颗粒增强铜基复合材料的爆炸压实和数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒增强铜基复合材料不但具有优异的导电、导热特性,而且还具有较高的强度、硬度和较好的耐磨性、耐热性,目前被用作电阻焊电极、氧枪喷嘴、集成电路引线框架、真空开关触头等。但颗粒增强铜基复合材料的制备工艺复杂、工艺成本较高,导致了材料的价格比较昂贵,影响了材料更广泛的应用。本文提出了一种新的制备工艺,该工艺设备简单、制备成本较低,能够获得优质廉价的颗粒增强铜基复合材料。主要包括三道工序:1)采用机械合金化法制备混合粉末。2)粉末预压后进行氢气还原烧结。3)采用直接爆炸压实方法制备块体材料。其中爆炸压实是整个制备过程中最重要的工序,爆炸压实又称爆炸烧结,是利用炸药爆轰产生的冲击波把金属或非金属粉末压实烧结成密实体的粉末成形工艺。爆炸压实具有高压、高温、瞬态的特点,是制取新型非平衡态材料、高温陶瓷材料等最富有潜力的新工艺。本文从理论、实验、数值模拟三个方面对爆炸压实法制备颗粒增强铜基复合材料进行了研究,主要得出了以下成果:
     1.以一种爆轰产物的近似状态方程为基础,结合爆轰波阵面上的参数关系,得出了一种形式简单的凝聚炸药爆炸产物P-V关系式。利用该式通过非线性拟合得出了JWL方程的六个参数。拟合得到的参数与实验获得的参数相比较,精确度较高,可以满足工程应用。
     2.提出了一种新的制备工艺,分为机械合金化法高能球磨、通氢还原烧结和爆炸压实三道工序。采用该工艺制得了Cu-aAl_2O_3与CuCr两种块体材料。材料的相对密度达到了98%以上,而且具有较高的硬度。通过对比多组实验结果,确定出了合适的工艺参数,即球磨20小时、通氢还原烧结0.5小时、炸药爆压为4GPa。
     3.采用LS-DYNA程序对直接法爆炸压实过程进行了数值模拟,总结了爆轰波及压实体内冲击波的传播规律。成功模拟出了马赫孔的形成过程,并对马赫孔的产生原因进行了详细论述,认为马赫孔的形成主要是因为轴心处的粉末与边缘粉末存在较大轴向速度差,产生了类似于“冲孔”效应的剪切变形,当爆速较高、爆压较大时剪切应力超过了粉末间的剪切强度极限,就会形成马赫孔。
     4.采用有限元法模拟了基体中的圆形孔隙和三角形孔隙的塌缩过程,计算出了射流侵彻速度及斜碰撞速度,总结出在较高的冲击压力下孔隙闭合时会形成爆炸焊接,并对爆炸焊接区域进行了划分。采用SPH无网格方法模拟了颗粒间的孔隙塌缩过程,观察到了射流侵彻现象,并得到了射流侵彻速度。通过对铜铬混合粉末的数值模拟,证明了双密度双硬度粉末爆炸压实前进行机械合金化是十分必要的。
Particle reinforced copper matrix composites have not only excellent electric conductivity and heat conductivity but also high strength and hardness, well abrasion resistance and heat resistance, that have been used as electric resistance welding electrode, oxygen lance nozzle, IC lead frame, vacuum contact, etc. Existing preparation technology of particle reinforced copper matrix composites is very complex and costs very much, which lead to the materials' price is so high that application is limited.
     In this paper, a new preparation technology is proposed, that with simple equipment and low cost. By the new preparation technology, high-quality and low-price particle reinforced copper matrix composites can be obtained. The new preparation technology includes three basic steps: 1) Preparing uniformly mixed powders by mechanical alloy method. 2) Sintering the advance compacted powders in hydrogen atmosphere. 3) Preparing bulk materials by direct explosive compaction method. Thereinto, explosive compaction is the most important process among all the preparation process. Explosive compaction is also known as explosive sintering, and it is a powder forming technology that using shock wave generated by explosion to compact metal or nonmetal powders. Explosive compaction method is noted for its high-pressure, high-temperature and instant property, and it is the greatest potential new technology to prepare new kind of nonequilibrium materials and high-temperature ceramics.
     The research on preparing particle reinforced copper matrix composites by explosive compaction in this paper includes three aspect contents: theory, experiment and numerical simulation. The featured research results include:
     1. A new P-V relationship of condensed explosive's explosion products is obtained which form is very simple. Through the relationship we can nonlinear fit six parameters of JWL equation of state. Comparing fitted parameters with experimental parameters, it is found that fitted parameters are very accurate and can satisfy engineering application.
     2. A new preparation technics is proposed to manufacture particle reinforced copper matrix composites, which includes three processed: mechanical alloy, hydrogen sintering and explosive compaction. Cu-aAl_2O_3 and CuCr bulk materials are obtained by the new preparation technology. The relative density of two kinds of materials exceeds 98%, and their hardness is very high. Some appropriate technology parameters are confirmed, namely ball milling time is 20 hours, sintering time in hydrogen is 0.5 hour and explosion pressure is 4GPa through analyzing many groups experiment results.
     3. Research on numerical simulation of direct explosive compaction method is done by LS-DYNA program. The propagation rules of detonation wave and shock wave in compaction bulk are summarized. Mach hole is observed in numerical simulation and its formation reason is detailedly discussed. A conclusion is obtained that axial direction velocity difference between the powders in axes and edge create shear deformation such as punching hole, while shear stress is higher than shear strength limit of powders, then Mach hole will come into being in compaction bulk.
     4. The collapse process of circle and triangle pores in matrix bulk is simulated by finite element method. The velocity of jet penetration and oblique impact is calculated. Explosive welding will shape under high shock pressure during pores collapse, and explosive welding area is divided into three regions. The pores collapse process among particles is simulated by SPH Meshless method. Jet penetration phenomenon is observed and its velocity is obtained. Through the numerical simulation of CuCr powders, Mechanical alloy before double density and double hardness mixed particles explosive compaction is proved to be essential.
引文
[1] 张定国,赵昌正.金属基复合材料。上海:上海交通大学出版社,1996.
    [2] 于化顺.金属基复合材料及其制备技术.北京:化学工业出版社,2006.
    [3] Clyne T W, Withers P J. An introduction to metal matrix composites. London:Cambridge University Pr.,1996.
    [4] 吴人洁.金属基复合材料的研究现状与展望.金属学报.1997,33(1):78-84.
    [5] 武建军,雷廷权,张运等.弥散强化铜基复合材料制备工艺.粉末冶金技术.1999,17(3):195-200.
    [6] 陆德平,孙宝德,曾卫军等.铜基高强高导电材料的研究进展.机械工程材料.2004,28(9):1-4.
    [7] 张静平,梅炳初,朱教群等.铜基复合材料的研究.稀有金属快报.2006,25(10):1-5.
    [8] Benjamin J S. Dispersion strengthened superalloys by mechanical alloying. Metall. 1970(1): 2943-2951.
    [9] Jena P K, Brocchi E A, Motta M S. In-aitu rotation of Cu-Al_2O_3 nano-scale composites by chemical routes and studies on their microstructure. Materials Science Engineering. 2001, A313:180-185.
    [10] 梁淑华,范志康,胡锐.电弧熔炼法制造CuCr触头材料的组织与性能.特种铸造及有色合金.2004,4(25):25-27.
    [11] 冼爱平.大功率真空开关铜铬触头材料.中国有色金属学报.2001,11(5):731-740.
    [12] 刘利,张金咏,傅正义.TiB_2-Cu体系的自蔓延高温合成及致密化。复合材料学报.2005,22(2):98-102.
    [13] 郑哲敏,朱兆祥.爆炸力学的概况和任务.1977年12月全国爆炸力学学术会议报告.
    [14] 力学词典编辑部.力学词典.北京:中国大百科全书出版社,1990.
    [15] 张凯.爆炸力学及其工程应用进展.现代物理知识.1992,6:15-19.
    [16] 吴成义,张丽英.粉体成形力学.北京:冶金工业出版社,2003.
    [17] Rocca La.J Rev Sci Instr. 1958,29:848.
    [18] Thornton H R, Garrett D R. Sampe Quarterly. 1977,7:39-41.
    [19] 杨让,邵丙璜,李国豪等.金属粉末爆炸烧结的机理.北京钢铁学院学报.1987,9(1):23-28.
    [20] Chiba A. Proceddings of the 2nd international symposium on intense dynamic loading and its effects. Chengdu:Sichuan University Press, 1992.
    [21] 邵丙璜,高举贤,李国豪.金属粉末爆炸烧结界面能量沉积机制.爆炸与冲击.1989,9(1):17-27.
    [22] Herrmann W. Constitutive equation for the dynamic compaction of ductile porous materials. Journal of Applied Physics. 1969,40(6):2490-2499.
    [23] Carroll M M, Holt A C. Suggested modification of the P-a model for porous materials. Journal of Applied Physics. 1972,43(2):759-761.
    [24] Carroll M M, Holt A C. Static and dynamic pore-collapse relations for ductile porous materials. Journal of Applied Physics. 1972,43(4):1626-1635.
    [25] Butcher B M, Carroll M M, Holt A C. Shock-wave compaction of porous aluminum. Journal of Applied Physics. 1974,45(9):3864-3875.
    [26] Boade R R. Compression of porous copper by shock waves. Journal of Applied Physics. 1986,59(6):1962-1967.
    [27] McQueen R G, Marsh S P, Taylor J W. In symposium on high dynamic pressure. IUTAM, Paris, Gordon nd Breach, New York, 1986.
    [28] Al' tshuler L V.Soviet Phys..1965,8,52.
    [29] Mader C L. Report No. LA4381 Los Alamos Scient. Lab.,Los Alamos, NM, 1970.
    [30] Benson D J, Nellis W J. Dynamic compaction of copper powder:computation and experiment. Applied Physics Letter. 1994,65(4): 418-420.
    [31] Petrie M W, Page N W. An equation of state for shock load powders. Journal of Applied Physics. 1991,69 (6):3517-3524.
    [32] Naumann R J. Equation of state for porous metals under strong shock compression. Journal of Applied Physics. 1971,42(12):1945-4953.
    [33] 经福谦.实验物态方程导引.北京:科学出版社,1999.
    [34] 汤文辉,张若棋.物态方程理论及计算概论.长沙:国防科技大学出版社,1999.
    [35] 张岱宁.多孔铁高压物体方程研究:(硕士学位论文).重庆:西南交通大学,2003.
    [36] 孙崇峰.多孔材料在热击波压实下的本构方程.高压物理学报.1997,11(3)234-238.
    [37] 娄燕,王孟君.弥散铜材料的高温本构方程.中南工业大学学报.2004,31(2):30-32.
    [38] 郑坚,王泽平.高应变率下延性多孔介质中孔洞动态演化.固体力学学报.1994,15(3):189-199.
    [39] 刘建秀,李蔚.铜基粉末冶金多孔材料在高应变率下的力学性能及本构关系.机械强度.2003,25(5):499-503.
    [40] Meyers M A, Benson D J, Olevsky E A. Shock consolidation:microstructurally-based analysis and computational moeling. Acta. Mater..1999,4(7):2089-2108.
    [41] Linse V D. In Metallurgical applications of shock-wave and high-strain-rate phenomena. New York:Mancel Dekker Inc, 1956:25-55.
    [42] Wilkins M L, Kusubov A $,Cline. Mechanical Engineering. 1986,52:57-82.
    [43] Morris D G. Bonding processes during the dynamic compaction of metallic powders. Mater. Sci. Engr..1983,57:187-195.
    [44] Lotrih V F, Akashi T, Sawawoka A. In metallurgical applications of shock-wave and high-strain-rate phenomena. New York:Mancel Dekker Inc. 1986:277-292.
    [45] Gourdin W H. Microstructure and deformation in a dynamically compacted copper powder. Mater. Sci. Engr. 1984,67:179-184.
    [46] 王金相.爆炸粉末烧结的细观沉能机制研究:(博士学位论文).大连:大连理工大学,2005.
    [47] 李金平,罗守靖.爆炸烧结CuCr触头材料的性能.中国有色金属学报.2001(11)1:98-101.
    [48] 钟盛文,焦永斌,叶雪均.预热粉体爆炸烧结单相纳米氧化铝陶瓷的研究.无机材料学报.2001,16(3):572-576.
    [49] 敖琪,刘薇,吴建生.爆炸压结Nd-Fe-B永磁体微观结构.稀有金属材料与工程.2005,34(10):1613-1616.
    [50] 李晓杰,张越举,闫鸿浩.纳米ITO粉末爆炸压实及后续烧结工艺研究.材料科学与工艺.2006,14(2):155-158.
    [51] 温金海,黄伯云,吕海波.爆炸烧结TiAlMn合金的微观分析.中国有色金属学报.1993,3(2):72-75.
    [52] 张登霞,马成辉,艾宝仁.铝和铝锂合金的爆炸烧结试验研究.高压物理学报.1990,4(4):201-209.
    [53] Mali V I, Teslenko T S. Sucture and properties of explosively compacted copper-molybdenum. Combustion, Explosion, and Shock Waves. 2002,38(4):473-477.
    [54] 王雷,汤瑞峰,王铁福.爆炸烧结钨铜合金粉的热沉积现象分析.弹道学报.1995,7(1):82-88.
    [55] Kecskes L J, Hall I W. Microstructura] effects in hot-explosively-consolidated W-Tialloys. Journal of Materials Processing Technology. 1999,94:247-260.
    [56] Tarasova L S, Zhereb Y P, Kirko V I. Structure and properties of an amorphous nickel-titanium alloy after explosive compaction. Combustion, Explosion, and Shock Waves. 2001,37(4):486-489.
    [57] Ohashi W, Takenaka K, Kondo T, et al. Applied pressure-dependent anisotropic grain connectivity in shock consolidated MgB_2 samples. Physica C. 2006,444:5-11.
    [58] 李金平,孟松鹤,韩杰才,等.ZrB_2-SiCw超高温陶瓷爆炸压实工艺研究.稀有金属材料与工程.2006,35(2):177-180.
    [59] Chiba A, Hokamoto K, Sugimoto S, et al. Explosive consolidation of Sm-Fe-N and Sm-Fe-N/(Ni, Co) magnetic powders. Journal of Magnetism and Magnetic Materials. 2007,310: 881-883.
    [60] 时党勇,刘永存,徐建华.爆炸力学中的数值模拟技术.工程爆破.2005,11(2):10-14.
    [61] Wilkins M L. Computer simulation of dynamic compaction. Hague, MartiusNijhoff Press. 1982:217-230.
    [62] Reaugh J E. Computer simulations to study the explosive consolidation of powders into rods. Journal Applied Physics. 1987,61(3):962-968.
    [63] Reaugh J E. Computer simulation of the explosive consolidation of powders. In Shock Waves in Condensed Mater. 1987:391-393.
    [64] Williamson R L. Wright R N, Korth G E, et al. Numerical simulation of dynamic consolidation of a SiC fiber-reinforced aluminum composite. Journal Applied Physics. 1989,66(4): 1826-1831.
    [65] Williamson. Parametric studies of dynamic powder consolidation using a particle-levellnumerical model. Journal Applied Physics. 1990,68(3).
    [66] Mamalis A G, Vottea I, Manolakos D. Numerical simulation of explosively compacted superconducting powders. Physica. 2000, C341-348:2433-2434.
    [67] Kumar D R, Kumar R K, Philip P K. Simulation of dynamic compaction of metal powders. Journal of Applied Physics. 1999,85(2):767-775.
    [68] Kang B Y, Ryoo H S, Hwang W, et al. Explosion synthesis of Wi5Si3-Cu intermetallic compound. Materials Science and Engineering. 1999, A270:330-338.
    [69] Mamalis A G, Vottea I N, Manolakos D E. Fabrication of metal/sheathed high-Tc superconducting composites by explosive compaction/cladding: numerical simulation. Materials Science and Engineering. 2002, B90: 254-260.
    [70] Mamalis A G, Vottea I N, Mano]akos D E, et al. Explosive compaction/cladding of YBCO discs:a numerical approach. Journal of Materials Processing Technology. 2005,161: 36-41.
    [71] 张德良.粉末材料爆炸压实数值模拟.力学进展.1994,24(1):37-57.
    [72] 李德元,李维新.爆炸冲击研究中的数值模拟.爆炸与冲击.1984,4(1):89-97.
    [73] 于川,李良忠,黄毅民.含铝炸药爆轰产物JWL状态方程研究.爆炸与冲击.1999,19(3):274-279.
    [74] 孙承纬,卫玉章,周之奎.应用爆轰物理.北京:国防工业出版社,2000.
    [75] Kury J W, et al. Metal acceleration by chemical explosives. 4th Symp On Detonation, 1965.
    [76] 陈朗,冯长根,黄毅民.含铝炸药圆筒试验及爆轰产物JWL状态方程研究.火炸药学报.2001,3:13.
    [77] 恽寿榕.爆炸力学计算方法.北京:北京理工大学出版社,1995.
    [78] 丁刚毅,徐更光.含铝炸药二维冲击起爆的爆轰数值模拟.火炸药学报,1994,4:25-29.
    [79] 江厚满,张若棋.确定JWL状态方程参数的非线性优化方法.弹道学报.1998,10(2):25-28.
    [80] 鲍姆,斯达纽柯维奇,谢赫捷尔.爆炸物理学.众智,译.北京:科学出版社,1964.
    [81] №5,1172,1961.
    [82] 吴雄.混合炸药爆轰参数计算及其方程的建立.私人通讯,1976.
    [83] 邵丙璜,张凯.爆炸焊接原理及其工程应用.大连:大连工学院出版社,1987.
    [84] 张国伟,韩勇,苟瑞君.爆炸作用原理.北京:国防工业出版社,2006.
    [85] 张宝平,张庆明,黄风雷.爆轰物理学.北京:兵器工业出版社,2006.
    [86] Dobratz B M. Crawford P C. LLNL explosives handbook. UCRL, 1985.
    [87] 汤文辉,张若棋.物态方程理论及计算概论.北京:国防科技大学出版社,1999:113-122.
    [88] Nellis W J, Radousky H B, Hamilton D C. Equation-of-State, Shock-Remperature, and Electrical-Conductivity Data of Dense Fluid Nitrogen in the Region of the Dissociative Phase Transition. J Chem Phys, 1991,94(3): 2244-2257.
    [89] SCM Corporation Clidcop. Alloy Direst Sep.,1973.
    [90] 王永朝.纳米Al_2O_3强化铜基ODS20的组织与性能.材料开发与应用.2005,21(3):7-10.
    [91] 彭茂公,亢若谷,张家敏等.高强高导氧化铝弥散强化铜材料中试技术研究.云南冶金.2003,32(增刊):122-127.
    [92] 孙淼,郝斌,刘克明等.原位Al_2O_3颗粒增强铜基复合材料的制备及微观组织.金属热处理(增刊).2006:88-90.
    [93] 李学进.熔铸法制备Al_2O_3/复合材料的研究:(硕士学位论文).西安:西北工业大学,2002.
    [94] 万怡灶,王玉林,成国祥等.冷压烧结Al_2O_3/Cu复合材料热膨胀性能的研究.兵器材料科学与工程.1997,20,5:12-17.
    [95] 万怡灶,王玉林,成国祥等.Al_2O_3铜合金复合材料的磨损特性研究.材料工程.1997,11:6-9.
    [96] 程建奕,汪明朴,李周等.纳米Al_2O_3粒子弥散强化铜合金冷加工及退火行为.稀有金属材料与工程.2004,33(11):1178-1181.
    [97] 宁爱林,申奇志,彭北山等.不同增强相弥散强化铜的导电性.湖南有色金属.2002,18(6):34-36.
    [98] Lee D W, Kim B K. Nanostructured Cu-Al_2O_3 composite produced by thermochemical process for electrode application. Materials Letters. 2004,58:378-383.
    [99] Haiti M A, Melendez A, Woods R, et al. lnfluence of heat treatment on tensile response of an oxide dispersion strengthened copper. Journal of Alloys and Compounds. 1999,290: 290-297.
    [100] Sung-Tag Oh, Mutsun Sando, Tohru Sekino, et al. Processing and properties of copper dispersed alumina matrix nanocomposites. NanoStructured Materials. 1998, 10(2): 267-272.
    [101] Travitzky N A. Microstructure and mechanical properties of alumina/copper composites fabricated by different infiltration techniques. Materials Letters. 1998,36:114-117.
    [102] Benjaming J S. Metal rrans, 1970,1:2943.
    [103] Koch C C, Cavin O B, Mckamey C G, et al. Appl Phys Lett, 1983,43:1017.
    [104] 郭建亭,周兰章,李谷松.纳米金属间化合物NiAl的机械合金化合成及性能.金属学报.1999,35(8):846-850.
    [105] 张洪涛,丁春华,郭永峰,等.机械合金化PM304粉末的烧结特性.稀有金属材料与工程.2007,36(2):335-338.
    [106] 胡连喜,王尔德.机械合金化Cu-5%Cr合金的制备及其组织性能的研究.粉末冶金工业.1999,9(3):7-13.
    [107] 许克强,傅肃嘉.铜铬真空触头的烧结法制造工艺.电工材料.2002,4:3-7.
    [108] 吕大铭,凌贤野,周武平.用热等静压制取铜铬系真空触头材料.粉末冶金工业,1997,7(1):17-22.
    [109] 马凤仓,倪锋,杨涤心.高铬含量铜铬合金的真空熔炼.材料开发与应用,2003,18(1):8-11.
    [110] 冼爱平.大功率真空开关铜铬触头材料.中国有色金属学报,2001,11(5):731-740.
    [111] 梁淑华,范志康,胡锐.电弧熔炼法制造CuCr触头材料的组织与性能.特种铸造及有色合金,2004,4(25):25-27.
    [112] 王永兴,邹积岩.热等离子体技术制造铜铬触头材料.电工电能新技术,1997,1:26-30.
    [113] 李金平,罗守靖,纪松等.爆炸烧结CuCr触头材料的性能.中国有色金属学报.2001,11(1):98-101.
    [114] 李金平.机械合金化CuCr触头材料粉爆炸压实-低温烧结成形的研究:(博士学位论文).哈尔滨:哈尔滨工业大学,2003.
    [115] 时党勇,李裕春,张胜民.基于ALSYS/SL-DYNA8.1进行显示动力分析.北京:清华大学出版社,2005.
    [116] 李裕春,时党勇,赵远.ANSYS10.0/LS-DYNA基础理论与工程实践.北京:中国水利水电出版社,2006.
    [117] 白金泽.LS-DYNA3D理论基础与实例分析.北京:科学出版社,2005.
    [118] 尚晓江,苏建宇.ANSYS/LS-DYNA动力分析方法与工程实例.北京:中国水利水电出版社,2006.
    [119] 邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展.1997,27(1):19-38.
    [120] 张守中.爆炸与冲击动力学.北京:兵器工业出版社,1993.
    [121] Henrych J. The dynamics of explosion and its use. Amsterdan:Elsevier Scientific Publishing Company, 1979.
    [122] Johnson G R, Cook W H.A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proc. 7th Int. Symp. on ballistics, The hague, Netherlands, 1983:541.
    [123] Johnson G R, Cook W H. Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 1985,21(1):31-48.
    [124] Federico A T. Simulation of behavior of composite grid reinforced concrete beams using explicite finite element methods. A thesis for degree of master of science. University of Wisconsin-Madison, 2001.
    [125] Mattias U. Modelling of concrete material behaviour with application to reinforced concrete beams subjected to impact. Weapons and Protection. SE-147 25 Tumba, 2001.
    [126] Stanley P M. LASL shock hugoniot data. USA, 1980.
    [127] 王诚洪,薛鸿陆,陈刚.多孔介质中收聚圆锥冲击波的相互作用的实验研究.爆炸与冲击,1990,10(2):156-162.
    [128] 张德良,王晓林.粉末爆炸烧结材料参数效应数值模拟.爆炸与冲击,1996,16(2):105-110.
    [129] 王金相,李晓杰,闫鸿浩.爆炸粉末烧结微孔隙塌缩沉能分析.高压物理学报,2005,19(2):145-150.
    [130] Sia Nemat Nasser, Tomoo Okinaka, Vitali Nesterenko. Experimental observation and computational simulation of dynamic void collapse in single crystal copper.Matirals Science and Engineering, 1998, A249:22-29.
    [131] Tran L B, Udaykumar. A particle-level set-based sharp interface Cartesian grid method for impact, penetration, and void collapse. Journal of Computational Physics, 2004,193: 469-510.
    [132] Cooper S R, Benson D J, Nesterenko V F.A numerical exploration of the role of void geometry on void collapse and hot spot formation in ductile materials. International Journal of Plasticity, 2000,16:525-540.
    [133] 李晓杰,杨文彬,奚进一,等.双金属爆炸焊接下限.爆破器材,1999,28(3):22-26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700