基于酪蛋白的纳米粒子制备及其应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由两亲性共聚物组成的胶束已经被开发用作水相体系中的疏水药物载体。用合成高分子作为构建药物载体的材料一直是研究的重点。相比合成高分子而言,天然高分子具有许多独特的性质,它们既可以包埋疏水药物,又可以包埋亲水药物,所以天然高分子也可以是构建药物载体的好材料。更值得一提的是,天然高分子有较高的安全性。用天然高分子通过简便易行的绿色化学方法构建药物载体,可以有效地避免合成化学试剂和有机溶剂的使用,这对载体在生物医药工业中的应用非常有利。
     酪蛋白(casein)是牛奶中的主要组成成分,它是一组蛋白的磷酸盐,由四种成分组成:αs1-,αs2-,β-和κ-酪蛋白,这四种成分在牛奶中的质量比约为3:0.8:3:1,它们的分子量在19000-25000Da范围内。这四种酪蛋白都是两亲性的蛋白质,没有确定的结构。在食品工业中,酪蛋白在多个方面具有应用价值,比如乳化,与水的结合,与油脂的结合,以及质构等。这些优点使得酪蛋白可以作为理想的基材来构造纳米载体,用于药物输送系统。
     Maillard反应是一种天然无毒的反应,它在食品的运输、烹饪和储存过程中都有可能发生。Maillard反应的化学原理已被广泛地研究过,今天我们已经知道这个反应的本质是通过多糖的还原性端羟基与蛋白的氨基(包括端氨基和赖氨酸的氨基)之间的反应将蛋白和多糖连接在一起。Maillard反应产物在许多领域都有广泛的应用,但用于药物包埋的却很少。
     本论文的工作主要集中在制备基于酪蛋白的纳米粒子并对其应用性进行研究。我们主要制备了两种纳米粒子。一种是通过Maillard反应制备酪蛋白-葡聚糖接枝共聚物,并通过调节pH值使共聚物自组装形成胶束粒子。该粒子具有疏水性内核,我们用β-胡萝卜素作为模型化合物研究了该粒子对疏水化合物的包埋以及释放性质。另外,由于Maillard反应提高了β-酪蛋白在酸性pH范围内的溶解性,我们也研究了β-酪蛋白-葡聚糖接枝共聚物作为酸性体系乳化剂的性能。另一种粒子是利用球状蛋白的凝胶化性质制备的β-酪蛋白-葡聚糖/溶菌酶纳米粒子。该粒子核的亲水性较强,我们用芘的电荷衍生物以及氯金酸作为模型化合物研究了该粒子对极性化合物的包埋行为。论文中所有的纳米粒子的制备都只使用了酸和碱以及乙醇,没有其它化学试剂和溶剂,是一种绿色化学的方法。具体来说,本论文包括了以下五个部分的工作:
     第一部分是Maillard反应制备酪蛋白-葡聚糖接枝共聚物及其胶束化行为的研究。我们利用Maillard反应中的Amadori重排制备了两种天然大分子-酪蛋白和葡聚糖的接枝共聚物。所制备的酪蛋白-葡聚糖接枝共聚物具有pH敏感的可逆性质:在pH值接近酪蛋白等电点时形成以酪蛋白为核,葡聚糖为壳的胶束;在pH值偏离酪蛋白等电点时,胶束会解离。共聚物形成胶束的驱动力是酪蛋白在等电点时由于净电荷为零发生聚集,而共价接枝的葡聚糖阻止了宏观沉淀的形成导致纳米粒子的生成。酪蛋白-葡聚糖接枝共聚物的胶束具有球状外貌,胶束的尺寸取决于共聚物的接枝度,以及所用葡聚糖的分子量等。该胶束具有较强的疏水性,可以包埋芘这样的疏水化合物。
     第二部分是Maillard反应制备β-酪蛋白-葡聚糖接枝共聚物及其乳化性质的研究。我们利用Maillard反应中的Amadori重排反应制备了β-酪蛋白-葡聚糖接枝共聚物。当介质pH值处于4.0-5.0范围内,即接近β-酪蛋白的等电点时,β-酪蛋白溶解度降低,β-酪蛋白-葡聚糖接枝共聚物可形成胶束。原子力显微镜显示该胶束具有球形外貌。共聚物的接枝度和葡聚糖侧链的长度共同决定了共聚物胶束的尺寸及其可稳定存在的时间。高接枝度的共聚物亲水性较强,以单分子状态存在于溶液中,在pH4.6和8.0都显示出较强的乳化能力。
     第三部分是对酪蛋白-葡聚糖接枝共聚物和β-胡萝卜素在疏水力诱导下的协同组装行为研究。酪蛋白-葡聚糖接枝共聚物在pH7.0的水溶液中以单分子状态存在,而β-胡萝卜素难溶于水。我们通过透析法或者蒸发法,将共聚物/β-胡萝卜素混合液的水/乙醇混合溶剂替换成纯水。在此过程中,酪蛋白和β-胡萝卜素通过疏水相互作用形成的复合物的溶解度降低,同时葡聚糖的溶解度上升,最终形成以酪蛋白和β-胡萝卜素复合物为核,葡聚糖为壳的纳米粒子。在纳米粒子的自组装过程中,酪蛋白-葡聚糖接枝共聚物也同时实现了对β-胡萝卜素的包埋。酪蛋白-葡聚糖接枝共聚物/β-胡萝卜素纳米粒子具有球形外貌,在pH7.0时水合直径约为200nm。该纳米粒子的水溶液具有很高的稳定性,可耐稀释,pH值变化和离子强度变化,可以长时间储存。该纳米粒子也可在干粉状态下保存。包埋在纳米粒子中的β-胡萝卜素可通过胃蛋白酶或胰蛋白酶的水解得到释放。包埋可以提高β-胡萝卜素的抗氧化性,释放后的β-胡萝卜素的反应活性不变。纳米粒子的这些性质使酪蛋白-葡聚糖接枝共聚物可以成为输送低稳定性的疏水性营养物质和药物的载体。
     第四部分是β-酪蛋白和溶菌酶的自组装行为的研究。我们用两种蛋白,线状的β-酪蛋白和球状的溶菌酶,制备了β-酪蛋白/溶菌酶纳米粒子。当β-酪蛋白和溶菌酶摩尔比为0.4时,两种蛋白在pH3.0-12.0范围内可形成多分散性的β-酪蛋白/溶菌酶静电复合物胶束。在80℃加热处理复合物胶束溶液后,溶菌酶产生凝胶化而β-酪蛋白被陷在凝胶中并阻止了凝胶的宏观聚集,从而形成β-酪蛋白/溶菌酶纳米粒子。该纳米粒子具有球形外貌,它的粒径受到制备条件,诸如pH值以及β-酪蛋白与溶菌酶的摩尔比等的影响。在pH10.0制备的纳米粒子表面有较多的β-酪蛋白分子,而在pH5.0制备的纳米粒子表面有较多的溶菌酶分子。该纳米粒子具有两性,当pH值低于或高于其零电位点时分别带净正电荷或净负电荷。纳米粒子在pH5.0和10.0溶液中可稳定存在,并且疏水性相对较强。纳米粒子表面的净电荷在水溶液中起到稳定纳米粒子的作用。
     第五部分是β-酪蛋白-葡聚糖接枝共聚物和溶菌酶的自组装行为及其包埋性质的研究。我们通过Maillard反应将葡聚糖接枝到β-酪蛋白上,然后利用β-酪蛋白与溶菌酶的静电相互作用以及溶菌酶的凝胶化性质,制备了表面带有葡聚糖壳层的纳米粒子。纳米粒子的尺寸受到β-酪蛋白-葡聚糖接枝共聚物接枝度的影响,而纳米粒子的组装效率受到β-酪蛋白与溶菌酶摩尔比的影响。纳米粒子具有球形外貌,粒子核的亲水性较强,粒子的水溶液可在生理pH和离子强度条件下长时间稳定。纳米粒子可以包埋阴离子化合物和金颗粒。
Micelles composed of amphiphilic copolymers have been explored as carriers for hydrophobic drugs in aqueous solution.Biopolymers are an interesting alternative to synthetic polymers because of their potential loading for both hydrophilic and hydrophobic drugs.In particular,fabricating polymeric carries based on biopolymers via green chemistry process is obviously desirable for the biomedical applications.
     Caseins are the predominant components in milk and they are a family of phosphorylated proteins.The four casein constituents,αs1-,αs2-,β-andκ-casein, exist in approximate proportions of 3:0.8:3:1 by weight in cow milk and their molecular weights are 19000-25000 Da.All of the four casein molecules in cow milk are amphiphilic proteins and have no defined structure.In food system,casein has many functions,such as emulsification,water binding,fat binding and texturization. These merits endow casein with ideal matrix to fabricate nano-materials for drug delivery.
     Maillard reaction is a natural,nontoxic reaction which happens during the processing,cooking,and storage of foods.Maillard reaction has been studied extensively which conjugates protein and polysaccharide by linking the reducing end of the polysaccharide to the amines in the protein(terminus and amino groups of lysine).The products of the Maillard reaction have seldom been used for drug delivery although many applications in other fields have been reported.
     This thesis focuses on the preparation of the nanoparticles based on casein via green processes and the characterizations as well as the potential applications of the nanoparticles.Two kinds of particles were prepared.One is micelles self-assembled by casein-graft-dextran copolymer,which was prepared through the Maillard reaction. As the core of the micelles is hydrophobic,β-carotene was used as a hydrophobic model compound to study encapsulation and release properties of the micelles.In addition,the Maillard reaction improves the solubility ofβ-casein in acidic solution. The emulsifying activity ofβ-casein-graft-dextran copolymer in acidic solution was studied.Another kind of particles isβ-casein-graft-dextran/lysozyme nanoparticles produced by gelation of lysozyme.The core of the nanoparticles was somewhat hydrophilic.Two kinds of charged derivatives of pyrene and aurichlorohydric acid were used as polar model compounds to study encapsulation properties of the nanoparticles.This thesis contains following five parts:
     The first part is the study of micellizaion of casein-graft-dextran copolymer.Two natural biomacromolecules,casein and dextran,are used to prepare casein-graft-dextran copolymer through the Amadori rearrangement of the Maillard reaction,a chemical-and solvent-free reaction.The copolymer has a reversible pH-sensitive property:micellization at the pI of casein with a casein core and dextran shell structure and dissociation when pH differs from the pI of casein.The micelles produced at pH 4.6 have a spherical shape and their size is dependent on the grafting degree of the copolymer and the molecular weight of dextran.The micelles are able to encapsulate hydrophobic compounds such as pyrene.
     The second part is the study of acidic solution properties ofβ-casein-graft-dextran copolymer.β-Casein-graft-dextran copolymer was prepared with the Amadori rearrangement of the Maillard reaction.Dynamic light scattering study shows that at pH range 4.0-5.0 where is close to the isoelectric point ofβ-casein,the copolymers form micelles which are spherical verified by atomic force microscopy imaging.The size and existent time of the micelles depend on the graft degree and the length of dextran side chains of the copolymers.The copolymers with higher hydrophilicity dissolved in molecular state show a better emulsifying ability at pH 4.6 and 8.0.
     The third part is the study of simultaneous nanoparticle formation and encapsulation driven by hydrophobic interaction of casein-graft-dextran andβ-carotene. Casein-graft-dextran copolymer is soluble in pH 7.0 aqueous solution in molecular state whereasβ-carotene is extremely insoluble.By the method of dialysis or evaporation then dispersing in water,50%ethanol solvent of the copolymer andβ-carotene mixture was changed to 100%aqueous solvent.During this process,the solubility of hydrophobic complex of casein andβ-carotene decreases whereas the solubility of dextran increases gradually,forming the particles with casein andβ-carotene core and dextran shell.The particles have spherical shape and their hydrodynamic diameter is about 200 nm at pH 7.0 solution.The particles can be stored in dried form.The aqueous dispersion of the particles is stable against dilution, pH change,ionic strength change,FeCl_3 oxidation,and long time storage.The encapsulatedβ-carotene can be released by pepsin or trypsin hydrolysis.These characters of the particles provide a possibility for practical applications of the particles to deliver unstable and hydrophobic nutrients and drugs.
     The fourth part is the study of self-assembly ofβ-casein and lysozyme.Two proteins,linearβ-casein and globular lysozyme,were used to fabricate nanoparticles using a green process.The two proteins formed polydisperse electrostatic complex micelles in the pH range of 3.0-12.0 at the molar ratio ofβ-casein to lysozyme 0.4.β-Casein/lysozyme nanoparticles formed after heating the micelle solution.After a heat treatment at 80℃which is above the denaturation temperature of lysozyme,lysozyme gelated andβ-casein was trapped in the nanoparticles.The nanoparticles have spherical shape and their sizes depend on the pH of the heat treatment,and the molar ratio ofβ-casein to lysozyme.There are moreβ-casein molecules located on the surface for the nanoparticles produced at pH 10.0,whereas more lysozyme on the surface for the nanoparticles produced at pH 5.0.The nanoparticles display amphoteric property:they carry net positive charges and negative charges at pH lower and higher than their zeroζ-potential,respectively.The nanoparticles are stable and relatively hydrophobic at pH around 5 and 10.The net charges on the surface stabilize the nanoparticles in the aqueous solution.
     The fifth part is the study of the encapsulation properties of nanoparticles selfassembled byβ-casein-graft-dextran copolymer and lysozyme.Dextran was grafted ontoβ-casein through the Maillard reaction and the nanoparticles that have dextran shell were prepared based on the interaction between lysozyme andβ-casein and gelation of lysozyme.The nanoparticle size is influenced by graft degree ofβ-casein-graft-dextran copolymer and the efficiency of the nanoparticle formation is influenced by molar ratio ofβ-casein to lysozyme.The nanoparticles have spherical shape and a somewhat hydrophilic core.The nanoparticle solution is stable against pH change, ionic strength change and long time storage.The nanoparticle can encapsulate anionic compounds and gold particles.
引文
1.Eigel,W.N.;Butler,J.E.;Emstrom,C.A.;Farrell Jnr,H.M.;Harwalkar,V.R.;Jennes,R.;Whitney,R.M.L.,Nomenclature of Proteins of Cow's Milk:Fifth Revision.Journal of Dairy Science 1984,67,1599-1631.
    2.Swaisgood,H.E.,Chemistry of Caseins.In Advanced Dairy Chemistry-1;Proteins,Fox,P.F.,Ed.Elsevier Applied Science:London,1992;pp 63-110.
    3.王世润,酪蛋白的主要组成及其分离技术.中国乳品工业1991,19,(6),265-269.
    4.张建忠;郦一心,酪蛋白和酪蛋白制品的开发.中国乳品工业1998,26,(6),31-32.
    5.李晓晖,牛乳中酪蛋白的结构特性及其应用.食品工业2002,1,29-31.
    6.Wong,D.W.S.;Camirand,W.M.;Pavlath,A.E.,Structures and functionalities of milk proteins.Critical Reviews in Food Science and Nutrition 1996,36,(8),807-844.
    7.Holt,C.;de Kruif,C.G.;Tuinier,R.;Timmins,P.A.,Substructure of bovine casein micelles by small-angle X-ray and neutron scattering.Colloids and Surfaces A-Physicochemical and Engineering Aspects 2003,213,(2-3),275-284.
    8.Aoki,T.;Uehara,T.;Yonemasu,A.;ElDin,M.Z.,Response surface analyses of the effects of calcium and phosphate on the formation and properties of casein micelles in artificial micelle systems.Journal of Agricultural and Food Chemistry 1996,44,(5),1230-1234.
    9.Lee,S.Y.;Morr,C.V.;Ha,E.Y.W.,Structural and functional-properties of caseinate and whey-protein isolate as affected by temperature and pH.Journal of Food Science 1992,57,(5),1210-1213.
    10.Jahaniaval,F.;Kakuda,Y.;Abraham,V.;Marcone,M.F.,Soluble protein fractions from pH and heat treated sodium caseinate:physicochemical and functional properties.Food Research International 2000,33,(8),637-647.
    11.Horne,D.S.,Casein structure,self-assembly and gelation.Current Opinion in Colloid & Interface Science 2002,7,(5-6),456-461.
    12.Pieter,W.;Robert,J.,Dairy Chemistry and Physics.Wiley Interscience Publication:New York,1984;pp 229-233.
    13.Schmidt,D.G.;Payens,T.A.J.,Evaluation of positive and negative contributions to the second virial coefficient of some milk proteins.Journal of Colloid and Interface Science 1972,39,(3),655-662.
    14.de Kruif,C.G.;Grinberg,V.Y.,Micellisation of beta-casein.Colloids and Surfaces A-Physicochemical and Engineering Aspects 2002,210,(2-3),183-190.
    15.Tai,M.S.;Kegeles,G.,A micelle model for the sedimentation behavior of bovine beta-casein.Biophysical Chemistry 1984,20,(1-2),81-87.
    16.Leclerc,E.;Calmettes,P.,Structure of Beta-casein Micelles.Physica B 1997,241,1141-1143.
    17.Leclerc,E.;Calmettes,P.,Interactions in micellar solutions of beta-casein.Physica B 1997,234,207-209.
    18.巨知勇,牛奶蛋白种类及变异性.生命的化学1989,9,(5),21-22.
    19.Mcmahon,D.J.;Mcmanus,W.R.,Rethinking casein structure using electron microscopy.Journal of Dairy Science 1998,81,2985-2993.
    20.Horne,D.S.,Casein interactions:casting light on the black Boxes,the structure in dairy products.International Dairy Journal 1998,8,(3),171-177.
    21.Horne,D.S.;Leaver,J.,Milk-Proteins On Surfaces.Food Hydrocolloids 1995,9,(2),91-95.
    22.Vasbinder,A.J.;van Mil,P.;Bot,A.;de Kruif,K.G.,Acid-induced gelation of heat-treated milk studied by diffusing wave spectroscopy.Colloids and Surfaces B-Biointerfaces 2001,21,(1-3),245-250.
    23.Alexander,M.;Dalgleish,D.G.,Application of transmission diffusing wave spectroscopy to the study of gelation of milk by acidification and rennet.Colloids and Surfaces B-Biointerfaces 2004,38,(1-2),83-90.
    24.deKruif,K.G.;Hoffmann,M.A.M.;vanMarle,M.E.;vanMil,P.;Roefs,S.;Verheul,M.;Zoon,N.,Gelation of proteins from milk.Faraday Discussions 1995,(101),185-200.
    25.deKruif,C.G.;Roefs,S.,Skim milk acidification at low temperatures a model for the stability of casein micelles.Netherlands Milk and Dairy Journal 1996,50,(2),113-120.
    26.Kinsella,J.E.,Milk Proteins:physicochemical and functional properties.CRC Critical Reviews in Food Science and Nutrition 1984,21,(3),197-262.
    27. Southward, C. R., Uses of casein and caseinates. In Developments in dairy chemistry-4. Functional milk proteins, Fox, P. F., Ed. Elsevier Applied Science: London 1989; pp 173-244.
    28. Mulvihill, D. M., Chemistry of Caseins. In Advanced dairy chemistry-1: Proteins, Fox, P. F., Ed. Elsevier Applied Science: London, 1992; pp 369-404.
    29. Vanboekel, M. A. J. S.; Weerens, C. N. J. M.; Holstra, A.; Scheidtweiler, C. E.; Alink, G. M., Antimutagenic effects of casein and its digestion products. Food and Chemical Toxicology 1993, 31, (10), 731-737.
    30. Hosoda, M.; Hashimoto, H.; Morita, H.; Chiba, M.; Hosona, A., Antimutagenicity of milk cultured with lactic-acid bacteria against N-methyl-N'-nitro-N-nitrosoguanidine. Journal of Dairy Science 1992, 75, (4), 976-981.
    31. Hosono, A.; Kashina, T.; Kada, T., Antimutagenic properties of lactic acid-cultured milk on chemical and fecal mutagens. Journal of Dairy Science 1986, 69, (9), 2237-2242.
    32. Berg, H. E.; Vanboekel, M. A. J. S.; Jongen, W. M. F., Heating milk - a study on mutagenicity. Journal of Food Science 1990, 55, (4), 1000-1003.
    33. Jongen, W. M. F.; Vanboekel, M. A. J. S.; Vanbroekhoven, L. W., Inhibitory effect of cheese and some food constituents on mutagenicity generated in vicia - faba after treatment with nitrite. Food and Chemical Toxicology 1987, 25, (2), 141-145.
    34. Mcintosh, G. H.; Regester, G. O.; Leleu, R. K.; Royle, P. J.; Smithers, G. W., Dairy proteins protect against dimethylhydrazine-induced intestinal cancers in rats. Journal of nutrition 1995, 125, (4), 809-816.
    35. Nutter, R. L.; kettering, J. D.; Aprecio, R. M.; Weeks, D. A.; Gridley, D. S., Effects of dietary-fat and protein on dmhinduced tumor-development and immune-responses. Nutrition and Cancer-an International Journal 1990, 13, (3), 141-152.
    36. Arbman, G.; Axelson, O.; Ericssonbegodzki, A. B.; Fredriksson, M.; Nilsson, E.; Sjodahl, R., Cereal fiber, calcium, and colorectal-cancer. Cancer 1992, 69, (8), 2042-2048.
    37. Knepp, W. A.; Jayakrishnan, A.; Quigg, J. M; Sitren, H. S.; Bagnall, J. J.; Goldberg, E. P., Synthesis, properties, and intratumoral evaluation of mitoxantrone-loaded casein microspheres in Lewis lung carcinoma. Jouranl of Pharmacy and Pharmacology 1993, 45, (10), 887-891.
    38.Chen,Y.;Willmott,N.;Anderson,J.;Florence,A.T.,Comparison of albumin and casein microspheres as a carrier for doxorubicin.Jouranl of Pharmacy and Pharmacology 1987,39,(12),978-985.
    39.Willmott,N.;Chen,Y.;Goldberg,J.;Mcardle,C.;Florrence,A.T.,Biodegradation rate of embolized protein microspheres in lung,liver and kidney of rats.Jouranl of Pharmacy and Pharmacology 1989,41,(7),433-438.
    40.Latha,M.S.;Jayakrishnan,A.,A new method for the synthesis of smooth,round,hydrophilic protein microspheres usinglow concentrations of polymeric dispersing agents.Journal of microencapsulation 1995,12,(1),7-12.
    41.Bayomi,M.A.;Al-Suwayeh,S.A.;Elhelw,A.M.;Mesnad,A.F.,Preparation of casein-chitosan micropheres containing diltiazem hydrochloride by an aqueous coacerration technique.Pharm Acta Helv 1998,73,(4),187-192.
    42.Latha,M.S.;Lal,A.Y.;Kumary,T.V.;Sreekumar,R.;Jayakishnan,A.,Progesterone release from glutaraldehyde cross-linked casein microspheres:In vitro studies and in vivo response in rabbits.Contraception 2000,61,(5),329-334.
    43.卢昕;周莉;何品刚;方禹之,酪蛋白作载体的葡萄糖生物传感器的研究.华东师范大学学报(自然科学版)1996,4,63-67.
    44.庞广昌;陈庆森,生物活性肽—酪蛋白磷酸肽(CPPs)的研究、应用及展望.食品科学1999,6,25-29.
    45.张源淑;陈伟华;邵思湘,用HPLC测定酪蛋白酶解产物中的β-Casomorphin-7.中国乳品工业1999,1,37-38.
    46.Meisel,H.,Biochemical properties of regulatory peptides derived from milk proteins.Biopolymers 1997,43,(2),119-128.
    47.Meisel,H.,Sioactive peptides encrypted in milk proteins:proteolytic activation and thropho-functional properties.Antanie Van Leeuwenhoek International Journal of General and Molecular Microbiolog 1999,76,(1),207-215.
    48.Brantl,V.;Teschemacher,T.;Henschen,A.;LOTTSPEICH,F.,Novel opioid peptides derived from casein(beta-Casomorphin) 1:Isolation from bovine casein.Hoppe-Seylers Zeitschift Fur Physiologische Chemie 1979,360,(9),1211-1216.
    49.Yoshikawa,M.Y.;Tani,F.;Ashikaga,T.;Yoshimura,T.;Chiba,H.,Purification and characterization of an opioid antagonist from a peptic digest of bovine kappacasein.Agricultural and Biological Chemistry 1986,50,(11),2951-2954.
    50.Chiba,H.;Tani,F.;Yoshikawa,M.,Opioid antagonist peptides derived from Kappa-casein.Jouranl of Dairy Research 1989,56,(3),363-366.
    51.杨曜中;欧伶,酪蛋白磷酸肤的制备及性质.华东理工大学学报1999,25,(6),574-577.
    52.汪学荣;阚建全;陈宗道;赵国华,酪蛋白磷酸肽(CPPs)研究进展.粮食与油脂2003,3,44-46.
    53.Schlimme,E.;Meisel,H.,Bioactive peptides derived front milk proteins-Structural,Physiological and analytical aspects.Nahrung-Food 1995,39,(1),1-20.
    54.Maruyama,S.;Mitachi,H.;Tanaka,H.;Tomizuka,N.;Suzuki,H.,Angiotensin I-converting enzyme-inhibitors derived from an enzymatic hydrolysae of casein.4.Studies on the active-site and antihypertensive activity of angiotension I-inhibitors derived from casein.Agricultural and Biological Chemistry 1987,51,(6),1581-1586.
    55.Jolles,P.;Loucheuxlefebvre,M.H.;Henschen,A.,Structural relatedness of kappa -casein and fibrinogen gamma-chain.Jouranl of Molecular Evolution 1978,11,(4),271-277.
    56.Chabance,B.;Qian,Z.Y.;Miglioresamour,D.;Jolles,P.;Fiat,A.M.,Binding of the bovine caseinoglycopeptide to the platelet membrane giycoprotein GPIb alpha.Biochemistry and Molecular Biology International 1997,42,(1),77-84.
    57.Fiat,A.M.;Jolles,P.,Casein of various origins and biologically active casein peptides and oligosaccharides:structural and physiological aspects.Molecular and Cellular Biochemistry 1989,87,(1),5-30.
    58.Jones,E.M.;Smart,A.;Bloomberg,G.;Burgess,L.;Millar,M.R.,Lactoferricin,a new antimicrobial peptide.Journal of Applied Bacteriology 1994,77,(2),208-214.
    59.丁海燕,国内外皮革光亮剂的发展及现状.皮革化工1999,16,(4),20-22.
    60.Dong,Q.Z.;Hsieh,Y.L.,Acrylonitrile graft copolymerization of casein proteins for enhanced solubility and thermal properities.Journal of Applied Polymer Science 2000,77,(11),2543-2551.
    61.戴红;张宗才;林波;穆畅道,酪素的改性及改性产品的性能.皮革科学与工程1998,8,(3),47-51.
    62.徐卫国;杨文堂;王新,羟甲基丙烯酸树脂改性酪蛋白皮革顶涂剂合成与应用的探讨.皮革化工1997,2,(2),14-17.
    63.王世泰;张庆思;李洪宝,羧基丁苯-聚氨酯-干酪蛋白复合胶粘剂及其在涂布纸中的应用.中国胶粘剂2000,9,(2),19-21.
    64.胡志斌;高晓峰,涂布化学品分类及其应用.浙江造纸2001,3,39-41.
    65.Muller,L.L.,Manufacture of casein,caseinates and co-precipitates.In Developments in dairy chemis-1:Proteins,Fox,P.F.,Ed.Elsevier Applied Science:London,1982;pp 315-337.
    66.Fahnestock,S.R.;Steinbuchel,A.,生物高分子.化学工业出版社:北京,2005;pp 61-62.
    67.杨旭红,牛奶纤维Chinon的性能与特征.丝绸1999,11,39-41.
    68.杨建慧,牛奶纤维一21世纪的生态纤维材料.四川丝绸2001,4,41-42.
    69.牛犇;梁宁;胡先望;韩冲,酪素塑料合成研究.化学世界2002,6,298-333.
    70.酪素纽扣.国外塑料2003,21,(3),36-37.
    71.Whitaker,J.R.,Enzymatic modification of proteins applicable to foods.In Food proteins:Improvement through chemical and enzymatic modifications.Advances in chemistry series 160,Feeney,R.E.;R.,W.J.,Eds.American Chemical Society:Washington DC,1977;pp 95-155.
    72.Fox,P.F.;Morrissey,P.A.;Mulvihill,D.M.,Chemical and enzymatic modification of food proteins.In Developments in food proteins-1,Hudson,B.J.F.,Ed.Applied Science:London,1982;pp 1-60.
    73.沈同;王镜岩,生物化学.高等教育出版社:北京,1998,1-491.
    74.许永红,蛋白质酶法水解物苦味的控制.食品工业科技1997,3,1-3.
    75.Chobert,J.I.M.;Bertrand-Hart,C.;Nicolas,M.G.,Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin.Journal of Agricultural and Food Chemistry 1988,36,(5),883-892.
    76.Adler-Nissen,J.,Enzymatic-hydrolysis of proteins for increased solubility.Agricultural and food Chemistry 1976,24,(6),1090-1093.
    77.Slattery,H.;Fitzgerald,R.J.,Functional properties and bitterness of sodium caseinate hydrolysates prepared with a bacillus proteinase.Journal of Food Science 1998,63,(3),418-422.
    78.Lee,S.W.;Shimizu,M.;Kaminogawa,S.;Yamauchi,K.,Emulsifying properties of peptides obtained from the hydrolyzates of β-casein.Agricultural and Biological Chemistry 1987,51,(1),161-166.
    79.Gunther,R.C.,Chemistry and characteristics of enzyme-modified whipping proteins.Journal of American Oil Chemists Socie 1979,56,(3),345-349.
    80.Chobert,J.M.;Sitohy,M.Z.;Whitaker,J.R.,Solubility and emulsifying properties of caseins modified enzymatically by staphylococcus-aureus v8 protease.Agricultural and food Chemistry 1988,36,(1),220-224.
    81.李继;余学军;徐丹;鲁郑全;王文新,聚硅氧烷和己内酰胺双改性酪素涂饰剂的研制.皮革化工1998,15,(6),19-20.
    82.曾庆冰;许家瑞;符若文,蛋白质分离色谱填料及其特性.功能高分子学报2000,13,(3),343-48.
    83.张梅;周瑞宝;米宏伟;周平,醇法大豆浓缩蛋白物理改性研究.粮食与油脂2003,8,3-5.
    84.魏世林;李艳英;刘镇华,聚氨酯改性酪素的研究.皮革学与工程1999,9,(1),1-8.
    85.Mohan,D.;Radhakrishnan,G.;Nagabhushanam,T.,Synthesis of casein-gpoly(butyl acrylate).Journal of Applied Polymer Science 1980,25,(8),1799-1806.
    86.Mohan,D.;Radhakrishnan,G.;Rajadurai,S.,Synthesis of casein-g-poly(N-butyl methacrylate).Journal of Macromolecular Science-Chemistry 1985,A22,(1),75-83.
    87.Mohan,D.;Radhakrishnan,G.;Rajadurai,S.,Synthesis of casein-g-poly(methyl acrylate).Journal of Macromolecular Science-Chemistry 1983,A20,(2),201-212.
    88.Mohan,D.;Radhakrishnan,G.;Rajadurai,S.,Synthesis of casein-g-poly(methyl acrylate).2.Journal of Applied Polymer Science 1990,39,(7),1507-1508.
    89.Mohan,D.;Radhakrishnan,G.;Rajadurai,S.,Synthesis of casein-g-poly(vinyl acetate).Makromolekulare Chemie-Macromolecular Chemistry and Physics 1982,183,(7),1629-1667.
    90.Mohan,D.;Radhakrishnan,G.;Rajadurai,S.,Synthesis of casein-g-poly(vinyl acetate).2.Journal of Polymer Science Part A-Polymer Chemistry 1983,21,(11),3041-3053.
    91.Somanathan,N.;Sanjeevi,R.;Reddy,C.R.;Radhakrishnan,N.,Graft copolymerization of casein with acrylonitrile and normal-butyl methacrylate.European Polymer Journal 1987,23,(6),489-492.
    92.Somanathan,N.;Jeevan,R.G.;Sanjeevi,R.,Synthesis of casein graft poly(acrylonitrile).Polymer Journal 1993,25,(9),939-946.
    93.Liu,Y.H.;Zhang,Y.Z.;Liu,Z.H.;Deng,K.L.,Graft copolymerization of butyl acrylate onto casein initiated by potassium diperiodatonickelate(Ⅳ) in alkaline medium.European Polymer Journal 2002,38,(8),1619-1625.
    94.Liu,Y.H.;Zhou,W.,Q.;Bai,L.B.;Zhao,N.;Liu,Y.W.,Graft copolymerization of styrene onto casein initiated by potassium diperiodatonickelate (Ⅳ) in alkaline medium.Journal of Applied Polymer Science 2006,100,(5),4247-4251.
    95.Dong,Q.Z.;Gu,L.X.,Synthesis of AN-g-casein copolymer in concentrated aqueous solution of sodium thiocyanate and AN-g-casein fiber's structure and property.European Polymer Journal 2002,38,(3),511-519.
    96.Li,P.;Liu,J.H.;Wang,Q.;Wu,C.,Copper-mediated graft copolymerizaiton of methyl methacrylate onto casein.Macromolecular Symposia 2000,151,(605-610).
    97.Li,P.;Zhu,J.M.;Sunintaboon,P.;Harris,F.W.,New route to amphiphilic coreshell polymer nanospheres:Graft copolymerization of methyl methacrylate from water-soluble polymer chains containing amino groups.Langmuir 2002,18,(22),8641-8646.
    98.Li,P.;Zhu,J.M.;Sunintaboon,P.;Harris,F.W.,Preparation of latexes with poly(methyl methacrylate) cores and hydrophilic polymer shells containing amino groups.Journal of Dispersion Science and Technology 2003,24,(3-4),607-613.
    99.Zhu,J.M.;Li,P.,Synthesis and characterization of poly(methyl methacrylate)/casein nanoparticles with a well-defined core-shell structure.Journal of Polymer Science Part A-Polymer Chemistry 2003,41,(21),3346-3353.
    100.王逸君;苏慧香;毛培良,酪素蛋白接枝丙烯腈纤维的结构与性能.金山油化纤1998,4,4-7.
    101.Somanathan,N.;Sanjeevi,R.,Effect of temperature on the mechanical properties of'casein-g-poly(acrylonitrile) films.European Polymer Journal 1994,30,(12),1425-1430.
    102.宋杏茹;刘盈海;刘卫红;刘春艳;任改平,Ag3+引发丙烯酸甲酯与酪素接枝共聚的研究.高分子材料科学与工程1999,15,(2),162-164.
    103.Imoto,M.;Ouchi,T.,Radical Polymerization of vinyl monomers by hydrophilic macromolecules.1.Uncatalyzed polymerization in the presence of copper(Ⅱ) ions.Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics 1982,C22,(2),261-302.
    104.Imoto,M.;Ouchi,T.,Radical Polymerization of vinyl monomers by hydrophilic macromolecules(Ⅱ):Uncatalyzed polymerization in the presence of copper(Ⅱ) ions.Journal of Macromolecular Science-Reviews in Macromolecular Chemistry and Physics 1983,C23,(2),247-316.
    105.Maillard,L.C.,The action of amino acids on sugar;The formation of melanoidin by a methodic route.Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 1912,154,66-68.
    106.Fayle,S.E.;Gerrard,J.A.,The Maillard reaction Cambridge The Royal Society of Chemistry publisher.The Maillard reaction,The Royal Society of Chemistry:Cambridge 2002,1-3.
    107.王延平;赵谋明;彭志英;马志玲,美拉德反应产物研究进展.食品科学1999,1.15-19.
    108.Hodge,J.E.,Dehydrated foods,chemistry of browning reactions in model systems Journal of Agricultural and Food Chemistry 1953,1,(15),928-943.
    109.Mottram,D.S.,Flavor formation meat and meat products:a review.Food Chemistry 1998,62,(4),415-424.
    110.宁正祥,食品生物化学.华南理工大学出版社:广州,1995;p 293-295.
    111.付莉;李铁刚,简述美拉德反应.食品科技2006,12,9-11.
    112.阚建全,食品化学.中国农业大学出版社:北京,2002;p1-375.
    113.Westphal,G.;Kroh,L.,On the mechanism of the early phase of the Maillard reaction.1.Influence of the structure of the carbohydrate and the amino-acid on the formation of the N-glycosid.Nahrung-Food 1985,29,(8),757-764.
    114.Kwak,E.J.;Lim,S.I.,The effect of sugar,amino acid,metal ion,and NaCl on model Maillard reaction under pH control.Amino Acids 2004,27,(1),85-90.
    115.Charissou,A.;Ait-Ameur,L.;Birlouez-Aragon,I.,Kinetics of formation of three indicators of the maillard reaction in model cookies:Influence of baking temperature and type of suga.Journal of Agricultrural and Food Chemistry 2007,55,(11),4532-4539.
    116.Westphal,G.;Bochow,C.;Kroh,L.,Investigations of the Maillard reaction.13.Influence of the constitution of the amido-acid on the course of the Maillard reaction.Nahrung-Food 1985,29,(1),69-74.
    117.Renn,P.T.;Sathe,S.K.,Effects of pH,temperature,and reactant molar ratio on L-leucine and D-glucose Maillard browning reaction in an aqueous system.Journal of Agricultural and Food Chemistry 1997,45,(10),3782-3787.
    118.Brands,C.M.J.;van Boekel,M.,Kinetic modeling of reactions in heated monosaccharide-casein systems.Journal of Agricultural and Food Chemistry 2002,50,(23),6725-6739.
    119.Tressl,R.;Nittka,C.;Kersten,E.;Rewicki,D.,Formation of isoleucine-specific Maillard products from[1-C-13]-D-glucose and[1-C-13]-D-gructose.Journal of Agricultural and Food Chemistry 1995,43,(5),1163-1169.
    120.Ajandouz,E.H.;Desseaux,V.;Tazi,S.;Puigserver,A.,Effects of temperature and pH on the kinetics of caramelisation,protein cross-linking and Maillard reactions in aqueous model systems.Food Chemistry 2008,107,(3),1244-1252.
    121.Lu,C.Y.;Hao,Z.G.;Payne,R.;Ho,C.T.,Effects of water content on volatile generation and peptide degradation in the Maillard reaction of glycine,diglycine,and triglycine.Journal of Agricultural and Food Chemistry 2005,53,(16),6443-6447.
    122.Lane,M.J.;Nursten,H.,The variety of odors produced in Maillard model systems and how they are influenced by reaction conditions.In The Maillard reaction in foods and nutrition,American Chemical Society:Washington DC,1983;pp 141-158.
    123.Ames,J.M.;Guy,R.C.E.;Kipping,G.J.,Effect of pH,temperature,and moisture on the formation of volatile compounds in glycine/glucose model systems Journal of Agricultural and Food Chemistry 2001,49,(9),4315-4323.
    124.Lu,G.Y.;Tong,C.H.;Peterson,B.I.;Ho,C.T.,Effect of water content and amino acids on Maillard browning kinetics in propylene glycol based model systems during microwave heating.Flavor Technology 1995,610,40-48.
    125.Antony,S.M.;Han,I.Y.;Rieck,J.R.;Dawson,P.L.,Antioxidative effect of Maillard reaction products formed from honey at different reaction times.Journal of Agricultural and Food Chemistry 2000,48,(9),3985-3989.
    126.Powell,R.C.T.;Spark,A.A.,Effects of zirconium and aluminum compounds and pH on Maillard reaction.Journal of the Science of Food and Agriculture 1971,22,(11),596-&.
    127.肖怀秋;李玉珍;林亲录,美拉德反应及其在食品风味中的应用研究.中国食品添加剂2005,2,27-30.
    128.Scaman,C.;Nakai,S.;Aminlari,M.,Effect of pH,temperature and sodium bisulfite or cysteine on the level of Maillard-based conjugation of lysozyme with dextran,galactomannan and mannan.Food Chemistry 2006,99,(2),368-380.
    129.Hill,V.M.;Ledward,D.A.;Ames,J.M.,Influence of high hydrostatic pressure and pH on the rate of maillard browning in a glucose-lysine system.Journal of Agricultural and Food Chemistry 1996,44,(2),594-598.
    130. Ferretti, A.; Flanagan, V. P.; Ruth, J. M., Nonenzymatic browning in a lactose-casein model system. Journal of Agricultural and Food Chemistry 1970, 18, (1), 13-18.
    131. Parks, O. W.; Keeney, M.; Schwartz, D. P., Carbonyl compounds associated with off-flavor in spontaneously oxidized milk. Journal of Dairy Science 1963, 46, (4), 295-&.
    132. Ferretti, A.; Flanagan, V. P., Lactose-casein (Maillard) browing system-volatile components. Journal of Agricultural and Food Chemistry 1971,19, (2), 245-249.
    133. O'Sullivan, M. M.; Singh, H.; Munro, P. A.; Mulvihill, D. M., Influence of drier inlet temperature during pilot-scale manufacture of rennet casein on the hydration behaviour of the rennet casein in disodium orthophosphate solution. International Journal of Dairy Technology 2002, 55, (4), 182-193.
    134. O'Sullivan, M. M.; Singh, H.; Munro, P. A.; Mulvihill, D. M., The effect of cooking and washing temperature during pilot-scale rennet casein manufacture on casein hydration characteristics in disodium orthophosphate solution. International Journal of Dairy Technology 2002, 55, (1), 18-26.
    135. Adams, A.; De Kjmpe, N.; van Boekel, M. A. J. S., Modification of casein by the lipid oxidation product malondialdehyde. Journal of Agricultural and Food Chemistry 2008,56,(5), 1713-1719.
    136. Brands, C. M. J.; vanBoekel, M. A. J. S., Kinetic modelling of reactions in heated disaccharide-casein systems. Food Chemistry 2003, 83, (1), 13-26.
    137. Steffan, W.; Balzer, H. H.; Lippert, F.; Sambor, B. C.; Bradbury, A. G. W.; Henle, T., Characterization of casein lactosylation by capillary electrophoresis and mass spectrometry. European Food Research and Technology 2006, 222, (3-4), 467-471.
    138. Brands, C. M. J.; van Boekel, M., Reactions of monosaccharides during heating of sugar-casein systems: Building of a reaction network model. Journal of Agricultural and Food Chemistry 2001,49, (10), 4667-4675.
    139. Morales, F. J.; van Boekel, M. A. J. S., A study on advanced Maillard reaction in heated casein/sugar solutions: Colour formation. International Dairy Journal 1998, 8, (10-11), 907-915.
    140. Morales, F. J.; Van Boekel, M. A. J. S., A study on advanced Maillard reaction in heated casein/sugar solutions: Fluorescence accumulation. International Dairy Journal 1997, 7, (11), 675-683.
    141. Brands, C. M. J.; Wedzicha, B. L.; van Boekel, M. A. J. S., The use of radiolabelled sugar to estimate the extinction coefficient of melanoidins formed in heated sugar-casein systems. Elsevier Science BV: Amsterdam, 2002; Vol. 1245, p 249-253.
    142. Mcgookin, B. J.; Augustin, M. A., Antioxidate activity of casein and Maillard reaction-products from casein-sugar mixtures. Journal of Dairy Research 1991, 58, (3), 313-320.
    143.Jing, H.; Kitts , D. D., Chemical and biochemical properties of casein-sugar Maillard reaction products. Food and Chemical Toxicology 2002,40, (7), 1007-1015.
    144. Jing, H.; Kitts, D. D., Redox-related cytotoxic responses to different casein glycation products in Caco-2 and Int-407 cells. Journal of Agricultural and Food Chemistry 2004, 52, (11), 3577-3582.
    145. Jing, H.; Kitts , D. D., Chemical characterization of different sugar-casein Maillard reaction products and protective effects on chemical-induced cytotoxicity of Caco-2 cells. Food and Chemical Toxicology 2004, 42, (11), 1833-1844.
    146. Aminlari, M.; Ramezani, R.; Jadidi, F., Effect of Maillard-based conjugation with dextran on the functional properties of lysozyme and casein. Journal of the Science of Food and Agriculture 2005, 85, (15), 2617-2624.
    147. Kato, A.; Mifuru, R.; Matsudomi, N.; Kobayashi, K., Functional casein-polysaccharide conjugates prepared by controlled dry heating. Bioscience Biotechnology and Biochemistry 1992, 56, (4), 567-571.
    148. Chuyen, N. V.; Utsunomiya, N.; Kato, H., Nutritional and physiological-effects of casein modified by glucose under various conditons on growing and adult-rats. Agricultural and Biological Chemistry 1991, 55, (3), 659-664.
    149. Seiquer, I.; Valverde, A.; Delgado-Andrade, C.; Navarro, M. P., Influence of heat treatment of casein in presence of reducing sugars on Zn solubility and Zn uptake by Caco-2 cells after in vitro digestion. Journal of Physiology and Biochemistry 2000, 56, (3), 237-246.
    150. Seiquer, I.; Aspe, T.; Vaquero, P.; Navarro, P., Effects of heat treatment of casein in the presence of reducing sugars on calcium bioavailability: in vitro and in vivo assays. Journal of Agricultural and Food Chemistry 2001,49, (2), 1049-1055.
    1.Allen,C.;Maysinger,D.;Eisenberg,A.,Nano-engineering block copolymer aggregates for drug delivery.Colloids and Surfaces B-Biointerfaces 1999,16,(1-4),3-27.
    2.Kohori,F.;Yokoyama,M.;Sakai,K.;Okano,T.,Process design for efficient and controlled drug incorporation into polymeric micelle carrier systems.Journal of Controlled Release 2002,78,(1-3),155-163.
    3.Renard,D.;Robert,P.;Lavenant,L.;Melcion,D.;Popineau,Y.;Gueguen,J.;Duclairoir,C.;Nakache,E.;Sanchez,C.;Schmitt,C.,Biopolymeric colloidal carriers for encapsulation or controlled release applications.International Journal of Pharmaceutics 2002,242,(1-2),163-166.
    4.Patil,G.V.,Biopolymer albumin for diagnosis and in drug delivery.Drug Development Research 2003,58,(3),219-247.
    5.Seal,B.L.;Panitch,A.,Physical polymer matrices based on affinity interactions between peptides and polysaccharides.Biomacromolecules 2003,4,(6),1572-1582.
    6.Sanchez,C.;Renard,D.,Stability and structure of protein-polysaccharide coacervates in the presence of protein aggregates.International Journal of Pharmaceutics 2002,242,(1-2),319-324.
    7.Garcia,A.M.;Ghaly,E.S.,Preliminary spherical agglomerates of water soluble drug using natural polymer and cross-linking technique.Journal of Controlled Release 1996,40,(3),179-186.
    8.Schmitt,C.;Sanchez,C.;Lamprecht,A.;Renard,D.;Lehr,C.M.;de Kruif,C.G.;Hardy,J.,Study of beta-lactoglobulin/acacia gum complex coacervation by diffusingwave spectroscopy and confocal scanning laser microscopy.Colloids and Surfaces B:Biointerfaces 2001,20,267-280.
    9.Liu,X.M.;Sun,Q.S.;Wang,H.J.;Zhang,L.;Wang,J.Y.,Microspheres of corn protein,zein,for an ivermectin drug delivery system.Biomaterials 2005,26,(1),109-115.
    10.Parris,N.;Cooke,P.H.;Hicks,K.B.,Encapsulation of essential oils in zein nanospherical particles.Journal of Agricultural and Food Chemistry 2005,53,(12),4788-4792.
    11.Knepp,W.A.;Jayakrishnan,A.;Quigg,J.M.;Sitren,H.S.;Bagnall,J.J.;Goldberg,E.P.,Synthesis,properties,and intratumoral evaluation of mitoxantroneloaded casein microspheres in Lewis lung carcinoma.Jouranl of Pharmacy and Pharmacology 1993,45,(10),887-891.
    12.Latha,M.S.;Lal,A.Y.;Kumary,T.V.;Sreekumar,R.;Jayakishnan,A.,Progesterone release from glutaraldehyde cross-linked casein microspheres:In vitro studies and in vivo response in rabbits.Contraception 2000,61,(5),329-334.
    13.Bayomi,M.A.;al-Suwayeh,S.A.;el-Helw,A.M.;Mesnad,A.F.,Preparation of casein-chitosan micropheres containing diltiazem hydrochloride by an aqueous coacerration technique.Pharm Acta Helv 1998,73,(4),187-192.
    14.Latha,M.S.;Jayakrishnan,A.,A new method for the synthesis of smooth,round,hydrophilic protein microspheres using low concentrations of polymeric dispersing agents.Journal of Microencapsulation 1995,12,(1),7-12.
    15.Willmott,N.;Chen,Y.;Goldberg,J.;Mcardle,C.;Florrence,A.T.,Biodegradation rate of embolized protein microspheres in lung,liver and kidney of rats.Jouranl of Pharmacy and Pharmacology 1989,41,(7),433-438.
    16.Chen,Y.;Willmott,N.;Anderson,J.;Florence,A.T.,Comparison of albumin and casein microspheres as a carrier for doxorubicin.Jouranl of Pharmacy and Pharmacology 1987,39,(12),978-985.
    17.章朝晖,右旋糖酐的制备及应用.四川化工与腐蚀控制2001,4,(1),50-52.
    18.Chakurov,S.N.,The clinical use of dextran(Review of the literature).Khirurgiia 1967,20,(5),467-471.
    19.Bergqvist,D.,Dextran and hemostasis.Acta Chirurgica Scandinavica 1982,148,(8),633-640.
    20.Steinmann,E.;Duckert,F.;Gruber,U.F.,Value ofdextran 70 in prophylaxis of thromboembolism in general surgery,orthopedics,urology and gynecology.Schweizerische Medizinische Wochenschrift 1975,105,(49),1637-1649.
    21.Shapiro,A.L.;Maizel,J.V.,Molecular weight estimation of polypeptides by SDS-polyacrylamide gel electrophoresis-further data concerning resolving power and general considerations.Analytical Biochemistry 1969,29,(3),505-&.
    22. Laemmli, U. K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, (5259), 680-685.
    23. Roth, M., Fluorescence reaction for amino acids. Analytical Biochemistry 1971, 43, 880.
    24. Simons, S. S.; Johnson, D. F., The structure of the fluorescent adduct formed in the reaction of o-phthalaldehyde and thiols with amines. Journal of the American Chemical Society 1976, 98, (22), 7098-7099.
    25. Simons, S. S.; Johnson, D. F., Reaction of ortho-phthalaldehyde and thiols with primary amines: Fluorescence properties of 1-alkyl (and aryl) thio-2-alkylisoindoles. Analytical Biochemistry 1978, 90, (2), 705-725.
    26. Church, F. C.; Swaisgood, H. E.; Porter, D. H.; Catignani, G. L., Spectrophotometric assay using o-phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. Jouranl of Dairy Science 1983, 66, (6), 1219-1227.
    27. Benson, J. R.; Hare, P. E., ortho-Phthalatdehyde: Fluorogenic detection of primary amines in the picomote range. Comparison with fluorescamine and ninhydrin. Proceedings of the National Academy Sciences of the United States of America 1975, 72, (2), 619-622.
    28. Chen, R. F.; Scott, C.; Trepman, E., Fluorescence properties of ortho-phthaldialdehyde derivatives of amino-acids. Biochimica et Biophysica Acta 1979, 576, (2), 440-455.
    29. Porter, D. H.; Swaisgood, H. E.; Catignani, G. L., A rapid fluorometric assay for measurement of peptidase activity. Analytical Biochemistry 1982, 123, (1), 41-48.
    30. Taylor, S.; Tappel, A. L., Lysosomal peptidase measurement by sensitive fluorometric amino acid analysis. Analytical Biochemistry 1973, 56, (1), 140-148.
    31. Goodno, C. C.; Swaisgood, H. E.; Catignani, G. L., A fluorimetric assay for available lysine in protein. Analytic Biochemistry 1981, 115, (1), 203-211.
    32. Svedas, V. J. K.; Galaev, I. J.; Borisov, I. L.; Berezin, I. V., The interaction of amino acids with o-phthaldia!dehyde:, A kinetic study, and spectrophotometric assay of the reaction, product. Analytical Biochemistry 1980, 101,(1), 188-195.
    33. Rowlett, R.; Murphy, J., A convenient spectrophotometric method for the kinetic analysis of the enzymic hydrolysis of N-acyl peptides using phthaldialdehyde. Analytical Biochemistry 1981, 112, (1), 163-169.
    34.Morris,G.A.;Sims,I.M.;Robertson,A.J.;Furneaux,R.H.,Investigation into the physical and chemical properties of sodium caseinate-maltodextrin glycoconjugates.Food Hydrocolloids 2004,18,(6),1007-1014.
    35.Dinnella,C.;Gargaro,M.T.;Rossano,R.;Monteleone,E.,Spectrophotometric assay using o-phtaldialdehyde for the determination of transglutaminase activity on casein.Food Chemistry 2002,78,(3),363-368.
    36.Satake,K.;Okuyama,T.;Ohashi,M.;Shinoda,T.,Journal of Biochemistry 1960,47,(5),654-660.
    37.Adler-Nissen,J.,Enzymic Hydrolysis of Food Proteins,Elsevier Applied Science Publishers:London,1986.
    38.Adler-Nissen,J.,Determiniation of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenosulfonic acid.Journal of Agricultural and Food Chemistry 1979,27,(6),1256-1262.
    39.Fields,R.,Measurement of amino groups in proteins and peptides.Biochemical Journal 1971,124,(3),581-&.
    40.Yuan,X.F.;Harada,A.;Yamasaki,Y.;Kataoka,K.,Stabilization of lysozymeincorporated polyion complex micelles by the omega-end derivatization of poly(ethylene glycol)-poly(alpha,beta-aspartic acid) block copolymers with hydrophobic groups.Langmuir 2005,21,(7),2668-2674.
    41.Hunter,R.J.,Foundations of colloid science.Oxford University Press:New York,1992;Vol.9.
    42.Sarmiento,F.;Ruso,J.M.;Prieto,G.;Mosquera,V.,Zeta-potential study on the interactions between lysozyme and sodium n-alkylsulfates.Langmuir 1998,14,(20),5725-5729.
    43.Gonzalez-Perez,A.;Ruso,J.M.;Prieto,G.;Sarmiento,F.,Physicochemical study of ovalbumin in the presence of sodium dodecyl sulphate in aqueous media.Colloid and Polymer Science 2004,282,(4),351-356.
    44.穆敏芳.大分子组装:含刚性链的非共价键连接胶束及酪蛋白-葡萄糖的接枝共聚及胶体化复旦大学,上海,2004.
    45.Hodge,J.E.,Dehydrated foods,chemistry of browning reactions in model systems Journal of Agricultural and Food Chemistry 1953,1,(15),928-943.
    46.Maillard,L.C.,The action of amino acids on sugar;The formation of melanoidin by a methodic route.Comptes Rendus Hebdomadaires Des Seances De L Academic Des Sciences 1912,154,66-68.
    47.Mcweeny,D.J.;Knowles,M.E.;Hearne,J.F.,Chemistry of non-enzymic browning in food and its control by sulfites.Journal of the Science of Food and Agriculture 1974,25,(6),735-746.
    48.Huber,B.;Ledl,F.,Formation of 1-amino-l,4-dideoxy-2,3-hexodiuloses and 2-aminoacetylfurans in the Maillard reaction.Carbohydrate Research 1990,204,215-220.
    49.Tressl,R.;Nittka,C.;Kersten,E.;Rewicki,D.,Formation Of Isoleucine-Specific Maillard Products From[1-C-13]-D-glucose and[1-C-13]-D-fructose.Journal of Agricultural and Food Chemistry 1995,43,(5),1163-1169.
    50.Brands,C.M.J.;van Boekel,M.,Reactions of monosaccharides during heating of sugar-casein systems:Building of a reaction network model.Journal of Agricultural and Food Chemistry 2001,49,(10),4667-4675.
    51.Shepherd,R.;Robertson,A.;Ofman,D.,Dairy glycoconjugate emulsifiers:casein-maltodextrins.Food Hydrocolloids 2000,14,(4),281-286.
    52.Ferrer,E.;Alegria,A.;Farre,R.;Abellan,P.;Romero,F.;Clemente,G.,Evolution of available lysine and furosine contents in milk-based infant formulas throughout the shelf-life storage period.Journal of the Science of Food and Agriculture 2003,83,(5),465-472.
    53.Eigel,W.N.;Butler,J.E.;Ernstrom,C.A.;Farrell,H.M.;Harwalkar,V.R.;Jenness,R.;Whitney,R.M.,Nomenclature of proteins of cows milk-5th revision.Journal of dairy science 1984,67,(8),1599-1631.
    54.Modler,H.W.,Functional-properties of nonfat dairy ingredients-a reviewmodification of products containing casein.Journal of dairy science 1985,68,(9),2195-2205.
    55.Fayle,S.E.;Gerrard,J.A.,The Maillard Reaction.The Royal Society of Chemistry:Cambridge,2002;p 1-3.
    56.Dean,J.A.,Lange's handbook of chemistry,fifteenth edition.World Publishing Corporation/McGraw-Hill:Beijing,1999;p 8.23-8.72.
    57.Li,M.;Jiang,M.;Wu,C.,Fluorescence and light-scattering studies on the formation of stable colloidal nanoparticles made of sodium sulfonated polystyrene ionomers.Journal of Polymer Science Part B-Polymer Physics 1997,35,(10),1593-1599.
    58.Zhang,G.Z.;Li,X.L.;Jiang,M.;Wu,C.,Model system for surfactant-free emulsion copolymerization of hydrophobic and hydrophilic monomers in aqueous solution.Langmuir 2000,16,(24),9205-9207.
    59.Riess,G.,Micellization of block copolymers.Progress in Polymer Science 2003,28,(7),1107-1170.
    60.Liu,S.Y.;Hu,T.J.;Liang,H.J.;Jiang,M.;Wu,C.,Self-assembly of narrowly distributed carboxy-terminated linear polystyrene chains in water via microphase inversion.Macromolecules 2000,33,(23),8640-8643.
    61.Jeuniaux,C.;Vossfoucart,M.F.,Chitin biomass and production in the marineenvironment.Biochemical Systematics and Ecology 1991,19,(5),347-356.
    62.Kumar,M.N.V.R.,A review of chitin and chitosan applications.Reactive &Functional Polymers 2000,46,(1),1-27.
    63.Kumar,M.N.V.R.;Muzzarelli,R.A.A.;Muzzarelli,C.;Sashiwa,H.;Domb,A.J.,Chitosan chemistry and pharmaceutical perspectives.Chemical Reviews 2004,104,(12),6017-6084.
    64.王建坤,新型服用纺织纤维及其产品开发.2006;p 174-177.
    1.Haynes,C.A.;Norde,W.,Structures and stabilities of adsorbed proteins.Journal of Colloid and Interface Science 1995,169,(2),313-328.
    2.Wiacek,A.E.;Chibowski,E.,Zeta potential and droplet size of N-tetradecane/ethanol (protein) emulsions.Colloids and Surfaces B-Biointerfaces 2002,25,(1),55-67.
    3.Sitohy,M.;Chobert,J.M.;Haertle,T.,Improvement of solubility and of emulsifying properties of milk proteins at acid pHs by esterification.Nahrung-Food 2001,45,(2),87-93.
    4.Fennema,O.R.,Food Chemistry,3rd edition.Marcel Dekker,Inc:New York,1996;p 321-430.
    5.Shepherd,R.;Robertson,A.;Ofman,D.,Dairy glycoconjugate emulsifiers:casein-maltodextrins.Food Hydrocolloids 2000,14,(4),281-286.
    6.Li,P.;Liu,J.H.;Wang,Q.;Wu,C.,Copper-Mediated Graft Copolymerization of Methyl Methacrylate onto Casein.Macromolecular Symposia 2000,151,605-610.
    7.Liu,Y.H.;Li,J.B.;Yang,L.Y.;Shi,Z.Q.,Graft copolymerization of methylmethacrylate onto casein Initiated by potassium ditelluratocuprate(Ⅲ).Journal of Macromolecular Science-Pure and Applied Chemistry 2004,A41,(3),305-316.
    8.Dong,Q.Z.;Hsieh,Y.L.,Acrylonitrile graft copolymerization of casein proteins for enhanced solubility and thermal properties.Journal of Applied Polymer Science 2000,77,(11),2543-2551.
    9.Dickinson,E.;Elverson,D.J.;Murray,B.S.,On the film-forming and emulsionstabilising properties of gum arabic:dilution and flocculation aspects.Food Hydrocolloids 1989,1,101-114.
    10.Dickinson,E.,Hydrocolloids at interfaces and the influence on the properties of dispersed systems.Food Hydrocolloids 2003,1,25-39.
    11.Nagasawa,K.;Ohgata,K.;Takahashi,K.;Hattori,M.,Role of the polysaccharide content and net charge on the emulsifying properties of betalactoglobulin-carboxymethyldextran conjugates.Journal of Agricultural and Food Chemistry 1996,44,(9),2538-2543.
    12.Kato,A.;Murata,K.;Kobayashi,K.,Preparation and characterisation of ovalbumin-dextran conjugate having excellent emulsifying properties.Journal of Agricultural and Food Chemistry 1988,36,(3),421-425.
    13.Courthaudon,J.L.;Colas,B.;Lorient,D.,Covalent binding of glycosyl residues to bovine casein:effects on solubility and viscosity.Journal of Agricultural and Food Chemistry 1989,37,32-36.
    14.Hattori,M.;Okada,Y.;Takahashi,K.,Functional changes in β-lactoglobulin upon conjugation with carboxymethyl cyclodextrin.Journal of Agricultural and Food Chemistry 2000,48,3789-3794.
    15.Zaleska,H.;Mazurkiewicz,J.;Tomasik,P.;Baczkowicz,M.,Electrochemical synthesis of polysaccharide-protein complexes,part 2.apple pectin-casein complexes.Nahrung Food 1999,43,(4),278-283.
    16.Zaleska,H.;Ring,S.G.;Yomasik,P.,Apple pectin complexes with whey protein isolate.Food Hydrocolloids 2000,14,377-382.
    17.Zaleska,H.;Ring,S.G.;Tomasik,P.,Electrosynthesis of potato starch-casein complexes.Journal of Agricultural and Food Chemistry 2001,36,509-515.
    18.Zaleska,H.;Tornasik,P.;Li,C.Y.,Formation of carboxymethyl cellulos-casein complexes by electrosynthesis.Food Hydrocolloids 2002,16,(3),215-223.
    19.Lii,C.Y.;Zaleska,H.;Tomasik,P.,Electrosynthesis of carboxymethyl cellulose -ovoalbumin complexes.Journal of Food Engineering 2002,53,(3),249-257.
    20.Lii,C.Y.;Tomasik,P.;Zaleska,H.;Liaw,S.C.;Lai,V.M.F.,Carboxymethyl cellulose-gelatin complexes.Carbohydrate Polymers 2002,50,(1),19-26.
    21.Aoki,T.;Hiidome,Y.;Kitahata,K.;Sugimoto,Y.;Ibrahim,H.;Kato,Y.,Improvement of heat stability and emulsifying activity of ovalbumin by conjugation with glucuronic acid through the MaiIIard reaction.Food Research International 1999,32,129-133.
    22.Aoki,T.;Hiidome,Y.;Sugimoto,Y.;Ibrahim,H.R.;Kato,Y.,Modification of ovalbumin with oligogalacturonic acids through the Maillard reaction.Food Research International 2001,34,127-132.
    23.Aoki,Y.;Kitahata,K.;Fukumoto,T.;Sugimoto,Y.;Ibrahim,H.;Kimura,T.,Improvement of functional properties of β-lactoglobulin by conjugation with glucose 6-phosphate through the Maillard-reaction.Food Research International 1997,30,401-406.
    24.Babiker,E.E.;Kato,A.,Improvement of the functional properties of sorghum protein by protein-polysaccharide and protein-protein complexes.Nahrung Food 1998,42,(5),286-289.
    25.Chevalier,F.;Chobert,J.-M.;Popineau,Y.;Nicolas,M.G.;Haertle,T.,Improvement of functional properties of β-lactoglobulin glycated through the Maillard reaction is related to the nature of the sugar.International Dairy Journal 2001,11,145-152.
    26.Dickinson,E.;Galazka,V.B.,Emulsion stabilisation by ionic and covalentcomplexes of β-lactoglobulin with polysaccharides.Food Hydrocolloids 1991,5,(3),281-296.
    27.Jumel,K.;Harding,S.E.;Mitchell,J.R.;Dickinson,E.,Evidence for proteinpolysaccharide complex formation as a result of dry-heating mixtures.In Food colloids and polymers,Royal Society of Chemistry:London,1993;pp 147-160.
    28.Kato,A.,Industrial application of Maillard-type protein-polysaccharide conjugates.Food Science and Technology Research 2002,8,193-199.
    29.Kato,A.;Mifuru,R.;Matsudomi,N.;Kobayashi,K.,Functional caseinpolysaccharide conjugates prepared by controlled dry heating.Bioscience Biotechnology and Biochemistry 1992,56,(4),567-571.
    30.Kato,A.;Sasaki,Y.;Furuta,R.;Kobayashi,K.,Functional proteinpolysaccharide conjugate prepared by controlled dry heating of ovalbumin-dextran mixtures.Agricultural and Biological Chemistry 1990,54,(1),107-112.
    31.Matsudomi,N.;Inoue,Y.;Nakashima,H.;Kato,A.;Kobayashi,K.,Emulsion stabilisation by Maillard-type covalent complex of plasma protein with galactomannan.Journal of Food Science 1995,60,(2),265-268.
    32.Mishra,S.;Mann,B.;Joshi,V.K.,Functional improvement of whey protein concentrate on interaction with pectin.Food Hydrocolloids 2001,15,9-15.
    33.Nakamura,S.;Kato,A.;Kobayashi,K.,New antimicrobial characteristics of lysozyme dextran conjugate.Journal of Agricultural and Food Chemistry 1991,39,(4),647-650.
    34.Song,Y.;Babiker,E.E.;Usui,M.;Saito,A.;Kato,A.,Emulsifying properties and bactericidal action of chitosan-lysozyme conjugates.Food Research International 2002,35,459-466.
    35.Zaleska,H.;Ring,S.G.;Tomasik,P.,Electrosynthesis of potato starch-whey protein isolate complexes.Carbohydrate Polymers 2001,14,(4),377-382.
    36.Maillard,L.C.,The action of amino acids on sugar;the formation of melanoidin by a methodic route.Comptes Rendus Hebdomadaires Des Seances De L Academic Des Sciences 1912,154,66-68.
    37.Hodge,J.E.,Dehydrated foods,chemistry of browning reactions in model systems Journal of Agricultural and Food Chemistry 1953,1,(15),928-943.
    38.Fayle,S.E.;Gerrard,J.A.,The Maillard Reaction.The Royal Society of Chemistry:Cambridge,2002;p 1-3.
    39.Mcweeny,D.J.;Knowles,M.E.;Hearne,J.F.,Chemistry of non-enzymic browning in food and its control by sulfites.Journal of the Science of Food and Agriculture 1974,25,(6),735-746.
    40.Huber,B.;Ledl,F.,Formation of 1-amino-1,4-dideoxy-2,3-hexodiuloses and 2-aminoacetylfurans in the Maillard Reaction.Carbohydrate Research 1990,204,215-220.
    41.Tressl,R.;Nittka,C.;Kersten,E.;Rewicki,D.,Formation of isoleucine-specific Maillard products from[1-C-13]-D-glucose and[1-C-13]-D-fructose.Journal of Agricultural and Food Chemistry 1995,43,(5),1163-1169.
    42.Brands,C.M.J.;van Boekel,M.,Reactions of monosaccharides during heating of sugar-casein systems:building of a reaction network model.Journal of Agricultural and Food Chemistry 2001,49,(10),4667-4675.
    43.Nakamura,S.;Kato,A.,Multi-functional biopolymer prepared by covalent attachment of galactomannan to egg-white proteins through naturally occurring Maillard reaction.Nahrung-Food 2000,44,(3),201-206.
    44.Shu,Y.W.;Sahara,S.;Nakamura,S.;Kato,A.,Effects of the length of polysaccharide chains on the functional properties of the Maillard-type lysozymepolysaccharide conjugate.Journal of Agricultural and Food Chemistry 1996,44,(9),2544-2548.
    45.Nakamura,S.;Kato,A.;Kobayashi,K.,Bifunctional lysozyme galactomannan conjugate having excellent emulsifying properties and bactericidal effect.Journal of Agricultural and Food Chemistry 1992,40,(5),735-739.
    46.Dickinson,E.;Semenova,M.G.,Emulsifying properties of covalent protein dextran hybrids.Colloids and Surfaces 1992,64,(3-4),299-310.
    47.Pearce,K.N.;Kinsella,J.E.,Emulsifying properties of proteins-evaluation of a turbidimetric technique.Journal of Agricultural and Food Chemistry 1978,26,(3),716-723.
    48.de Kruif,C.G.;Grinberg,V.Y.,Micellisation of beta-casein.Colloids and Surfaces A-Physicochemical and Engineering Aspects 2002,210,(2-3),183-190.
    49.Einhom-Stoll,U.;Weiss,M.;Kunzek,H.,Nahrung-Food 2002,46,294.
    50.Shepherd,R.;Rockey,J.;Sutherland,I.W.;Roller,S.,Novel bioemulsifiers from microorganisms for use in foods.Journal of Biotechnology 1995,40,(3),207-217.
    1.Rosier,A.;Vandermeulen,G.W.M.;Klok,H.A.,Advanced drug delivery devices via self-assembly of amphiphilic block copolymers.Advanced Drug Delivery Reviews 2001,53,(1),95-108.
    2.Service,R.F.,How far can we push chemical self-assembly.Science 2005,309,(5731),95-95.
    3.Wilhelm,M.;Zhao,C.L.;Wang,Y.C.;Xu,R.L.;Winnik,M.A.;Mura,J.L.;Riess,G.;Croucher,M.D.,Polymer micelle formation.3.Poly(styrene-ethylene oxide) block copolymer micelle formation in water-a fluorescence probe study.Macromolecules 1991,24,(5),1033-1040.
    4.Moffitt,M.;Khougaz,K.;Eisenberg,A.,Micellization of ionic block copolymers.Accounts of Chemical Research 1996,29,(2),95-102.
    5.Chen,D.Y.;Jiang,M.,Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions.Accounts of Chemical Research 2005,38,(6),494-502.
    6.Myrdal,P.B.;Yalkowasky,S.H.,Solubilization of drugs in aqueous media.In Encyclopedia of Pharmaceutical Technology,3rd ed.,Swarbick,J.;Boylan,J.C.,Eds.Marcel Dekker:New York,2002;pp 3311-3333.
    7.Allen,C.;Maysinger,D.;Eisenberg,A.,Nano-engineering block copolymer aggregates for drug delivery.Colloids and Surfaces B-Biointerfaces 1999,16,(1-4),3-27.
    8.Adams,M.L.;Lavasanifar,A.;Kwon,G.S.,Amphiphilic block copolymers for drug delivery.Journal of Pharmaceutical Sciences 2003,92,(7),1343-1355.
    9.Kwon,G.S.;Naito,M.;Yokoyama,M.;Okano,Y.;Sakurai,Y.;Kataoka,K.,Physical entrapment of adriamycin in AB block-copolymer micelles.Pharmaceutical Research 1995,12,(2),192-195.
    10.La,S.B.;Okano,T.;Kataoka,K.,Preparation and characterization of the micelle-forming polymeric drug indomethacin-incorporated poly(ethylene oxide)-poly(beta-benzyl L-aspartate) block copolymer micelles.Journal of Pharmaceutical Sciences 1996,85,(1),85-90.
    11.Qiu,L.Y.;Bae,Y.H.,Self-assembled polyethylenimine-graft-poly(epsiloncaprolactone)micelles as potential dual carriers of genes and anticancer drugs.Biomaterials 2007,28,(28),4132-4142.
    12.Ding,X.Q.;Chen,D.;Wang,A.X.;Li,S.;Chen,Y.;Wang,J.,Antitumor effects of hydroxycamptothecin-loaded poly(ethylene glycol)poly(gamma-benzyl-L-glutamate)micelles against oral squamous cell carcinoma.Oncology Research 2007,16,(7),313-323.
    13.Zhang,X.C.;Jackson,J.K.;Burt,H.M.,Development of amphiphilic diblock copolymers as micellar carriers of taxol.International Journal of Pharmaceutics 1996,132,(1-2),195-206.
    14.Lavasanifar,A.;Samuel,J.;Kwon,G.S.,Micelles self-assembled from poly(ethylene oxide)-block-poly(N-hexyl stearate L-aspartamide) by a solvent evaporation method:effect on the solubilization and haemolytic activity of amphotericin B.Journal of Controlled Release 2001,77,(1-2),155-160.
    15.Kwon,G.S.;Okano,T.,Polymeric micelles as new drug carriers.Advanced Drug Delivery Reviews 1996,21,(2),107-116.
    16.Zhang,H.;Lu,Y.;Zhang,G.Q.;Sun,D.X.;Zhong,Y.Q.,Bupivacaine-loaded biodegradable poly(lactic-co-glycolic) acid microspheres-Ⅰ.Optimization of the drug incorporation into the polymer matrix and modelling of drug release.International Journal of Pharmaceutics 2008,351,(1-2),244-249.
    17.Renard,D.;Robert,P.;Lavenant,L.;Melcion,D.;Popineau,Y.;Gueguen,J.;Duclairoir,C.;Nakache,E.;Sanchez,C.;Schmitt,C.,Biopolymeric colloidal carriers for encapsulation or controlled release applications.International Journal of Pharmaceutics 2002,242,(1-2),163-166.
    18.刘程,食品添加剂实用大全.北京工业大学出版社:北京,1994;p 177-178.
    19.韩雅珊,食品化学.中国农业大学出版社:北京,1992;p 246-247.
    20.Burton,G.W.;Ingold,K.U.,beta-Carotene:an unusual type of lipid antioxidant.Science 1984,224,(4649),569-573.
    21.Mordi,R.C.,Carotenoids-functions and degradation.Chemistry & Industry 1993,(3),79-83.
    22.Yanagi,K.;Miyata,Y.;Kataura,H.,Highly stabilized beta-carotene in carbon nanotubes.Advanced Materials 2006,18,(4),437-441.
    23.He,Z.F.;Kispert,L.D.,Electrochemical and optical study of carotenoids in TX100 micelles:Electron transfer and a large blue shift.Journal of Physical Chemistry B 1999,103,(42),9038-9043.
    24.Chen,L.Y.;Subirade,M.,Chitosan/beta-lactoglobulin core-shell nanoparticles as nutraceutical carriers.Biomaterials 2005,26,(30),6041-6053.
    25.Vorob'ev,M.M.;Dalgalarrondo,M.;Chobert,J.M.;Haertle,T.,Kinetics of beta-casein hydrolysis by wild-type and engineered trypsin.Biopolymers 2000,54,(5),355-364.
    26.Craft,N.E.;Soares,J.H.,Relative solubility,stability,and absorptivity of lutein and beta-carotene in organic-solvents.Journal of Agricultural and Food Chemistry 1992,40,(3),431-434.
    27.Dean,J.A.,Lange's Handbook ofChemistry,15th ed Beijing World Publishing Corporation/McGraw-Hill:Beijing,China,1999,p 5.28-5.56.
    28.Simon,M.;Wittmar,M.;Bakowsky,U.;Kissel,T.,Self-assembling nanocomplexes from insulin and water-soluble branched polyesters,poly[(vinyl-3-(diethylamino)propylcarbamate-co-(vinyl acetate)-co-(vinyl alcohol)]-graft-poly(Llactic acid):A novel carrier for transmucosal delivery of peptides.Bioconjugate Chemistry 2004,15,(4),841-849.
    29.Gao,G.Q.;Deng,Y.;Kispert,L.D.,Photoactivated ferric chloride oxidation of carotenoids by near-UV to visible light.Journal of Physical Chemistry B 1997,101,(39),7844-7849.
    1.Oosawa,F.,Polyelectrolytes.Marcel Dekker:New York,1971;p 1-1.
    2.土田英俊,高分子科学.人民教育出版社:北京,1981;p 103-162.
    3.何曼君;陈维孝;董西侠,高分子物理.复旦大学出版社:上海,1991;p 137-139.
    4.Dautzenberg,H.;Jaeger,W.;Kotz,J.,Polyelectrolytes:Formation,Characterization and Application.Hanser Publishers:Munich,1994;p 1-343.
    5.Philipp,B.;Dautzenberg,H.;Linow,K.J.,Polyelectrolyte complexes-recent developments and open problems.Progress in Polymer Science 1989,14,(1),91-172.
    6.曾晞;陈观文,聚电解质复合物.高分子通报 1997,4,(1),29-36.
    7.刘卅;林欣欣;陈立班,聚电解质复合物研究现状及应用前景.化工进展 1997,1,(7),36-36.
    8.Michaels,A.S.;Mickka,R.G.,Polycation-polyanion complexes:preparation and properties of poly-(vinylbenzyltrimethylammonium)-poly-(styrenesulfonate).Journal of Physical Chemistry 1961,65,(10),1765-1773.
    9.Thunemann,A.,Polyelectrolyte-surfactant complexes(synthesis,structure and materials aspects).Progress in Polymer Science 2002,27,(8),1473-1572.
    10.Kotz,J.;Kosmella,S.;Beitz,T.,Self-assembled polyelectrolyte systems.Progress in Polymer Science 2001,26,(8) 1199-1232.
    11.Bertrand,P.;Jonas,A.;Laschewsky,A.;Legras,R.,Ultrathin polymer coatings by complexation of polyelectrolytes at interfaces:suitable materials,structure and properties.Macromolecular Rapid Communications 2000,21,(7),319-348.
    12.Ober,C.K.;Wegner,G.,Polyelectrolyte-surfactant complexes in the solid state:Facile building blocks for self-organizing materials.Advanced Materials 1997,9,(1),17-&.
    13.Antonietti,M.;Burger,C.;Thunemann,A.,Polyelectrolye-surfactant complexes:A new class of highly ordered polymer materials.Trends in Polymer Science.1997,5,(8),262-267.
    14.Antonietti,M.;Thunemann,A.,Polyelectrolyte-lipid complexes as membrane mimetic systems.Curren Opinion in Colloid & Interface Science 1996,1,(5),667- 671.
    15.MacKnight,W.J.;Ponomarenko,E.A.;Tirrell,D.A.,Self assembled polyelectrolyte-Surfactant complexes in nonaqueous solvents and in the solid state.Accounts of Chemical Research 1998,31,(12),781-788.
    16.Thunemann,A.F.;Muller,M.;Dautzenberg,H.;Joanny,J.F.O.;Lowne,H.,Polyelectrolyte complexes.Advances in Polymer Science 2004,166,113-171.
    17.Tsuchida,E.;Abe,K.;Honma,M.,Aggregation of polyion complexes between synthetic polyelectrolytes.Macromolecules 1976,9,(1),112-117.
    18.Michaels,A.S.,Polyelectrolyte complexes.Industrial and Engineering Chemistry 1965,57,(10),32-&.
    19.Chatterjee,S.K.;Yadav,D.;Ghosh,S.;Khan,A.M.,Study of interaction between two oppositely charged polyelectrolytes and formation of polyelectrolyte complex.Journal of Polymer Science Part A,Polymer Chemistry 1989,27,(11),3855-3863.
    20.Tsuchida,E.;Osada,Y.,Role of chain-length in stability of polyion complexes.Makromolekulare Chemie-Macromolecular Chemistry and Physics 1974,175,(2),593-601.
    21.Philipp,B.;Dawydoff,W.;Linow,K.J.,Polyelectrolyte complexes.Zeitschrift fur Chemic 1982,22,(1),1-13.
    22.Jcwell,C.M.;Zhang,J.T.;Frediu,N.J.;Wblff,M.R.;Hacker,T.A.;Lynn,D.M.,Releasc of plasmid DNA from intravascular stents coated with ultralhin multilayered.Biomacromolecules 2006,7,(9),2453-2491.
    23.Nikolaeva,O.;Budtova,T.;Alexeev,V.;Frenkel,S.,Interpolymer complexation between polyacrylic acid and cellulose ethers:Formation and properties.Journal of Polymer Science Part B-Polymer Physics 2000,38,(10),1323-1330.
    24.Xu,X.;Wang,Q.,Studies on hydrogen bonds in P(MMA-MAA)/PEO-LiClO_4intermacromolecular complex through FT-IR and XPS.Progress in Natural Science 1991,1,(2),146-153.
    25.Bailey,F.E.;Lundberg,R.D.;Callard,R.W.,Some factors affecting the molecular association of poly(ethylene oxide) and poly(acrylic acid) in aqueous solution.Journal of Polymer Science Part A,Polymer Chemistry 1964,2,(2),845-848.
    26.Tsuchida,E.;Osada,Y.;Sanada,K.,Interaction of poly(styrene sulfonate) with polycations carrying charges in the chain backbone.Journal of Polymer Science Part A,Polymer Chemistry 1972,10,(11),3397-3404.
    27.Vishalakshi,B.;Ghosh,S.;Kalpagam,V.,The effects of charge density and concentration on the composition of polyelectrolyte complexes.Polymer 1993,34,(15),3270-3275.
    28.Starodubtsev,S.G.;Dembo,A.T.;Dembo,K.,Effect of polymer charge density and inoic on the formation of complexes between sodium aryamido-2-methyl-propane-sulfonate-co-acrylamide gels and cetylpyridinium chloride.Langmuir 2004,20,6599-6604.
    29.Kabanov,V.A.;Zezin,A.B.,Soluble interpolymeric complex as a new class of synthetic polyelectrolytes.Pure and Applied Chemistry 1984,56,(3),343-354.
    30.Maurstad,G.;Danielsen,S.;Stokke,B.T.,Analysis of compacted semiflexible polyanions visualized by atomic force microscopy:Influence of chain stiffness on the morphologies of polyelectrolyte complexes.Journal of Physical Chemistry B 2003,107,8172-8180.
    31.Muller,M.;Reihs,T.;Ouyang,W.,Needle like and spherical polyelectrolyte complex nanoparticles of poly(L-lysine) and copolymers of maleic acid.Langmuir 2005,21,465-469.
    32.Mekhloufi,G.;Sanchez,C.;Renard,D.;Guillemin,S.;Hardy,J.,pH-induced structural transitions during complexation and coacervation of β-lactoglobulin and acacia gum.Langmuir 2005,21,386-394.
    33.Sakiyama,Y.;Chu,C.H.;Fujii,T.;Yano,T.,Preparation of a polyelectrolyte complex gel from chitosan and κ-carrageenan and its pH-sensitive swelling.Journal of Applied Polymer Science 1993,50,(11),2021-2025.
    34.Itoh,Y.;Negishi,K.;Lizuka,E.;Abe,K.,Fluoresence study of polyelectrolyte complex formation:2.Effect of acidity of polyanions on complexation.Polymer 1992,33,(14),3016-3023.
    35.Dautzenberg,H.,Polyelectrolyte complex formatiou in highly aggregating systems.1.Effect of salt:polyelectrolytc complex formation in the presence of NaCl.Macromolecules 1997,30,7810-7815.
    36.Dautzenberg,H.;Karibyants,N.,Polyelectrolyte complex formation in highly aggregating systems.Effect of salt:response to subsequent addition of NaCl.Macromolecular Chemistry and Physics 1999,200,(1),118-125.
    37.Donato,L.;Garnier,C.;Doublier,J.L.;Nicolai,T.,Influence of the NaCl or CaCl_2 concentration on the structure of heat-set bovine serum albumin gels at pH7. Biomacromelcules 2005,6,(4),2157-2163.
    38.Buchhammer,H.M.;Mende,M.;Olemann,M.,Fonnation of mono-sized polyelectrolyte complex disPersions:effects of polymer structure,concentration and mixing conditions.Colloids and surfaces A-Physicochemical and Engineering Aspects 2003,218,(1-3),151-159.
    39.Dautzenberg,H.;Rother,G.;Hartmann,J.,Light-scattering-studies of polyelectrolyte complex-formation-effect of polymer concentration.Amer Chemical Soc:Washington DC,1994;Vol.548,p 210-224.
    40.Vijayanathan,V.;Lyall,J.;Thomas,T.;Shirahata,A.;Thomas,T.J.,Ionic,structure,and temperature effects on DNA nanoparticles formed by natural and synthetic polyamines.Biomacromolecules 2005,6,(2),1097-1103.
    41.Cho,C.S.;Komoto,T.;Nakagami,A.;Kawai,T.,Interaction between poly(Llysine)and sulfated poly(vinyl alcohol).Makromolekulare Chemie-Macromolecular Chemistry and Physics 1979,180,(8),1951-1959.
    42.Kono,K.;Ohno,T.;Kumei,T.,Permeability characteristic of polyolectrolyte complex capsule membranes:effect of preparation condition on permeability.Journal of Applied Polymer Science 1996,59,687-693.
    43.Kwon,I.C.;Bae,Y.H.;Kim,S.W.,Heparin release from polymer complex.Journal of Controlled Release 1994,30,(2),155-159.
    44.Verma,I.M.;Somia,N.,Gene therapy-promises,problem and prospects.Nature 1997,389,239-242.
    45.Wagner,E.;Zenke,M.;Cotton,M.;Beug,H.;Birnstiel,M.L.,Transferrinpolycation conjugates as carrires for DNA uptake into cells.Proceedings of the National Academy of Scences of the United States of America 1990,87,(9),3410-3414.
    46.Hashida,M.;Takemura,S.;Nishlkawa,M.,Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine).Journal of Controlled Release 1998,53,301-310.
    47.Hunkeler,D.,Polymers for bioartifical organs.Trends in Polymer Science 1997,5,(9),286-293.
    48.Miyoshi,Y.;Date,I.;Ohmoto,T.,Histological analysis of microencapsulated dopamine-secreting cells in agrose/poly(styrene sulfonic acid) mixed gel xenotrans planted into the brain.Experimental Neurology 1996,138,(1),169-175.
    49.Wang,T.;Lacik,I.;Brissova,M.,An encapsulation system for the immunoisolation of pancreaticislets.Nature Biotechnology 1997,15,358-362.
    50.Polk,A.;Amsden,B.;Yao,K.D.,Controlled release of album from chitosanalginate microcapsules.Journal of Pharmaceutical Sciences 1994,83,(2),178-185.
    51.Hari,P.R.;Chandy,T.;Sharma,C.P.,Chitosan/calcium-alginate beads for oral delivery of insulin.Journal of Applied Polymer Science 1996,59,1795-1801.
    52.Kwok,K.K.;Groves,M.J.;Burgess,D.J.,Production of 5-15μm diameter alginate-polylysine microcapsules by an atomization technique.Pharmaceutical Research 1991,8,(3),341-344.
    53.Bowersock,T.L.;Hogenesch,H.;Suckow,M.,Oral vaccination with alginate microsphere systems.Journal of Controlled Release 1996,39,209-220.
    54.Muniruzzaman,M.;Tabata,Y.;Ikada,Y.,Complexation of basic fibroblast growth factor with gelatin.Journal of Biomaterials Science-Polymer Edition 1998,9,(5),459-473.
    55.Muniruzzaman,M.;Tabata,Y.;Hijikata,S.,Structural change of basic fibroblast growth factort through gelatin complexation.Abstracts of Papers of the American Chemical Society 1998,216,U123-U123.
    56.Ibrahim,H.R.;Higashiguchi,S.;Juneja,L.R.;Kim,M.;Yamamoto,T.,A structural phase of heat-denatured lysozyme with novel antimicrobial action.Journal of Agricultural and Food Chemistry 1996,44,(6),1416-1423.
    57.Doi,E.;Kitabatake,N.,Structure and functionality of egg proteins.In Food Proteins and Their Application,Damodaran,S.;Paraf,A.,Eds.Marcel Dekker Inc.:New York,1997;Vol.80,pp 325-340.
    58.Lesnierowski,G.;Cegielska-Radziejewska,R.;Kijowski,J.,Thermally and chemical-thermally modified lysozyme and its bacteriostatic activity.Worlds Poultry Science Journal 2004,60,(3),303-309.
    59.Bisson,L.F.;Butzke,C.E.,Technical enzymes for wine production.Agro Food Industry Hi-Tech 1996,7,(3),11-14.
    60.Mine,Y.,Recent advances in the understanding of egg white protein functionality.Trends in Food Science & Technology 1995,6,225-232.
    61.Arntfield,S.D.;Bernatsky,A.,Characteristics of heat-induced networks for mixtures of ovalbumin and lysozyme.Journal of Agricultural and Food Chemistry 1993,41,(12),2291-2295.
    62.Tani,F.;Murata,M.;HigasaI,T.;Goto,M.;Kitabatake,N.;Doi,E.,Molten globule state of protein molecules in heat-induced transparent food gels.Journal of Agricultural and Food Chemistry 1995,43,(9),2325-2331.
    63.Branden,C.;Tooze,J.,Introduction to Protein Structure.Garland Science:UK,1999;p 1-410.
    64.Oakenfull,D.;Pearce,J.;Burley,R.W.,In Food Proteins and Their Applications,Damodaran,S.;Paraf,A.,Eds.Marcel Dekker,Inc.:New York,1997;pp 111-142.
    65.Damodaran,S.;Paraf,A.,In Food Proteins and Their Applications,Marcel Dekker,Inc:New York,1997;Vol.80,pp 1-665.
    66.Weijers,M.;van de Velde,F.;Stijnman,A.;van de Pijpekamp,A.;Visschers,R.W.,Structure and rheological properties of acid-induced egg white protein gels.Food Hydrocolloids 2006,20,(2-3),146-159.
    67.Oakenfull,D.;Pearce,J.;Burley,R.W.,Protein Gelation.In Food Proteins and Their Applications,Damodaran,S.;Paraf,A.,Eds.Marcel Dekker,Inc.:New York,1997;Vol.80,pp 111-142.
    68.de Roos,A.L.;Walstra,P.;Geurts,T.J.,The association of lysozyme with casein.International Dairy Journal 1998,8,(4),319-324.
    69.Zhang,X.F.;Fu,X.M.;Zhang,H.;Liu,C.;Jiao,W.W.;Chang,Z.Y.,Chaperone-like activity of beta-casein.International Journal of Biochemistry & Cell Biology 2005,37,(6),1232-1240.
    70.Yuan,X.F.;Harada,A.;Yamasaki,Y.;Kataoka,K.,Stabilization of lysozymeincorporated polyion complex micelles by the omega-end derivatization of poly(ethylene glycol)-poly(alpha,beta-aspartic acid) block copolymers with hydrophobic groups.Langmuir 2005,21,(7),2668-2674.
    71.Zhang,W.A.;Zhou,X.C.;Li,H.;Fang,Y.E.;Zhang,G.Z.,Conformational transition of tethered poly(N-isopropylacrylamide) chains in coronas of micelles and vesicles.Macromolecules 2005,38,(3),909-914.
    72.de Kruif,C.G.;Grinberg,V.Y.,Micellisation of beta-casein.Colloids and Surfaces A-Physicochemical and Engineering Aspects 2002,210,(2-3),183-190.
    73.Swaisgood,H.E.,In Developments in Dairy Chemistry,Fox,P.F.,Ed.Applied Science Publishers:London,1982;p 1-1.
    74.Cooper,C.L.;Dubin,P.L.;Kayitmazer,A.B.;Turksen,S.,Polyelectrolyteprotein complexes.Current Opinion in Colloid & Interface Science 2005,10,(1-2),52-78.
    75.Hattori,T.;Hallberg,R.;Dubin,P.L.,Roles of electrostatic interaction and polymer structure in the binding of beta-lactoglobulin to anionic polyelectrolytes:Measurement of binding constants by frontal analysis continuous capillary electrophoresis.Langmuir 2000,16,(25),9738-9743.
    76.Cooper,C.L.;Goulding,A.;Kayitmazer,A.B.;Ulrich,S.;Stoll,S.;Turksen,S.;Yusa,S.;Kumar,A.;Dubin,P.L.,Effects of polyelectrolyte chain stiffness,charge mobility,and charge sequences on binding to proteins and micelles.Biomacromolecules 2006,7,(4),1025-1035.
    77.Murray,M.J.;Snowden,M.J.,The preparation,characterization and applications of colloidal microgels.Advances in Colloid and Interface Science 1995,54,73-91.
    78.Yu,S.Y.;Yao,P.;Jiang,M.;Zhang,G.Z.,Nanogels prepared by self-assembly of oppositely charged globular proteins.Biopolymers 2006,83,(2),148-158.
    79.Zhang,G.Z.;Li,X.L.;Jiang,M.;Wu,C.,Model system for surfactant-free emulsion copolymerization of hydrophobic and hydrophilic monomers in aqueous solution.Langmuir 2000,16,(24),9205-9207.
    80.Li,M.;Jiang,M.;Wu,C.,Fluorescence and light-scattering studies on the formation of stable colloidal nanoparticles made of sodium sulfonated polystyrene ionomers.Journal of Polymer Science Part B Polymer Physics 1997,35,(10),1593-1599.
    1.Murray,M.J.;Snowden,M.J.,The preparation,characterization and applications of colloidal microgels.Advances in Colloid and Interface Science 1995,54,73-91.
    2.Saunders,B.R.;Vincent,B.,Microgel particles as model colloids:theory,properties and applications.Advances in Colloid and Interface Science 1999,80,(1),1-25.
    3.Lopez,V.C.;Raghavan,S.L.;Snowden,M.J.,Colloidal microgels as transdermal delivery systems.Reactive & Functional Polymers 2004,58,(3),175-185.
    4.Boggs,L.J.;Rivers,M.;Bike,S.G.,Characterization and rheological investigation of polymer microgels used in automotive coatings.Journal of Coatings Technology 1996,68,(855),63-74.
    5.Sasa,N.;Yamaoka,T.,Surface-activated photopolymer microgels.Advanced Materials 1994,6,(5),417-421.
    6.Bergbreiter,D.E.;Case,B.L.;Liu,Y.S.;Caraway,J.W.,Poly(N-isopropylacrylamide)soluble polymer supports in catalysis and synthesis.Macromolecules 1998,31,(18),6053-6062.
    7.Amdt,K.F.;Kuckling,D.;Richter,A.,Application of sensitive hydrogels in flow control.Polymers for Advanced Technologies 2000,11,(8-12),496-505.
    8.Bawendi,M.G.;Carroll,P.J.;Wilson,W.L.;Brus,L.E.,Luminescence properties of CdSe quantum crystallites-resonance between interior and surface localized states.Journal of Chemical Physics 1992,96,(2),946-954.
    9.Antonietti,M.;Grohn,F.;Hartmann,J.;Bronstein,L.,Nonclassical shapes of noble-metal colloids by synthesis in microgel nanoreactors.Angewandte Chemie-International Edition In English 1997,36,(19),2080-2083.
    10.Blanco,A.;Lopez,C.;Mayoral,R.;Miguez,H.;Meseguer,F.;Mifsud,A.;Herrero,J.,CdS photoluminescence inhibition by a photonic structure.Applied Physics Letters 1998,73,(13),1781-1783.
    11.Xu,S.Q.;Zhang,J.G.;Paquet,C.;Lin,Y.K.;Kumacheva,E.,From hybrid microgels to photonic crystals.Advanced Functional Materials 2003,13,(6),468-472.
    12.Reese,C.E.;Mikhonin,A.V.;Kamenjicki,M.;Tikhonov,A.;Asher,S.A.,Nanogel nanosecond photonic crystal optical switching.Journal of the American Chemical Society 2004,126,(5),1493-1496.
    13. Debord, J. D.; Lyon, L. A., Thermoresponsive photonic crystals. Journal of Physical Chemistry B 2000, 104, (27), 6327-6331.
    14. Lyon, L. A.; Debord, J. D.; Debord, S. B.; Jones, C. D.; McGrath, J. G.; Serpe, M. J., Microgel colloidal crystals. Journal of Physical Chemistry B 2004, 108, (50), 19099-19108.
    15. Zhang, J. G.; Xu, S. Q.; Kumacheva, E., Polymer microgels: Reactors for semiconductor, metal, and magnetic nanoparticles. Journal of the American Chemical Society 2004, 126, (25), 7908-7914.
    16. Nomura, Y.; Ikeda, M; Yamaguchi, N.; Aoyama, Y.; Akiyoshi, K., Protein refolding assisted by self-assembled nanogels as novel artificial molecular chaperone. Febs Letters 2003, 553, (3), 271-276.
    17. Antonietti, M.; Wenz, E.; Bronstein, L.; Seregina, M., Synthesis and characterization of noble metal colloids in block copolymer micelles. Advanced Materials 1995, 7, (12), 1000-&.
    18. Kiser, P. F.; Wilson, G.; Needham, D., A synthetic mimic of the secretory granule for drug delivery. Nature 1998, 394, (6692), 459-462.
    19. Elaissari, A.; Ganachaud, F.; Pichot, C., Biorelevant latexes and microgels for the interaction with nucleic acids. Colloid Chemistry II 2003, 227, 169-193.
    20. Chen, L. Y.; Remondetto, G. E.; Subirade, M., Food protein-based materials as nutraceutical delivery systems. Trends in Food Science & Technology 2006, 17, (5), 272-283.
    21. Bronich, T. K.; Keifer, P. A.; Shlyakhtenko, L. S.; Kabanov, A. V., Polymer micelle with cross-linked ionic core. Journal of the America Chemical Society 2005, 127, (23), 8236-8237.
    22. Eichenbaum, G. M.; Kiser, P. F.; Dobrynin, A. V.; Simon, S. A.; Needham, D., Investigation of the swelling response and loading of ionic microgels with drugs and proteins: The dependence on cross-link density. Macromolecules 1999, 32, (15), 4867-4878.
    23. Tobita, H.; Kumagai, M.; Aoyagi, N., Microgel formation in emulsion polymerization. Polymer 2000, 41, (2), 481-487.
    24. Varga, I.; Gilanyi, T.; Meszaros, R.; Filipcsei, G.; Zrinyi, M., Effect of crosslink density on the internal structure of Poly(N-isopropylacrylamide) microgels. Journal of Physical Chemistry B 2001,105, (38), 9071-9076.
    25. Hayashi, H.; Iijima, M.; Kataoka, K.; Nagasaki, Y., pH-sensitive nanogel possessing reactive PEG tethered chains on the surface. Macromolecules 2004, 37, (14), 5389-5396.
    26. Hampton, K. W.; Ford, W. T., Styrylmethyl(trimethyl)ammonium methacrylate polyampholyte latexes. Macromolecules 2000, 33, (20), 7292-7299.
    27. Antonietti, M.; Bremser, W., Microgels: Model polymers for the cross-linked state. Macromolecules 1990, 23, (16), 3796-3805.
    28. McAllister, K.; Sazani, P.; Adam, M.; Cho, M. J.; Rubinstein, M.; Samulski, R. J.; DeSimone, J. M., Polymeric nanogels produced via inverse microemulsion polymerization as potential gene and antisense delivery agents. Journal of the American Chemical Society 2002, 124,(51), 15198-15207.
    29. Nie, L. X.; Jiang, W.; Yang, W. L.; Wang, C. C.; Fu, S. K., Preparation of acrylic microgels by modified microemulsion polymerization and phase inversion. Journal of Macromolecular Science-Pure and Applied Chemistry 2005, A42, (5), 623-631.
    30. Pich, A.; Bhattacharya, S.; Lu, Y.; Boyko, V.; Adler, H. A. P., Temperature-sensitive hybrid microgels with magnetic properties. Langmuir 2004, 20, (24), 10706-10711.
    31. Ngai, T.; Behrens, S. H.; Auweter, H., Novel emulsions stabilized by pH and temperature sensitive microgels. Chemical Communications 2005, 3, 331-333.
    32. Saunders, B. R.; Crowther, H. M.; Vincent, B., Poly[(methyl methacrylate)-co-(methacrylic acid)] microgel particles: Swelling control using pH, cononsolvency, and osmotic deswelling. Macromolecules 1997, 30, (3), 482-487.
    33. Funke, W.; Okay, O.; Joos-Muller, B., Microgels - Intramolecularly crosslinked macromolecules with a globular structure. Microencapsulation - Microgels -Iniferters 1998, 136, 139-234.
    34. Baek, K. Y.; Kamigaito, M.; Sawamoto, M., Synthesis of star-shaped copolymers with methyl methacrylate and n-butyl methacrylate by metal-catalyzed living radical polymerization: Block and random copolymer arms and microgel cores. Journal of Polymer Science Part A-Polymer Chemistry 2002,40, (5), 633-641.
    35. Saito, R.; Akiyama, Y.; Tanaka, M.; Ishizu, K., Synthesis of the flower type microgels. Colloids and Surfaces A-Physicochemical and Engineering Aspects 1999, 153, (1-3), 305-310.
    36. Butun, V.; Billingham, N. C.; Armes, S. P., Synthesis of shell cross-linked micelles with tunable hydrophilic/hydrophobic cores. Journal of the American Chemical Society 1998, 120, (46), 12135-12136.
    37. Murthy, N.; Xu, M. C.; Schuck, S.; Kunisawa, J.; Shastri, N.; Frechet, J. M. J., A macromolecular delivery vehicle for protein-based vaccines: Acid-degradable protein-loaded microgels. Proceedings of the National Academy of Sciences of the United States of America 2003, 100, (9), 4995-5000.
    38. Harada, A.; Kataoka, K., Formation of polyion complex micelles in an aqueous milieu from a pair of oppositely-charged block-copolymers with poly(ethylene glycol) segments. Macromolecules 1995,28, (15), 5294-5299.
    39. Harada, A.; Kataoka, K., Chain length recognition: Core-shell supramolecular assembly from oppositely charged block copolymers. Science 1999, 283, (5398), 65-67.
    40. Fukushima, S.; Miyata, K.; Nishiyama, N.; Kanayama, N.; Yamasaki, Y.; Kataoka, K., PEGylated polyplex micelles from triblock catiomers with spatially ordered layering of condensed pDNA and buffering units for enhanced intracellular gene delivery. Journal of the America Chemical Society 2005, 127, (9), 2810-2811.
    41. Thunemann, A. F.; Muller, M; Dautzenberg, H.; Joanny, J. F. O.; Lowne, H., Polyelectrolyte complexes. Advances in Polymer Science 2004,166, 113-171.
    42. Damodaran, S.; Paraf, A., In Food Proteins and Their Applications, Marcel Dekker, Inc: New York, 1997; Vol. 80, pp 1-665.
    43. Oakenfull, D.; Pearce, J.; Burley, R. W., Protein Gelation. In Food Proteins and Their Applications, Damodaran, S.; Paraf, A., Eds. Marcel Dekker, Inc.: New York, 1997; Vol. 80, pp 111-142.
    44. Weijers, M.; van de Velde, F.; Stijnman, A.; van de Pijpekamp, A.; Visschers, R. W., Structure and Theological properties of acid-induced egg white protein gels. Food Hydrocolloids 2006, 20, (2-3), 146-159.
    45. Renard, D.; Robert, P.; Lavenant, L.; Melcion, D.; Popineau, Y.; Gueguen, J.; Duclairoir, C.; Nakache, E.; Sanchez, C.; Schmitt, C., Biopolymeric colloidal carriers for encapsulation or controlled release applications. International Journal of Pharmaceutics 2002, 242, (1-2), 163-166.
    46. Patil, G. V., Biopolymer albumin for diagnosis and in drug delivery. Drug Development Research 2003, 58, (3), 219-247.
    47. Seal, B. L.; Panitch, A., Physical polymer matrices based on affinity interactions between peptides and polysaccharides. Biomacromolecules 2003, 4, (6), 1572-1582.
    48. Sanchez, C.; Renard, D., Stability and structure of protein-polysaccharide coacervates in the presence of protein aggregates. International Journal of Pharmaceutics 2002, 242, (1-2), 319-324.
    49. Langer, K.; Balthasar, S.; Vogel, V.; Dinauer, N.; Von Briesen, H.; Schubert, D., Optimization of the preparation process for human serum albumin (HSA) nanoparticles. InternationalJournal of Pharmaceutics 2003, 257, (1-2), 169-180.
    50. Clark, J.; Singer, E. M.; Korns, D. R.; Smith, S. S., Design and analysis of nanoscale bioassemblies Biotechniques 2004, 36, 992-1001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700