型根际钾营养和根系特性研究[J].土壤学报,2009,4(46):646-651
    [17]齐永杰,刘光辉,李群岭,等.不同基因型烤烟体内钾积累分配差异比较研究[J].广西农业科学,2008,5(39):632-635
    [18]杨铁钊,杨志晓,聂红资,等.富钾基因型烤烟的钾积累及根系生理特性[J].作物学报,2009,35(3):535-540
    [19]刘建祥,杨肖娥,吴良欢,等.低钾胁迫对水稻叶片光合功能的影响及其基因型差异[J].作物学报,2001,6(27):1000-1006
    [20]陆国权,丁守仁.甘薯钾素利用效率的基因型差异研究[J].植物营养与肥料学报,2001,7(3):357-360
    [21]李廷轩,马国瑞,张锡洲.富钾基因型籽粒苋主要根系分泌物及其对土壤矿物态钾的活化作用[J].应用生态学报,2006,3(17):368-372
    [22]黄莺,周梅,黄河,等.基因型对烟草钾素营养的响应能力及筛选研究[J].中国烟草科学,2004,(2):30-34
    [23]徐文军,胡日生,郭清泉,等.烟草钾营养的基因型差异及烤烟育种中应用研究Ⅰ.烟叶含钾量的基因型差异[J].作物研究,2006,(1):68-74
    [24]张喜琦,张金艳,马玉红.不同基因型烟草根系对钾吸收的影响[J].山东农业科学,2008,5:71-73
    [25]杨铁钊,鲁黎明,夏巍,等.烤烟富钾基因型钾吸收积累与内向钾电流特性[J].中国农业科学,2008,41(8):2392-2399
    [26]王晓光,曹敏建,王伟,等.钾对大豆根系形态与生理特性的影响[J].大豆科学,2005,24(2):126-134
    [27]谭勇,梁宗锁,王渭玲,等.氮、磷、钾营养对膜荚黄芪幼苗根系活力和游离氨基酸含量的影响[J].西北植物学报,2006,26(3):478-483
    [28]杨志晓,张小全,尚小颍,等.富钾基因型烤烟根系形态和生理特性研究[J].西北植物学报,2009,29(3):0555-0560
    [29]曹一平,徐水泰,李晓林.小麦根际微区钾养分状况的研究[J].北京农业大学学报,1991,17(2):69-73
    [30]Jechke W D, Atkins L A, Pate J S. Ion circulation via phloem and xylem between root and shoot modulated white lupine[J].Plant Physiology,1985,117:319-330
    [31]彭克勤,胡笃敬.空心莲子草K+吸收的动力学研究[J].植物生理学报,1986,12(2):187-193
    [32]邹春琴,李振声,李继云.小麦对钾高效吸收的根系形态学和生理学特征[J].植物营养与肥料学报,2001,7(1):36-43
    [33]Epstein E, Hagan A. A kinetic study of the absorption of alkali cation by barley roots. Plant Physiology,1952,27:457-474
    [34]Classen N, Barber S A. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants[J]. Plant Physiology,1974,54:564-568
    [35]蒋廷惠,郑绍建,石锦芹,等.植物吸收养分动力学研究中的几个问题[J].植物营养与肥料学报,1995,1(2):11-17
    [36]梁敦富.大力发展高钾绿肥籽粒苋——缓解我省钾源短缺问题的新途径[J].土壤农化通报,1995,10(1):29-32
    [37]Hull R I, Duff D T. Comparing cultivars of three cool-season turf grasses for potassium uptake kinetics and potassium recovery in the field[J]. Journal of Plant Nutrition,1995,18(3):467-485
    [38]黄欣,彭克勤,吴碧波,等.低钾条件下不同品种烟苗钾离子吸收动力学比较[J].湖南农业科学,2008,(2):61-63
    [39]周冀衡,汪邓明.培土与施肥对烟主根系发育及氮磷钾吸收率的影响[J].中国烟草学报,1995,2(4):51
    [40]曹志洪.优质烤烟生产的土壤与施肥[M].南京,江苏科学技术出版社,1991:21-24
    [41]施卫明.外源钾通道基因在水稻中的表达及其钾吸收特征研究[J].作物学报,2001,28(3):374-378
    [42]周冀衡,汪邓民,吕国新,等.不同烤烟品种对钾素响应能力的研究[J].中国烟草科学,1998,19(2):8-12
    [43]程辉斗,温永琴,陆富,等.土壤供钾水平与云南烤烟含钾量关系的研究[J].烟草科技,2000,(3):41-43
    [44]雷永和,晋艳.烟叶含钾量与土壤养分的关系[J].云南农业科技,1994,(2):3-5
    [45]曹务栋,黄国友,王唯,等.关于发展现代烟草农业科技创新问题的探讨[J].现代农业科技,2009,13:69-70
    [46]颜合洪,赵松义.生态因子对烤烟品种发育特性的影响[J].中国烟草科学,2001,22(2):15-18
    [47]程林仙,王安柱.渭北旱作区干旱对烤烟产量和品质的影响及覆盖抗旱栽培技术[J].中国农业气象,1996,17(2):18-21
    [48]李琦.烤烟优劣质年的气象条件分析[J].安徽农业科学,1997,25(2):127-130
    [49]李卫东,王韧.烟叶品质与气象要素关系的研究[J].1990,(12):9-11
    [50]黄国文,陈良碧.高温对烟叶品质的影响[J].生命科学研究,2002,6(4):362-366
    [51]D LAYTEN DAVIS, MARK T, NIELSEN.烟草-生产,化学和技术[M].北京,化学工业出版社,2003
    [52]Leymonie J P, Etourneaud F. Fertilizer and tobacco[J]. Tab Reporter,1996, (4):66-72
    [53]邱全胜,植物质膜钾离子转运体研菊苎展[J].植物学通报,2000,17(1):34-38
    [54]中国农业科学院烟草研究所.中国烟草栽培学[M].上海,上海科学技术出版社,1987,135,139-141
    [55]胡国松,陈江华,曹志洪,等.田间状况下烤烟养分吸收动力学及其在平衡施肥中的应用[J].中国烟草学报,1996,3(2):14-20
    [56]范进华.烟草不同基因型钾吸收差异及其生理机制研究[D].郑州,河南农业大学硕士生毕业论文,2006,1-10
    [57]张喜琦.不同基因型烟草钾效率的差异及机理研究[D].泰安,山东农业大学硕士生毕业论文,2003,41-45
    [58]张喜琦,时衍玺.同基因型烟草成熟期钾在植株体内的迁移特征[J].中国烟草科学,2004,25(4):8-12
    [59]中国农业科学院烟草研究所.中国烟草栽培[M].上海,上海科技出版社,1999,32-35
    [60]Mccants CB, Woltz WG. Growth and mineral nutrition of tobacco[J]. Adv in Argon,1967,19: 211-265
    [61]胡国松.河南烟区烟叶片含钾量低的原因初探[J].中国烟草学报,1996,3(1):13-17
    [62]杨铁钊,晁逢春,丁永乐,等.烟草不同基因型叶片钾积累特性及变异分析[J].中国烟草学报,2002,8(3):11-16
    [63]陆景陵.植物营养学(上册)[M].北京,中国农业大学出版社,1994,36-44
    [64]解文贵.钾素在烤烟不同生长期分布规律的初步研究[J].贵州农业科学,1996,(1):45-46
    [65]魏永胜.干旱胁迫和不同土壤钾水平下烟草植株钾的分布及其抗旱性研究[D].杨凌:西北农林科技大学硕士生毕业论文,2001,25-26,36
    [66]胡国松,赵元宽,曹志洪,等.我国主要烟草烤烟元素组成和化学品质评价[J].中国烟草学报,1997,3(3):36-43
    [67]茆寅生,申国明,刘好宝,等.烤烟生育各期供钾量与叶片含钾量的关系[J].土壤肥料,1989,(6):15-17
    [68]刘好宝.烤烟钾素营养与烟叶产量品质关系的研究[D].北京,中国农业科学院硕士学位论文,1996,3
    [69]郑宪滨,曹一平,张福锁,等.不同供钾水平下烤烟体内钾的循环、积累和分配[J].植物营养与肥料学报,2000,6(2):166-172
    [70]郭丽琢,张福锁,李春俭.打顶对烟草生长、钾素吸收及其分配的影响[J].应用生态学报,2002,13(7):819-82
    [71]邹琦.植物生理学实验指导[M].北京:中国农业科技出版社,2000:120-124
    [72]毛达如.植物营养研究法[M].北京农业出版社,1994,132-135
    [73]汪自强,董明远.不同钾水平下春大豆品种的钾利用效率研究[J].大豆科学,1996,15(3):202-207
    [74]Su B, Han X G, Huang J H, et al. The nutrient use efficiency (NUE) of plants and its implications on the strategy of plant adaptation to nutrient Stressed environments[J]. Acta Ecologica Sinica, 2000,20 (2):335-343
    [75]Li Z S, Zhu Z L, Zhang S, et al.Exploration of biological capacity for efficient use of soil nutrients to maintain a sustainable soil environment[M].Beijing:China Agricultural University Press,2004
    [76]Bridgham S D, Pastor J, McClaugherty C A, et al.Nutrient-use-efficiency:a litter fall index, a model and a test along a nutrient availability gradient in North Carolina peat lands[M].American Naturalist, 1995,145:1-21
    [77]姜存仓,王运华,鲁剑巍等.不同棉花品种苗期钾效率差异的初步探讨[J].棉花学报,2004,16 (3):162-165
    [78]杨青华,高尔明,马新明.砂姜黑土玉米根系生长发育动态研究[J].作物学报,2000,9(5):287-293
    [79]王晓光,曹敏建,王伟,等.钾对大豆根系形态与生理特性的影响[J].大豆科学,2005,24(2):126-134
    [80]谭勇,梁宗锁,王渭玲,等.氮、磷、钾营养对膜荚黄芪幼苗根系活力和游离氨基酸含量的影响[J].西北植物学报,2006,26(3):478-483
    [81]林建荣,石春海,吴明国.粳稻稻米外观和碾磨品质性状与植株农艺性状的遗传关系分析[J].作物学报,2003,29(4):581-586
    [82]蒋予恩,赵传良,杨云,等.马里兰烟施氮量研究初报[J].中国烟草科学,2003,(1):37-40
    [83]周玲,王朝辉,李生秀.旱地条件下冬小麦产量和农艺性状对养分投入的响应[J].作物学报,2010,36(7):1192-1197
    [84]刘桂玲,郑建利,柳新明,等.不同基因型甘薯品种产量与地上部农艺性状及主要气象因子关联度分析[J].中国农学通报,2009,25(05):125-131
    [85]张彦丽,古思玉,许景钢.不同施磷条件下大豆植株农艺性状与磷效率的关系[J].中国农学通报,2008,24(3):142-145
    [86]王芳,刘鹏,朱靖文.镁对大豆根系活力叶绿素含量和膜透性的影响[J],农业环境科学学报,2004,23(2):235-239
    [87]曹卫星,何杰升,丁艳锋.作物学通论[M].北京:高等教育出版社,2001,221-222
    [88]Forde B, Lorenzo H. The nutritional control of root development[J]. Plant Soil,2001,232:51-68
    [89]陈际型.钾素营养对水稻根系生长和养分吸收的影响[J].土壤学报,1997,34(2):182-188
    [90]陈波浪,盛建东,蒋平安,等.钾营养对水培棉花生长发育的影响[J].中国农学通报,2008,24(11):267-271
    [91]柏彦超,钱晓晴,沈淮东,等.不同水、氮条件对水稻苗生长及伤流液的影响[J].植物营养与肥料学报,2009,15(1):76-81
    [92]谢瑞芝,董树亭.不同基因型玉米硫素吸收利用差异研究Ⅰ.根系吸收动力学参数与品种对硫肥的响应[J].作物学报,2002,28(3):345-350
    [93]Raw at S R, Silim S N, Kronzucker H J, et al. At AMT1 gene expression and NH4+ uptake in roots of Arabidopsis thaliana:Evidence for regulation by root glutamine levels [J]. Plant Journal,1999, 19:143-152
    [94]倪晋山,蒋希澄,冯秀香.玉米幼苗NO3-N的吸收、溢泌和硝酸还原酶活性在品种间的差异[J].植物生理学报,1988,14(2):188-195
    [95]范进华.烟草不同基因型钾吸收差异及其生理机制研究[D].河南农业大学硕士学位论文,2006,6
    [96]卓书斌,黄小凤,袁志永,等.台湾青枣不同品种表型差异和遗传多样性研究[J].现代农业科学,2009,16(2):13-16
    [97]陈际型.钾素营养对水稻根系生长和养分吸收的影响[J].土壤学报,1997,34(2):182-188
    [98]严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社,1997:81-88
    [99]官春云,王国槐,赵均田.油菜生态特性的研究Ⅰ.甘蓝型油菜(B.napus)光温生态特性的初步研究[J].作物学报,1985,11(2):115-120
    [100]廖桂平,官春云.甘蓝型冬油菜(Brassica napus)干物质积累、分配与转移的特性研究[J].作物学报,2002,28(1):52-58
    [101]李国民,王复文.晒烟主要农艺性状的遗传分析[J].吉首大学学报(自然科学),1991,12(5)59-62
    [102]张国平,张光恒.小麦钾素利用效率的基因型变异和相关分析[J].浙江农业大学学报,1996,22(3):279-283
    [103]XING Y Z, XUCG, HUA J P, et al.Mapping and isolation of quantitative trait loci controlling plant height and heading date in rice [J].Acta Botanica Sinica,2001,43:721-726
    [104]YU S B, LIJ X, XU C G, et al.Identification of quantitative trait loci and epistatic interactions for plant height and heading date in rice [J].Theor Appl Genet,2002,104:619-625
    [105]刘文俊,王令强,何予卿.利用2个相关群体定位和比较水稻株高与抽穗期QTL[J]华中农业大学学报,2007,26(2):161-166
    [106]舒海燕,杨铁钊,曹刚强,等.烟叶钾含量与烟株农艺性状和烟碱含量的相关分析[J].中国农学通报,2007,23(2):275-278
    [107]邹春琴,李振声,李继云.小麦对钾高效吸收的根系形态学和生理学特征[J].植物营养与肥料学报,2001,7(1):36-43
    [108]张玲,李俊梅,王焕校.镉胁迫下小麦根系的生理生态变化[J].土壤通报,2002,33(1):61-65
    [109]Mengl K.Response of various cropspecies and cultivars to fertilize rapplication[J].Plant and Soil, 1983,72:305-319
    [110]徐国华,鲍士旦,杨建平,等.不同作物的吸钾能力及其与根系参数的关系[J].南京农业大学学报,1995,18(1):49-52
    [111]Marsehner H, Kirkby E A, Cakmakl. Effect of mineral nutritional status on shoot-root partitioning of photo assimilates and cycling of mineral nutrients[J].J, Exper.Bot.,1996,47:1255-1263
    [112]祝丽香,王建华,耿慧云,等.桔梗的干物质积累及氮、磷、钾养分吸收特点[J].植物营养与肥料学报,2010,16(1):197-202
    [113]刘冬碧,熊桂云,范先鹏,等.莲藕干物质和氮磷钾养分的累积与分配研究[J].植物科学学报,2011,29(1):124-129
    [114]赵学强,介晓磊,李有田,等.不同基因型小麦钾离子吸收动力学分析[J].植物营养与肥料学 报,2006,12(3):307-312

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700