体积拉伸流变挤出机制备PLA/PBS增强塑料及其结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物的共混改性是实现高分子材料高性能化的一条重要的途径。在研究与开发高性能聚合物新材料的同时,兼顾资源、环境、能源等三大问题,使高分子产业实现可持续发展。开发新型的绿色来源、高性能、可生物降解的聚合物新材料高分子材料利用技术是一个重要的发展趋势。其中一个值得关注的方法是在生物可降解高分子共混物加工成型过程中,利用外场变化以及物理、化学手段,使分散相原位取向变形,实现共混材料的原位增强,从而简便、高效、环保地实现聚合物材料的高性能化。
     本论文选取了PLA和PBS为研究对象,利用体积拉伸形变支配的叶片塑化输运设备,通过调整加工过程中的工艺参数与组分参数,成功制备了PLA/PBS全生物可降解原位增强塑料,避免了传统石油基原位增强材料对环境和资源造成破坏的缺点。而且,本文还系统研究了共混物的原位增强,通过SEM观察PLA/PBS增强塑料加工后的微结构变化,利用DSC、TGA、WAXD与DMA等手段多角度对共混塑料的结晶行为与热性能进行测试,并且,还通过力学试验全方位表征了拉伸性能、弯曲性能和冲击性能。研究结果表明,共混物的拉伸模量和弯曲强度较纯PBS最大提升30.3%和40.6%,并使分散相PLA以长条状和椭圆状均匀分散于基体PBS中,成功实现了加工过程中共混物的原位增强。
     另外,研究发现,通过先高温-后低温的两次叶片挤出机加工后,共混物的分散相以长条状和椭圆状均匀分布在基体中,并且其显示出最优良的拉伸和冲击性能。而且,研究还发现热压过程并不会对共混物的微观形貌造成太大的影响。通过改变加工流场发现,螺杆挤出机制备的共混物分散相在基体中以圆形呈现,而叶片挤出机加工的则呈现长条状或椭圆状,其共混物的拉伸性能与冲击性能均优于单螺杆挤出机制备的,冲击强度同比增长最大幅度为69.31%。
     分析测试表明,挤出模头和挤出速率的变化,对共混物的微观形貌、结晶行为和力学性能都有显著的影响。当模头长径比为15或挤出速率为60rpm时,所对应的共混物的分散相形貌呈现长条状和椭圆状,对共混物起到很好的增韧增强效果。
     在加工工艺参数恒定后,改变共混物组分配比后发现,取向变形后的PLA并未影响PBS在共混物中的晶型。增加PLA的含量,共混物的弯曲性能和拉伸模量均得到提高,弯曲模量最大增加了24.4%。另外,交联后,分散相与基体之间的界面粘结得到提高,PBS分子链的结晶性能受到影响,共混物的耐热性能、拉伸强度、断裂伸长率和冲击强度均高于未交联的共混物,拉伸强度同比最大增幅达16.87%。同时,研究还得知,PLA和PBS的熔体流动速率分别为7.72g/10min和4.5g/10min时,PLA在PBS中以长条状和椭圆状呈现。
Blending modification is a major route to enhance performance of polymer materials.With the research and development of high performance polymer materials, the problems ofresources, environment and energy must be considered, in order to realize sustainabledevelopment of polymer industry. Therefore, it is a development trend to exploit a novel highperformance biodegradable polymer from renewable resource. One of the promising methodsof worth attention is employed to generate some deformed dispersed phase in situ duringbiodegradable polymer blending processing with physical and chemical means or externalfield change. This method puts forward a simple, effective and clean process to enhanceperformance of polymer materials.
     In this paper, PLA and PBS are applied. The PLA/PBS truly biodegradable in-situreinforced plastic are prepared by Vane Extruder and changes disadvantages of traditionalpetroleum in-situ reinforcement materials, which destroying ecology environment andresources. Furthermore, the mechanism of in-situ reinforcement is systematic investigated.Morphologies of prepared blends are characterized by scanning electron microscope (SEM).Differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angleX-ray diffraction (WAXD) and dynamic mechanical analysis (DMA) are used to multiangularcharacterize the thermal behavior and crystalline structure of the blends. The mechanicalproperties of tensile, flexural and impact properties are examined. The results show that theincrease amplitudes of tensile modulus and flexural strength of blends are respectively30.3%and40.6%, and the PLA phase dispersed uniformly in PBS matrix displays oval shape andlong strip structure, implying that the in-situ reinforcement of blends was realized duringprocess.
     In addition, the blend prepared by Vane Extruder under initial higher temperaturefollowing by lower temperature process exhibit optimum tensile and impact properties, andthe PLA phase dispersed uniformly in PBS matrix displays oval shape and long strip structure.Moreover, the effect of hot press on morphology of blends is not detected. In addition, thedispersed phase of blends prepared by single screw extruder shows round shape in matrix, andthe tensile and impact properties are inferior to the blends of Vane Extruder, which impactstrength maximum increases by approximately69.31%.
     The analysis and testing show that the change of extrusion die head and extrusion ratehas great influence on the mechanical properties, crystallization behavior and morphology ofthe PLA/PBS blends. The blends associated with die head aspect ratio of15or extrusion rate of60rpm display ideal toughening and reinforcing effect. And the dispersed phase disperseduniformly in matrix displays oval shape and long strip structure.
     At a fixed technological process, with the increase of PLA contents, PLA phase in PBSmatrix was shown as fibrillar structure, and the flexural properties and Young’s modulus ofblends increased as well, which increase amplitudes of flexural strength is24.4%. However,the crystalline of PBS is not change after adding PLA. Furthermore, the DCP can improve theinterfacial adhesion between PLA and PBS phase and effect crystallization capacity of PBScomponent, resulting in the higher heat resisting properties, tensile strength, elongation atbreak and notched impact strength for cosslinked PLA/PBS blends, and the tensile strengthincreases maximum by16.87%. In addition, melt flow rate proportion of disperse phase andcontinuous phase exert an important role in morphology of disperse phase. Moreover, theresults indicate that the PLA displays oval shape and long strip structure in PBS when meltflow rate proportions of disperse phase and continuous phase are respectively7.72g/10minand4.5g/10min.
引文
[1]罗河胜.塑料工艺与施用配方[M].广州:广东科技出版社,2005:1-8
    [2]何曼君.高分子物理[M].上海:复旦大学出版社,2007:1
    [3]徐明双,李青山,刘冬.可降解塑料的研究进展[J].塑料制造,2009,5:81-85
    [4]钱伯章,朱建芳.生物可降解塑料发展现状与前景[J].现代化工,2008,28(11):82-87
    [5] Kumar M., Mohanty S., Nayak S. K., et al. Effect of glycidyl methacrylate(GMA) on thethermal, mechanical and morphological property of biodegradable PLA/PBAT blend andits nanocomposites [J]. Bioresour. Technol.,2010,101:8406-8416
    [6] Pradhan R., Misra M., Erickson L., et al. Compostability and biodegradation study ofPLA-wheat straw and PLA-soy straw based green composites in simulated compostingbioreactor [J]. Bioresour. Technol.,2010,101:8489-8492
    [7]袁晓燕.生物可降解塑料发展动态[J].长沙大学学报,2008,22(5):46-48
    [8]罗明典.生物可降解塑料制品的发展趋势[J].现代化工,1998,2:14-16
    [9]易昌凤,徐祖顺,程时远,刘书银.生物可降解高分子材料[J].功能材料,2000,31:23-31.
    [10] Oksmana K., Skrifvarsb M., Selin J. F. Natural fibres as reinforcement in polylactic acid(PLA) composites [J]. Compos. Sci. Technol.,2003,63:1317-1327
    [11] Teramoto N., Urata K., Ozawa K., et al. Biodegradation of aliphatic polyester compositesreinforced by abaca fiber [J]. Polym. Degrad. Stab.,2004,86:401-410
    [12] Shibata M., Ozawa K., Teramoto N., et al. Biocomposites Made from Short Abaca Fiberand Biodegradable Polyesters [J]. Macromol. Mater. Eng.,2003,288:35-45
    [13] Nyambo C., Mohanty A. K., Misra M. Effect of Maleated Compatibilizer onPerformance of PLA/Wheat Straw-Based Green Composites [J]. Macromol. Mater. Eng.,2011,296:710-721
    [14] Dchnabel W. Polymer Degradation Macmillam Publishing Co. Inc New York,1981
    [15]谢凯,陈一民,盘毅,等.聚酯型生物降解性高分子材料的现状及展望[J].材料导报,1998,12(2):39-43
    [16] Takahashi H., Hayakawa T., Ueda M. Convenient synthesis of poly(butylene succinate)catalyzed by distannoxane [J]. Chem. Lett.,2000,6:684-685
    [17] Marija S., Nikolic, Jasna D. Synthesis and characterization of biodegradablepoly(butylene succinate-co-butylene adipate)s [J]. Polym. Degrad. Stab.,2011,74:263-270
    [18]利民. PBS及其共聚物的合成与表征[D].四川大学硕士学位论文,2004
    [19]郭宝华,丁慧鸽,徐晓琳,等.生物可降解共聚物聚丁二酸/对苯二甲酸丁二醇酯(PBST)的序列结构及结晶性研究[J].高等学校化学学报,2003,24(12):2312-2316
    [20] Xu Y. X., Xu J., Liu D. H., et al. Synthesis and characterization of biodegradablepoly(butylene succinate-co-propylene succinate)s [J]. J. Appl. Polym. Sci.,2008,109(3):1881-1889
    [21] Billmeyer F. W., Eckard A. D. Synthesis of Linear Aliphatic Polyesters [J]. Macromolec.,1969,2:103
    [22] Schindler A., Hibionada Y. M., Pitt. Aliphatic polyesters. III. Molecular weight andmolecular weight distribution in alcohol-initiated polymerizations of-caprolactone [J]. J.Polym. Sci. Polym. Chem. Ed.,1982,20:319
    [23] Linko Y. Y., Wang Z. L., Seppala J. Lipase-catalyzed linear aliphatic polyester synthesisin organic solvent [J]. Enzyme and Microbial Technology,1995,17(6):506-511
    [24] Shirahama H., Shiomi M., Sakane M., et al. Biodegradation of Novel Optically ActivePolyesters Synthesized by Copolymerization of (R)-MOHEL with Lactones [J].Macromolecules,1996,29:4821
    [25] Dae K. S., Yong K. S. Synthesis and characterization of biodegradablepoly(1,4-butanediol succinate)[J]. J. Appl. Polym. Sci.,2003,56:1381-1395
    [26]朱常英.生物降解型高分子量高熔点脂肪族聚酯的合成及性能研究[D].兰州硕士学位论文,2001
    [27] Young H. P., Chang G. C. Synthesis and characterization of poly[(butylenesuccinate)-co-(butylene terephthalate)]-b-poly(tetramethylene glycol) segmented blockcopolymer [J]. J. Appl. Polym. Sci.,2001,79:2067-2075
    [28] Audery A. D., Dirk W. G., Jan F. Poly(ethylene oxide)/poly(butylene terephthalate)segmented block copolymers: the effect of copolymer composition on physicalproperties and degradation behavior [J]. Polym.,2001,42(23):9335-9338
    [29] Okada M. Chemical syntheses of biodegradable polymers [J]. Prog. Polym. Sci.,2002,27:87-133
    [30] Lee S. H., Lim S. W., Lee K. H. Properties of potentially biodegradable copolyesters of(succinic acid-1,4-butanediol)/(dimethyl terephthalate-1,4-butanediol)[J]. Polym. Int.,1999,48(9):861-867
    [31] Muller R. J., Kleeberg I, Deckwer W. D. Biodegradation of polyesters containingaromatic constituents [J]. J. Biotechn.,2001,86(2):87-95
    [32] Kin Y. J., Park O. Miscibility and Biodegradability of Poly(ButyleneSuccinate)/Poly(Butylene Terephthalate) Blends [J]. J. Envirom. Polym. Deg.,1999,7(1):63
    [33] Aroni S., Mrinal B., Kim A. S. Creep in injection molded starch/synthetic polymer blends[J]. Mater. Sci. Eng.,2002,338(1):60-69
    [34] Ratto J. A., Stenhouse P. J., Auerbach M. Processing, performance and biodegradabilityof a thermoplastic aliphatic polyester/starch system [J]. Polym.,1999,40(24):6777-6788
    [35] Tatsushima T., Ogata N., Nakane K., et al. Environmental stress cracking ofpoly(butylene succinate)/cellulose triacetate blend films [J]. J. Appl. Polym. Sci.,2003,87(3):510-515
    [36]任杰.聚乳酸的国内外研发、生产现状及应用前景[J].产业前沿,2005,6:25-27
    [37]刘佳,张薇.新型生物降解材料聚乳酸综述[J].贵州化工,2008,6(33):18-20
    [38]郝国庆.可降解高分子材料聚乳酸综述[J].重点实验室建设,2006,10(10):13-14
    [39]李洪权,全大萍,廖凯荣,等.聚乳酸骨科内固定材料[J].化工新型材料,1999,27(8):3-8
    [40] Pearce E. M. Contemporary Topic in Polymer Science,1977,2:251
    [41] Partio E. K., Bostman O., Hirrensalo E., et al. Act a OrthopScanol Suppl,1990,237:86
    [42]朱久进,王远亮,胡勇,等.聚乳酸的合成、微观结构及性能[J].包装工程,2005,26(2): l-3
    [43]吴苏琴,李艳霞,龚磊,等.聚乳酸的研究现状及发展前景[J].江西化工,2006,4:6-8
    [44]张倩,梁海林,张小华,等.生物降解材料聚丙交酯的合成[J].塑料工业,2002,30(2):10-12
    [45]林朝朋,许晓春.计算机视觉检测技术在食品物流中的应用与展望[J].食品科学,2006,11:543-546
    [46]盛敏刚,严永新,张金花,等.环境友好型生物降解材料聚乳酸的性能研究[J].中国农学通报,2007,23(9):499-503
    [47] Krocheldorf H. R. Synthesis and application of polylactides [J]. Chemosphere,2001,43(1):49-54
    [48]胡玉群,陈君莉,张顺花,等.聚乳酸(PLA)纤维在湿处理条件下的强力衰减规律[J].浙江理工大学学报,2006,03-07
    [49]侯树家.聚乳酸/聚丁二酸丁二醇酯共混体系的改性研究[D].郑州大学,硕士学位论文,2010
    [50] Coleman M. M., Moskala E. J. FTi.r. studies of polymer blends containing thepoly(hydroxy ether of bisphenol A) and poly(ε-caprolactone)[J]. Polym.,1983,24(3):251-257
    [51] Eeink M. J. Advances in Drug Delivery Systems,1987:225
    [52] Thomson R. C., Giordano G. G., Collier J. H., et al. Manufacture and characterization ofpoly(α-hydroxy ester) thin films as temporary substrates for retinal pigment epitheliumcells [J]. Biomater.,1996,17(3):321
    [53] Dorgan J. R., Lehermeier H. J., Palade L. I. Polylactides: properties and prospects of anenvironmentally benign plastic from renewable resources [J]. Ciero J. MacromolSymp.,2001,175:55-64
    [54]康宏亮,陈成,董丽松.聚乳酸共混体系的研究进展[J].高分子通报,2004,10(5):10-19
    [55]张国栋,冯新德,顾忠伟.端基含葡氨糖衍生物聚乳酸的合成与表征[J].高分子学报,1998,8(4):509-513
    [56]由英才,朱常英,焦京亮等.淀粉/D, L-丙交酯接枝共聚物的合成和生物降解性能研究[J].高分子学报,2000,12(6):746-750
    [57] Joziasse C. A. P., Veenstra H., Topp M. D. C., et al. Rubber toughened linear andstar-shaped poly(D, L-lactide-co-glycolide): synthesis, properties and in vitrodegradation [J]. Polymer,1998(39):467-473
    [58]宋谋道,朱吉亮,张邦华,等.聚乙二醇改性聚乳酸的研究[J].高分子学报,1998,8(4):454-458
    [59]张倩,虞鑫.交替共聚聚乙丙交酯的合成及表征[J].塑料工业,2003,5(31):5-7
    [60]赵耀明,周玲,汪朝阳.聚(己内酯-乳酸)的直接熔融法合成及表征[J].华南理工大学学报,2006,34(7):7-1
    [61] Shi S. X., Xia Y. Z., Li X. Y., et al. Synthesis and biodegradation of a novel amphiphilicdib lock copolymer [J]. China Synthetic Rubber Industry,2004,27(6):384-388
    [62] Park J. W., Im S. S., Kim S. H., et al. Biodegradable polymer blends of poly(L-lactic acid)and gelatinized starch [J]. Polym. Eng. Sci.,2000,40(12):2539-2544
    [63] Denise C., Li N. Maleation of polylactide (PLA) by reactive extrusion [J]. J. Appl. Polym.Sci.,1999,72(4):477-487
    [64] Wang H., Sun X. Z., Seib P. Strengthening blends of poly(lactic acid) and starch withmethylenediphenyl diisocyanate [J]. J. Appl. Polym. Sci,2001,82:1761-1773
    [65] Zhang L. L., Goh S. H., Lee S. Y. Miscibility and crystallization behaviour ofpoly(L-lactide)/poly(p-vinylphenol) blends [J]. Polymer,1998,39(20):4841-4855
    [66] Zhang L. L., Goh S. H., Lee S. Y. Miscibility and Phase Behavior ofPoly(D,L-lactide)/Poly (p-vinylphenol) Blends [J]. J. Appl. Polym. Sci.,1998,70:811-822
    [67] Anderson K. S., Lim S. H., Hillmyer M. A. Toughening of polylactide by melt blendingwith linear low-density polyethylene [J]. J. Appl. Polym. Sci.,2003,89:3757-3766
    [68]殷敬华,莫志深.现代高分子物理学[M].北京:科学出版社,2001:265-268
    [69] Park J. W., Im S. S. Phase behavior and morphology in blends of Poly(L-lacticacid) andPoly(butylene succinate)[J]. J. Appl. Polym. Sci.,2002,6:47-55
    [70] Bhatia A., Gupta R. K., Bhattacharya S. N., et al. Compatibility of biodegradablepoly(lactic acid)(PLA) and poly(butylene succinate)(PBS) blends for packingapplication [J]. Korea-Aust. Rheol. J.,2007,19(3):125-131
    [71] Yokohara T., Yamaguchi M. Structure and properties for biomass-based polyester blendsof PLA and PBS [J]. Eur. Polym. J.,2008,44:677-685
    [72] Gonzalez-Nunez R., Arellano M., Moscoso F. J., et al. Determination of a limitingdispersed phase concentration for coalescence in PA6/HDPE blends under extensionalflow [J]. Polymer,2001,42(12):5485-5489
    [73] Min K., White J. L. Development of phase morphology in incompatible polymer blendsduring mixing and its variation in extrusion [J]. Polym. Eng. Sci.,1984,24:1327-1332
    [74] Wu S. Chain structure, phase morphology, and toughness relationships in polymers andblends [J]. Polym. Eng. Sci.,1990,30(13):753-761
    [75] He J. S. The proceedings of the sixth meeting of the Polymer Processing Society [J],Shanghai,2000:313-321
    [76] Kiss G. In Situ Composites: Blends of Isotropic Polymers and Thermotropic LiquidCrystalline Polymers [J]. Polym. Eng. Sci.,1987,27(6):410-423
    [77] Blizard K. G., Baird D. G. The Morphology and Rheology of Polymer Blends Containinga Liquid Crystalline Copolyester [J]. J. Polym. Eng. Sci.,1987,27(9):653-659
    [78] Siegmann A., Daganet A., Kenig S. Polyblends Containing a Liquid Crystalline Polymer[J]. J.Polym.,1985,26(9):1325-1332
    [79] Bhama S., Stupp. S. I. Liquid Crystal Polymer Carbon Fiber Composites [J]. J. Polym.Eng. Sci.,1990,30(4):230-235
    [80]李忠明. GEP/PO共混物的原位成纤及其形态-结构与性能[D].四川大学博士学位论文,2003
    [81]李忠明,权慧,杨鸣波,等. TP/TP原位微纤化共混物的研究进展[J].中国塑料,2005,19(10):1-8
    [82]徐慧玲,李贵勋,代佳丽,等.聚丙烯基原位成纤复合材料研究进展[J].工程塑料应用,2009,37(7):80-85
    [83] Pesneau I., Ait-Kadi A., Buosmina M. Form Polymer Blends to In situ Polymer/PolymerComposites: Morphology Control and Mechanical Properties [J]. Polym. Eng. Sci.,2002,42(10):1990-2003
    [84]沈经纬,黄文艺,左胜武,等. PP/PET原位成纤复合材料的增强效应[J].复合材料学报,2004,21(4):33-39
    [85]黎学东,陈鸣才,黄玉惠,等. PP/PA6原位成纤复合材料形态与力学性能[J].复合材料学报,1998,15(3):62-67
    [86] Li Z. M., Yang M. B., Huang R., et al. In-situ Composite Based on Poly(ethyleneterephthalate), Polyamide and Polyethylene with Microfibers Formed through Extrusionand Hot Stretching [J]. J. Master. Sci. Technol,2002,18(5):419-422
    [87] Li Z. M., Yang M. B., Feng J. M., et al. Morphology of In situ Poly(ethyleneterephthalate) Polyethylene Microfiber Reinforced Composite Formed via Slit-dieExtrusion and Hot-stretching [J]. Master. Res. Bull.,2002,37(13):2185-2197
    [88] Li Z.M., Yang M.B., Lu A., et al. Tensile Properties of Poly(ethylene terephthalate)Polyethylene In-situ Microfiber Reinforced Composite Formed via Slit Die Extrusionand Hot-Stretching [J]. Mater. let.,2002,56(5):756-762
    [89] Li Z. M., Yang W., Xie B.H., et al. Morphology and Tensile Strength Prediction of In situMicrofibrillar Poly(ethylene terephthalate)/Polyethylene Blends Fabricated via Slit-dieExtrusion-hot Stretching-quenching [J]. Macromol. Mater. Eng.,2004,289(4):349-354
    [90] Li Z.M., Yang W., Huang R., et al. Essential Work of Fracture Parameters of In-situMicrofibrillar Poly(ethylene terephthalate)/Polyethylene Blend: Influences of BlendComposition [J]. Macromol. Mater. Eng.,2004,289(5):426-433
    [91] Fakirov S., Evstaiev M., Petrovich S. Microfibrillar Reinforced Composites from Binaryand Ternary Blends of Polyesters and Nylon6[J]. Macromol.,1993,26(19):5219-5266
    [92] Fakirov S., Evstaiev M., Petrovich S. From polymer Blends to Microfibrillar ReinforcedComposites [J]. Polymer Blends: Performance,1999(40):455-464
    [93] Fakirov S., Kamo H., Evstatiev M., et al. Microfibrillar Reinforced Composites FromPET/LDPE Blends: Morphology and Mechanical Properties [J]. J. Macromol. Sci-Phys.,2004,43(4):775-789
    [94] Fakirov S., Evstaiev M., Schultz J. M. Microfibrillar Reinforced Composite From DrawnPoly(ethylene terephthalate)/Nylon-6Blend [J]. Polym.,1993,34(22):4669-4679
    [95] Evstaiev M., Fakirov S., Friedrich K. Microfibrillar reinforced composites-anotherapproach to polymer blends processing [J]. In structure development during polymerprocessing,2000:311-325
    [96]张爽,冯钠,刘俊龙,等.原位成纤复合材料研究进展[J].橡塑技术与装备,2005,31(12):25-29
    [97] Valenza A., La Mzntia F. P., Paci M., et al. Processing and properties ofpolycarbonate/liquid crystal polymer blends [J]. Int. Polym. Proc.,1991,6:247
    [98]徐鸿升. GEP/PE原位微纤化共混物形态与流变性能研究[D].四川大学硕士学位论文,2006
    [99] Traugott T. D. Mechanical compatibilization of high density polyethylene-poly(ethyleneterephthalate) blends [J]. J. Appl. Polym. Sci.,1983,28:2947-2955
    [100] Kalfoglou N. K., Skafidas D. S., Kallitsis J. K. Compatibilization of blends ofpoly(ethylene terephthalate) and linear low density polyethylene with the ionomer ofpoly(ethylene-co-methacrylic acid)[J]. Polymer,1994,35(17):3624
    [101] Seo Y., Kim K. U. Simultaneous Interpenetrating Polymer Networks of Expoxy andN-Phenylmaleimide-Styrene Copolymers [J]. Polym. Eng. Sci.,1998,4(38):596-604
    [102] Seo Y., Kim B. Morphology and Properties of Compatibilized Ternary Blends (Nylon6/a thermotropic Liquid Crystalline Polymer/a functionalized Polypropylene) Processedunder Different Conditions [J]. Polym.,1999,40:4441-4450
    [103] Yang M. B., Li Z. M., Feng J. M. Studies on high density polyethylene/polycarbonateblend system compatibilized with low density polyethylene grafted diallyl bisphenol Aether [J]. Polym. Eng. Sci.,1998,38:678-683
    [104] Li Z. M., Yang M. B., Feng J. M., et al. Fibre formation based toughening inpolycarbonate/polyethylene alloy compatibilized with diallyl bisphenol A ether graftedpolyethylene [J]. J. Mater. Sci.,2001,36:2013-2020
    [105] Wills J. M., Favis B. D. Processing-morphology relationships of compatibilizedpolyolefin/polyamide blends. Part I: The effect of a lonomer compatibilizer on blendmorphology [J]. Polym. Eng. Sci.,1988,28:1416-1425
    [106]杨鸣波,李忠明,冯建民,等.含二烯丙基双酚A醚相容剂对HDPE/PC共混体系的影响[J].Acta Polymerica Sinica,1999,1(1):113-117
    [107]益小苏,赵高明,王惠民. PES/TLCP共混物的加工性能及其原位增强特性[J].高分子学报,1995,1:109-113
    [108] Chen G. X., Kim H. S., Kim E. S., et al. Compatibilization-like effect of reactiveorganoclay on the poly(L-lactide)/poly(butylene succinate) blends [J]. Polym.,2005,46:11829-11836
    [109] Harada M., Ohya T., Iida K., et al. Increased impact strength of biodegradablepoly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as areactive processing agent [J]. J. Appl. Polym. Sci,2007,106:1813-1820
    [110]倪玉山,王云飞,李兵耀,等.热致液晶高分子聚酯醚砜及其共聚物流变性能的研究[J].高分子材料科学与工程,1994,10(5):87-92
    [111] Xu B., Zhang Y., Liu S. W., et al. Reinforcing and Toughening on Poly(ether imide) by aNovel Thermo Tropic Liquid Crystalline Poly(ester-imide-ketone) With Low Content[J]. Polym. Eng. Sci.,2009,10:2046-2053
    [112] Fisa B., Favis B. D. Injection molding of polypropylene/polycarbonate blends [J].Polym. Eng. Sci.,1990,30:1052-1061
    [113] Sayant S., Sauvarop B. L., Geoffrey R., et al. Thermotropic Liquid Crystalline Polymer(Rodrun LC5000)/Polypropylene in situ Composite Films: Rheology, morphology,molecular orientation and Tensile Properties [J]. Polym.,2003,44:3407-3415
    [114] Cogswell F. N. Recent Advances in Liquid Crystalline Polymers [J].1985,10:172
    [115]黎学东,陈鸣才,黄玉惠,等.聚丙烯/尼龙6原位复合材料的形态与表面、界面特性[J].功能高分子学报,1997,4:536-541
    [116]郁锋,卢秀萍.原位成纤复合材料进展[J].高分子通报,2001,4:31-37
    [117]程奎,沈经纬.热塑性聚合物原位成纤研究进展[J].塑料工业,2004,32(6):8-13
    [118] Min K., White J. L. Development of phase morphology in incompatible polymer blendsduring mixing and its variation in extrusion [J]. Polym. Eng. Sci.,1984,24:1327-1334
    [119] Favis B. D., Therrient D. Factors influencing structure formation and phase size in animmiscible polymer blend of polycarbonate and polypropylene prepared by twin-screwextrusion [J]. Polym.,1991,32:1474-1483
    [120] Seppala J. V., Heino M. T., Kapanen C. Injection-moulded blends of a thermotropicliquid crystalline polymer with polyethylene terephthalate, polypropylene, andpolyphenylene sulfide [J]. J. Appl. Polym. Nnn. Sci.,1992,4:1051-1064
    [121] Graebling D., Muller R. Determination of interfacial tension of polymer melts bydynamic shear measurements [J]. Colloids and Surf.,1991,55:89-96
    [122] Graebling D., Benkira A., Gallot Y., et al. Dynamic viscoelastic behaviour of polymerblends in the melt-experimental results for PDMS/POE-DO, PS/PMMA and PS/PEMAblends [J]. Euro. Polym. J.,1994:330-301
    [123] Palierne J. F. Linear rheology of viscoelastic emulsions with interfacial tension [J].Rheol. Acta,1990,29:204-209
    [124] Machiels A. G. C., Busser R. J., et al. The interfacial tension between a thermotropicliquid crystalline copolyester and polyethersulfone: A comparison of methods [J].Polym. Eng. Sci.,1998,38:1536-1544
    [125]黎学东,陈鸣才,黄玉惠,等. PP/PA6原位成纤复合材料加工条件对性能的影响[J].复合材料学报,1998,15(2):62-67
    [126] Taylor G. I. Proc. R. Sci.,1954,226:34
    [127] Graebling D., Muller R., Paliene J. F. Linear viscoelastic behavior of some incompatiblepolymer blends in the melt. Interpretation of data with a model of emulsion ofviscoelastic liquids [J]. Macromol.,1993,26:320-329
    [128]杨军,王迪珍,王可信,等. PP/UHMWPE原位成纤复合材料的混炼及成型工艺研究[J].中国塑料,1999,13(11):34-39
    [129] Li X. D., Chen M. C, Huang Y. H., et al. In-situ Generation of Polyamide-6Fibrils inPolypropylene Processed With a Single Screw Extruder [J]. Polym. Eng. Sci.,1999,39(5):881-885
    [130] Wu S. Chain structure, phase morphology, and toughness relationships in polymers andblends [J]. Polym. Eng. Sci.,1990,30(13):753-761
    [131] Fisa B., Favis B. D. Injection molding of polypropylene/polycarbonate blends [J].Polym. Eng. Sci.,1990,30:1052-1059
    [132] Turek D. E., Simon G. P. Processing/property relationships of a thermotropiccopolyester: Effect of capillary die aspect ratio [J]. Polym.,1993(34):2750-2762
    [133] Gheluwe P. V., Favis B. D., Chalifoux J. P. Morphological and mechanical properties ofextruded polypropylene/nylon-6blends [J]. J. Mater. Sci,1988,23:3910
    [134]瞿金平.聚合物动态塑化成型加工理论与技术[M].北京:科学出版社,2005
    [135] Qu J. P., Cai Y. H. Experimental Studies and Mathematical Modeling of Melt-PulsedConveying in Screw Extruders [J]. Polym. Plast. Technol. Eng.,2006,45(10):1137-1142
    [136] Qu J. P., Zeng G. S., FengY. H., et al. Effect of Screw Axial Vibration on PolymerMelting Process in Single-Screw Extruders [J], J. Appl. Polym. Sci.,2006,100(5):3860-3876
    [137] Qu J. P., Shi B. S., Feng Y. H., et al. Dependence of Solids Conveying on Screw AxialVibration in Single Screw Extruders [J], J. Appl. Polym. Sci.,2006,102(3):2998-3007
    [138] Qu J. P., Feng Y. H., He H. Z., et al. Effects of the Axial Vibration of Screw onResidence Time Distribution in Single-Screw Extruders [J]. Polym. Eng. Sci.,2006,46(2):198-204
    [139]瞿金平.基于拉伸流变的高分子材料塑化输运方法及设备[P].中国专利申请号:200810026054.X,2008
    [140] Qu J. P., Liu L. M., Tan B., et al. Effect of dynamical converging channels on fiberorganization and damage during vane extrusion of sisal fiber-reinforced polypropylenecomposites [J]. Polym. Compos.,2012,33(2):185-191
    [141] Qu J. P., Yang Z. T., Yin X. C., et al. Characteristics study of polymer melt conveyingcapacity in vane plasticization extruder [J]. Polym. Plast. Technol. Eng.,2009,48(12):1269-1274
    [142]刘廷华.聚合物成型机械[M].北京:中国轻工业出版社,2005:1-44
    [143]吴大鸣,刘颖,李晓林,等.精密挤出成型原理及技术[M].北京:化学工业出社,2004
    [144]劳温代尔.塑料挤出[M].第2版.陈文瑛等译.北京:中国轻工业出版社,1996:160-243
    [145] Zhu F. H., Chen L. Q. Studies on the theory of single-screw plasticating extrusion [J].Polym. Eng. Sci.,1991,31:1113-1116
    [146] Chan C. Plasticating single-screw extrusion theory [J]. Polym. Eng. Sci.,1971,11:93-98
    [147] Tadmor Z. Fundamentals of Plasticating Extrusion. Part I: A Theoretical Model forMelting [J]. Polym. Eng. Sci.,1966,6(3):185-190
    [148]杨智韬.聚合物叶片挤出机熔体正位移输送和混合特性研究[D].广州:华南理工大学博士学位论文,2009
    [149]瞿金平.电磁式聚合物动态注射成型方法及装置[P].中国专利ZL96108387.5,1999;美国专利005951928A,1999;俄罗斯专利2145543,2000;欧洲专利0818298,2000;澳大利亚专利711248,2000
    [150]瞿金平.聚合物电磁动态塑化挤出方法及设备[P].中国专利90101034.0,1990;美国专利5217302,1993;欧洲专利044306B1,1995
    [151] Qu J. P., Cai Y. H. Experimental Studies and Mathematical Modeling of Melt-PulsedConveying in Screw Extruders [J]. Polym. Plast. Technol. Eng.,2006,45(10):1137-1142
    [152]瞿金平.聚合物塑化挤出新概念[J].华南理工大学学报,1992,20(4):1-8
    [153]赵晓强.基于拉伸流变的聚合物塑化输运过程能耗特性研究[D].广州:华南理工大学博士学位论文,2012
    [154] Rauwendaal C., Osswald T., Gramann P., et al. Design of dispersive mixing devices [J].Int. Polym. Proc.,1999,14(1):28-34
    [155]刘树荣.叶片塑化输运中物料由固熔体系向粘流态转变的模型化研究[D].广州:华南理工大学硕士学位论文,2012
    [156]赵永清.植物纤维聚烯烃复合材料体积拉伸制备加工技术研究[D].广州:华南理工大学博士学位论文,2012
    [157]刘力铭.叶片塑化输运中物料由散体向实体变化的模型[D].广州:华南理工大学硕士学位论文,2012
    [158] Cogswell F. N. Converging flow of polymer melts in extrusion dies [J]. Polym. Eng.Sci.,1972,12(1):64-73
    [159] Kenig S. Fiber orientation development in molding of polymer composites [J]. Polym.Compos.,1986,7(1):50-55
    [160]董炎明.高分子材料实用剖析技术[M].北京:中国石化出版社,1997
    [161]马德柱,何平笙,徐种德,等.聚合物的结构与性能[M].北京:科学出版社,2008
    [162] Chen K. Q., Li J., Ma J. F., et al. Succinic acid production by Actinobacillussuccinogenes using hydrolysates of spent yeast cells and corn fiber [J]. Bioresour.Technol.,2011,102:1704-1712
    [163] Nugroho P., Mitomo H., Yoshii F., et al. Improvement of Processability of PCL and PBSBlend by Irradiation and its Biodegradability [J]. Macromol. Mater. Eng.,2001,286:316-322
    [164] Fox T. G. Bull. Am. Phys. Soc.,1956,1:123
    [165] Gordon M., Taylor J. S. J. Appl. Chem.,1952,2:493-500
    [166] Shibata M., Inoue Y., Miyoshi M. Mechanical properties, morphology, andcrystallization behavior of blends of poly(l-lactide) with poly(butylenesuccinate-co-l-lactate) and poly(butylene succinate)[J]. Polymer,2006,47:3557-3664
    [167]林勇强.聚酯酰亚胺液晶聚合物与尼龙6共混体系的研究[D].中山大学硕士学位论文,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700