不同基因型玉米对钾素高效吸收和利用机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,土壤中有效钾供应不足已严重地限制了玉米生产,为弥补我国钾肥不足和提高玉米种植效益,通过研究作物品种间钾吸收和利用效率的差异,筛选和利用钾高效玉米基因型是提高玉米产量的有效途径之一。本文采用营养液培养试验进行不同钾效率玉米品种的初步筛选后,再通过土壤盆栽的方法,设置施钾肥和不施钾肥处理,以收获时玉米植株生物量为主,并结合钾效率及钾敏感度筛选出典型钾营养高效和钾营养低效基因型玉米品种。继而,通过营养液与石英砂培养相结合的方法,深入研究了不同基因型玉米高效吸收和利用钾的机理,得到的主要结论如下:
     1、通过营养液培养和土壤盆栽相结合的研究方法证明,豫玉23,具有较高的钾效率且耐低钾能力强,为钾营养高效玉米品种,对低钾胁迫的耐受性较强,且自身产量潜力较高,适用于资源限制性农业发展的需要,是试验筛选的理想类型;兴农998,钾效率低且耐低钾能力差,为钾营养低效玉米品种,虽然对低钾耐受力差,但由于其增产潜力较大,因此适用于地力较好,钾肥不是限制因子的土壤上种植。
     2、在钾吸收机理方面,缺钾条件下,豫玉23和兴农998玉米品种的株高、总绿叶面积、根干重、地上部干重、根冠比均有不同程度的降低;地上部、根和整株钾含量也有所减少;根长增大,根表面积、根直径、根体积有所下降;根际pH,2品种表现规律不一致;吸收K~+能力和K~+亲合力增大,对低钾耐受力豫玉23增强,兴农998减弱;根系解剖结构,导管数目,木质化程度,中柱径向,中皮层细胞空腔直径均降低。不同基因型间存在显著差异。缺钾时,豫玉23生物量大于兴农998,原因是其具有较大的根长、根表面积和根体积,较小的根直径,较强的根系活力、吸K~+和K~+亲合力,耐低钾能力强,根系分泌质子较多,较大的中皮层细胞空腔,皮层通气组织较发达,较多的皮层细胞数目,细胞分裂旺盛,更有助于养分的吸收。
     3、在钾利用机理方面,处理10d后,与供钾比,低钾降低了豫玉23和兴农998各器官的干物质积累量、根系吸钾量、各器官钾浓度、钙吸收量,钾吸收效率和木质部运输的钾量,增加了钾利用效率和钾在韧皮部的再循环。2玉米品种被下部叶位活化出的钾主要是通过韧皮部循环至根中后,再经过木质部向上部新生叶运输的,但体内光合产物和钾向上部叶的运输是不完全同步的过程。低钾处理下的豫玉23较兴农998具有较大生物量的原因是具有较高的钾吸收速率、较高的钾利用效率和较发达的根系,木质部中有更大比例的钾被分配到上部叶和根系供其生长,具有更好的分配机制。
Insufficient potassium availability has seriously limited maize production. In order to make up the lack of K and improve the planting benefit of maize, studying the difference between crop varieties about K uptake and utilization and screening maize genotype of high ability to absorb K is one of the effective ways to improve the yield of maize. In the present study, different K efficient maize varieties were collected to cultivate in hydroponic culture, then set the levels of application potassium fertilizer and not application potassium fertilizer treatment under the soil culture condition. High and low K nutrition efficient maize varieties were gained by the final biomass and combined with K efficiency and potassium sensitivity. After this, the mechanism of K high uptake and utilization efficiency in different maize varieties were studied under the conditions of nutrient solution and quartz sand. The main results were as followed:
     1. Results in hydroponic culture and soil potted were both proved that Yuyu 23 was the best in absorbing K and tolerancing the low-K level, it was high-K nutrition efficient maize variety. With strong tolerance to low K stress, high yield potential, and suitable for the needs of development to agricultural resources restrictive,which was the ideal type screening test. Xingnong 998, which has low K uptake efficiency and low tolerance ability under K-deficiency, was the low-K nutrition efficient maize variety. Although Xingnong 998 was weak to tolerance the K-deficiency condition, but with a high yield potential, thus was suitable to plant on the soil with high fertility and K not limiting plant growing.
     2.For the potassium uptake mechanism, compared with the high-K level, the height, total green leaf areas, shoot, root dry weight and ratio of root to shoot of two maize in low-K level reduced; K conversion in the root, shoot and in the whole plant decreased; root length enhanced, root surface area, diameter and radius depressed; the rhizosphere pH, 2 genotypes were different; K~+ absorption ability and K~+ affinity were increased, the tolerance ability to the K-deficiency, Yuyu 23 enhanced and Xingnong 998 reduced; root anatomic structure, the catheter number, woodiness the degree, column in radial and cortical cells in the cavity diameter all reduced. There were significant differences between the two maize varieties. When lack of K, Yuyu23 had bigger biomass, because compared with Xingnong 998, Yuyu 23 had higher root length, root surface area and root volume, smaller root diameter, stronger root activity, larger K~+ absorption ability and K~+ affinity, stronger tolerance ability to K deficiency, more proton exudation, larger cortical cells in the cavity,and the cortex ventilation organization more developed, has more cortex cell number and the cell division exuberant; these advantages more help Yuyu 23 to the absorption of nutrients.
     3. For the potassium utilization mechanism, during the study periods, compared with the high-K level, plant dry weight, K absorption of root, K concentration in each organ, calcium absorption, K uptake efficiency and K amount transported in the xylem under the low-K condition were significantly depressed, while the K use efficiency and K amount retranslocated from leaves to the root by phloem increased. The two maize were different leaves activated the potassium mainly through the phloem cycle to the root, and by the xylem of new leaf upward transportation, but photosynthesis product and potassium transported to the up-leaves was not synchronous. The reason why low potassium with the weight of the Yuyu 23 plants are greater than that of Xingnong 998 because in Yuyu 23 there had high K absorption rate, potassium use efficiency and more developed roots, and in the xylem a greater percentage of the potassium assigned to the upper leaf and root for its growth and better distribution mechanism.
引文
[1]王忠孝主编.山东玉米[M].北京:中国农业出版社, 1999 : 1-4.
    [2]佟屏亚.玉米高产是一个永恒的话题[J].作物杂志, 2004, 1 : 10-12.
    [3]易九红,刘爱玉.作物钾效率基因型差异及缺钾反应[J].作物研究, 2007, 21(5) : 536-540.
    [4]孙羲主编.植物营养原理[M].北京:中国农业出版社, 1997, 5 : 134.
    [5]伍宏业,曾宪坤,黄景梁,等.论提高我国化肥利用率(续)[J].磷肥与复肥, 1999, 14(2) : 9-12.
    [6]刘国栋,刘更另.论缓解我国钾源短缺问题的新对策[J].中国农业科学, 1995, 28 (1) : 25-32.
    [7]曹国军,刘宁,杜立平,等.高产春玉米产量及其构成与氮磷钾施用量关系的研究[J].吉林农业大学学报, 2008, 30(6) : 25-29.
    [8]黄绍文,金继运,程明芳,等.北方主要土壤对当季作物的供钾能力[J].土壤肥料, 1999, (3) : 3-7.
    [9]高祥照,马文奇,崔勇,等.我国耕地土壤养分变化与肥料投入状况[J].植物营养与肥料学报, 2000, 6(4) : 363-369.
    [10]谢建昌,周键民.我国土壤钾素研究和钾肥使用的进展[J].土壤, 1999, 31(5) : 244-254.
    [11]黄绍文,金继运.土壤钾形态及其植物有效性研究进展[J].土壤肥料, 1995, (5) : 23-29.
    [12] Pettersson S, Jensén P. Variation among species and varieties in uptake and utilization of potassium [J]. Plant and Soil, 1983, 72(2) : 231-237.
    [13]姜存仓,王运华,鲁剑巍,等.植物钾效率基因型差异机理的研究进展[J].华中农业大学学报, 2004, 23(4) : 483-487.
    [14]阎洪奎,曹敏建,胡兴波,等.玉米耐低钾胁迫鉴定指标的筛选[J].玉米科学, 2003, 11(3) : 70-73.
    [15]郭焕茹,于海秋,蒋春姬,等.低钾下不同耐性玉米苗期根形态及钾效率的差异[J].作物杂志, 2009, (2) : 62-65.
    [16]刘亨官,刘振兴,刘放新.水稻耐低钾品种(系)鉴定筛选及其吸钾特性的研究[J].福建省农科院学报, 1987, 2(2) : 10-17.
    [17]唐劲驰,曹敏建,刘限.大豆品种(系)耐低钾性的筛选与评价[J].大豆科学, 2003, 22(1) : 18-21.
    [18]刘国栋,刘更另.籼稻耐低钾基因型的筛选[J] .作物学报, 2002, 28(2) :161-166.
    [19] Zhang Z Y, Wang G W, Tian X L, et al. Preliminary study of K+ uptake kinetics of cotton (Gossypium hirsutum L.) and its application[J]. Cotton Science, 2005, 17(3) : 165-170.
    [20]姜存仓,王运华,鲁剑巍,等.不同棉花品种苗期钾效率差异的初步探讨[J].棉花学报, 2004, 16(3) :162-165.
    [21] Siddiqi M Y, Glass A D M. Utilization index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants[J]. Journal of Plant Nutrition, 1981, 4 (3) : 289-302.
    [22]李见云,谭金芳,介晓磊,等.黄淮麦区钾高效小麦品种的筛选[J].麦类作物学报, 2003,23(3) : 49-52.
    [23]刘建祥,杨肖娥.水稻钾营养基因型差异与生产的关系[J].植物生理学通讯, 2000, 36(4) : 384-389.
    [24]王为木,杨肖娥,李华,等.低钾胁迫对两个耐钾能力不同水稻品种养分吸收和分配的影响[J] .中国水稻科学, 2003, 17(1) : 52-56.
    [25]贾彦博,杨肖娥,王为木,等.不同供钾水平下水稻钾素吸收利用与产量的基因型差[J].水土保持学报, 2006, 20(2) : 64-72.
    [26]苏贤坤,张晓海,汪自强.烤烟钾素营养特性的基因型差异研究[J].植物营养与肥料学报, 2005, 11(4) : 536-540.
    [27]Gerloff G C, Gabelman W H. Genetic basis of inorganic plant nutrition[J]. Encyclopedia of Plant Physiology, 1983, 15 : 453-480.
    [28]张志勇,王清连,李召虎,等.缺钾对棉花幼苗根系生长的影响及其生理机制[J].作物学报, 2009, 38(4) : 718-723.
    [29]郝艳淑,江仓存,王晓丽,等.不同棉花基因型钾效率特征及其根系形态的差异[J].作物学报, 2011, 37(11) : 2094-2098.
    [30]吕世华,张福锁.耐缺锰小麦品种的筛选[J].土壤通报, 1995, 26(5) : 219-221.
    [31] Claassen N, Barber S A. A method for characterizing the relation between nutrient concentration and flux into roots of intact plants[J]. Plant Physiology, 1974, 54: 564-568.
    [32] Anthony D M, Glass A D M, Siddiqi M Y, et al. Correlations between potassium uptake and hydrogen efflux in barley varieties[J] . Plant Physiology, 1981, 68(2) : 457-459.
    [33]林咸永,孙羲.不同水稻品种对钾的吸收及其对钾肥的反应[J].土壤学报, 1995, 32(1) : 77-83.
    [34]谢少平,倪晋山.空心莲子草、大豆和向日葵根部K~+(~(86)Rb~+)的吸收和通量分析[J].植物生理学报, 1989, 13(4) : 410-417.
    [35]李共福,谢少平.水稻耐低钾能力及其鉴定研究[J ].作物研究, 1991, 5(1) : 4-9.
    [36]邹春琴,李振声,李继云.植物高效利用K素资源的研究进展[J ].生态农业研究, 1996, 4(3) : 10-14.
    [37]陈际垄.钾素营养对水稻根系生长和养分吸收的影响[J].土壤学报, 1997, 34(2) : 182-188.
    [38]田晓艳,刘延吉,曹敏健.低钾胁迫对玉米自交系苗期部分光合特性的影响[J].玉米科学, 2008, 16(1) : 83-85.
    [39] Ben-Zioni A, Vaadia Y, Lips S H. Nitrate uptake by roots as regulated by nitrate reduction products of the shoot[J]. Physiologia Plantarum, 1971, 24(2) : 288-290.
    [40] Dijkshoorn W. Nitrate accumulation, nitrogen balance and cation-anion ratio during the regrowth of Perennial Ryegrass[J]. Netherlands Journal of Agricultural Science, 1958, (6) : 211-221.
    [41] Jungk A, Claassen N. Availability in soil and acquisition by plants as the basis for phosphorus and potassium supply to plants[J]. Journal of Plant Nutrition and Soil Science, 1989, (152) : 152-157.
    [42] Jeschke W D, Pate J S. Temporal patterns of uptake, flow and utilization of nitrate, reduced nitrogen and carbon in a leaf of salt-treated castor bean[J]. Journal of Experimental Botany, 1992,43 (3): 393-402.
    [43] Jeschke W D, Kirekby E A, Peuke A D, et al. Effects of P deficiency on assimilation and transport of nitrate and phosphate in intact plants of castor bean (Ricinus communis L.)[J]. Journal of Experimental Botany, 1997, 48 (306) : 75-91.
    [44] Armstrong M, Kirkby E A. Estimation of potassium recirculation in tomato plants by comparison of the rates of potassium and calcium accumulation in the tops with their fluxes in the xylem stream[J]. Plant Physiology, 1979, 63 : 1143-1148.
    [45] Siebrecht S, Tischner R. Changes in the xylem exudates composition of poplar dependent on the nitrogen and potassium supply[J]. Journal of Experimental Botany, 1999, 50 : 1979-1806.
    [46] Jiang F, Li C J, Jeschke W D, et al. Effect of top excision and replacement by 1-naphthylacetic acid on partition and flow of potassium in tobacco plants[J]. Journal of Experimental Botany, 2001, 52(364) : 2143-2150.
    [47] Peng Z P, Li C J. Transport and partitioning of phosphorus in wheat as affected by P withdrawal during flag leaf expansion[J]. Plant and Soil, 2005, 268 (1) : 1-11.
    [48]鲍士旦.土壤农化分析[ M ].北京:中国农业出版社, 1999, 12 : 270-271.
    [49] Fageria N K, Baligar V C. Upland rice genotype evaluation for phosphorus use efficiency[J]. Journal of Plant Nutrition, 1997, 20 (4/5) : 499–509.
    [50]张丽梅,贺立源,李建生,等.不同耐低磷基因型玉米磷营养特性研究[J].中国农业科学, 2005, 38 (1) : 110-115.
    [51]吕福堂,张秀省,张保华,等.不同玉米基因型吸钾和耐低钾能力的研究[J].植物营养与肥料学报, 2005, 11 (4) : 556-559.
    [52]刘晓英,罗远培,石元春.水分胁迫后复水对冬小麦叶面积的激发[J].中国农业科学, 2001, 34 (4) : 422 -428.
    [53]袁丽金,巨晓棠,刘新宇,等.耕层施磷对土壤剖面深层累积NO3-N运移及后效的影响[J].中国农业科学, 2009, 42(11) : 3940-3946.
    [54] Liu Y, Mi G H, Chen F J, et al. Rhizosphere effect and root growth of two maize (Zea mays L.) genotypes with contrasting P efficiency at low P availability[J]. Plant Science, 2004, 167: 217-223.
    [55]华东师范大学生物与植物生理教研室.植物生理学实验指导[M].北京:人民教育出版社, 1989, 66-73.
    [56]蒋廷惠,郑绍建,石锦芹,等.植物吸收动力学研究中的几个问题[J].植物营养与肥料学报, 1995, 1(2) : 11-17.
    [57]芮菊生,杜懋琴,陈海明,等.组织切片技术[M].上海:人们教育出版社, 1980, 3-108.
    [58]李春俭.高级植物营养学[M].北京:中国农业大学出版社, 2008: 178-183.
    [59] Morris R A, Garrily D P. Resource capture and utilization in intercropping: Non-nitrogen nutrients[J]. Field Crop Research, 1993, 34: 319-333.
    [60] Niu J F, Chen F J, Mi G H, et al. Transpiration and nitrogen uptake and flow in two maize (Zea mays L.) inbred lines as affected by nitrogen supply [J]. Annals of Botany, 2007, 99 : 153-160.
    [61]杨美权,刘大会,邵爱娟,等.云贵高原黄花蒿种质资源农艺性状的多样性和聚类分析[J].中国中药杂志, 2010, 35(23) : 3097-3102.
    [62]王林海,王晓伟,詹克慧,等.黄淮麦区部分小麦种质资源农艺性状的聚类分析[J].中国农学通报, 2008, 24 (4) : 186-191.
    [63]王凡,朱云集,郭天财,等.不同基因型小麦硫素利用效率研究[J].麦类作物学报, 2008, 28 (6) : 99-104.
    [64]王树亮,田奇卓,李娜娜,等.不同小麦品种对磷素吸收利用的差异[J].麦类作物学报, 2008, 28 (3) : 476-483.
    [65]吴晓丽,包维楷. 42份冬小麦品种主要农艺性状的聚类分析[J].西南农业学报, 2010, 23 (4) : 1017-1022.
    [66]李志洪,陈丹,曹国军,等.磷水平对不同基因型玉米根系形态和磷吸收动力学的影响[J].吉林农业大学学报, 1995, 17(4) : 40-43.
    [67]王艳,米国华,陈范骏,等.玉米自交系氮效率基因型差异的比较研究[J].应用与环境生物学报, 2002, 8(4) : 361-365.
    [68]陈波浪,盛建东,蒋平安,等.不同棉花品种钾素吸收利用差异的比较[J].植物营养与肥料学报, 2009, 15 (5) : 1154-1159.
    [69]侯静,盛建东,李雪妮,等.棉花苗期钾营养高效品种筛选[J].棉花学报, 2008, 20 (2) : 158-161.
    [70]杨振明,李秋梅,王波,等.耐低钾冬小麦基因型筛选方法的研究[J].土壤学报, 1998, 35 (3) : 376-383.
    [71]张国平,张光恒.小麦钾素利用效率的基因型变异和相关分析[J].浙江农业大学学报, 1996, 22 (3) : 278-283.
    [72]林咸永,孙羲.不同水稻品种对钾的吸收及其对钾肥的反应[J].土壤学报, 1995, 32 (1) : 77-82.
    [73]徐国华,鲍士旦,杨建平,等.不同作物的吸钾能力及其与根系参数的关系[J].南京农业大学学报, 1995, 18(1) : 49-52.
    [74]于海秋,夏乐,郭焕茹,等.玉米耐低钾的根系吸收机制初探[J].安徽农业科学, 2007, 35(33) : 10603-10604.
    [75]严小龙,张福锁.植物营养遗传学[M].北京:中国农业出版社, 1999 : 81-88.
    [76]黄欣,彭克勤,吴碧波,等.低钾条件下不同品种烟苗钾离子吸收动力学比较[J].湖南农业科学, 2008, (2) : 61-63.
    [77]杨铁钊,杨志晓,聂红资,等.富钾基因型烤烟的钾积累及根系生理特性[J].作物学报, 2009, 35(3) : 535-540.
    [78]王永锐,李卫军.耐低钾基因型水稻品种孕穗期剑叶生理及根系活力[J].生态科学, 1997, 16(I) : 67-70.
    [79]刘芷宇.植物的磷素和土壤磷的生物有效性[J].土壤, 1992, (2) : 97-101.
    [80]米国华,陈范骏,春亮,等.玉米氮高效品种的生物学特征[J].植物营养与肥料学报, 2007, 13 (1) : 155-159.
    [81]宋日,吴春胜,马丽艳,等.有机无机肥料配合施用对玉米根系的影响[J].作物学报, 2002,28(3): 393-396.
    [82]刘建祥,杨肖娥,吴良欢,等.不同水稻基因型地上部钾素累积和转运规律的研究[J].中国水稻科学, 2002, 16(2) : 189-192.
    [83]胡承孝,王运华.不同小麦品种钾吸收、分配特性及其钾营养效率的差异[J].华中农业大学学报, 2000, 19(3) : 233-239.
    [84]齐永杰,刘光辉,李群岭,等.不同基因型烤烟体内钾积累分配差异比较研究[J].广西农业科学, 2008, 39 (5) : 632-635.
    [85]胡国松,陈江华,曹志洪,等.田间状况下烤烟养分吸收动力学及其在平衡施肥中的应用[J].中国烟草学报, 1996, 3(2) : 14-21.
    [86]陆景陵主编.植物营养学[M].北京:中国农业大学出版社, 2003 : 66.
    [87]郭丽琢,胡恒觉.植物体内钾循环与再循环的研究进展[J].甘肃农业大学学报, 2001, 36(1) : 1-7.
    [88] Rodríguez D, Goudriaan J. Effects of phosphorus and drought stresses on dry matter and phosphorus allocation in wheat [J]. Journal of Plant Nutrition, 1995, 18(11): 2501-2517.
    [89]袁硕,李春俭,彭正萍,等.磷对不同玉米品种生长、体内磷循环和分配的影响[J].植物营养与肥料学报,2011, 17(2) : 310-316.
    [90] Brouwer R. Functional equilibrium: sense or nonsense[J]. Netherlands Journal of Agricultural Science, 1983, 31: 335-348.
    [91] Humphries E C. Effectsof removal of part of a root systemon subse quent growth of the root and shoot[J]. Annals of Botany, 1968, 22: 251-257.
    [92] Troughton A. The rate of growth and partitioning of assimilates inyoung grass: a mathematical mode[J ]. Annals of Botany, 1977, 41: 553-565.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700