氧化亚铁硫杆菌优化培养及其煤炭生物脱硫的界面作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭是中国的主要能源。随着煤炭资源的日益消耗与机械化采煤程度的提高,高硫、高灰、细粒煤炭含量在原煤中的比例不断提高,细粒煤的燃前脱硫技术成为洁净煤技术的研究重点之一。由于煤炭生物脱硫具有低成本、低能耗、环境友好等优点,因此,开展煤炭生物脱硫相关的基础研究对提高煤的洁净利用和改善生态环境具有重要的经济和社会意义。
     本文从脱硫微生物氧化亚铁硫杆菌的优化培养研究入手,探讨了电化学方法与生物反应器放大培养模式对细菌细胞代谢亚铁离子的影响;分析了氧化亚铁硫杆菌与单质硫、黄铁矿作用过程中的溶液性质变化,优化了煤炭生物脱硫的工艺参数条件;利用硫的K边X射线近边结构光谱等新型手段,探讨了氧化亚铁硫杆菌与固体基质(单质硫、黄铁矿与煤样)的表面特性;通过分析微生物与煤炭、浸出液及气相的界面作用,提出了氧化亚铁硫杆菌脱除煤中黄铁矿硫的界面生物氧化模型,为煤炭生物脱硫工艺的设计提供了理论支持。具体研究结果包括以下几部分:
     (1)在摇瓶培养氧化亚铁硫杆菌的过程中,分析了溶液中氢离子与铁离子的变化规律,优化了初始pH值、初始亚铁离子浓度与外加电位等反应条件;利用单因素方差分析方法讨论了细菌接种量、培养温度、初始亚铁离子浓度对细菌放大培养的影响;实验得出了在培养液中补加能源物质维持(4-5) g/L亚铁离子浓度的最佳补料-分批培养策略。实验结果证明了外加负电位对细菌生长的促进作用,通过补料-分批放大培养,氧化亚铁硫杆菌在70 h达最大浓度2.30×109个/mL,实现了细菌的高密度快速培养。
     (2)探讨了铁离子与L-半胱氨酸对氧化亚铁硫杆菌活化氧化单质硫的影响;分析了氧化亚铁硫杆菌对黄铁矿的浸出行为与L-半胱氨酸对黄铁矿生物浸出的影响;利用K边XANES、FTIR、SEM、XRD、Zeta电位与接触角等测试手段研究了细菌作用后单质硫与黄铁矿的表面特性变化。实验结果表明,铁离子促进细菌在固体基质上的生长代谢,L-半胱氨酸中的巯基在细菌与固体基质的接触中起到“桥梁”作用,与细菌分泌的含巯基蛋白质一起发挥硫的解环作用。
     (3)在煤炭生物脱硫工艺研究中,讨论了煤浆浓度、煤样粒度与细菌接种量对煤炭生物脱硫效果的影响;通过正交试验确定了外加负电位的最佳脱硫条件,处理7天后煤炭脱硫率为59.47%;利用生物反应器补料-分批技术进行煤炭脱硫,第7天黄铁矿硫脱除率为80.45%,灰分脱除率为44.80%。实验结果表明,外加负电位促进了铁离子向亚铁离子的还原,一方面补充了氧化亚铁硫杆菌的能源供应,另一方面减少了黄铵铁矾沉淀的生成,对细菌生长活性与煤炭表面改性具有积极作用,利用生物反应器进行煤炭浸出脱硫的技术具有可行性,并在此基础上设计了一套细菌电化学催化、放大优育与逆流浸滤的煤炭脱硫方法与装置。
     (4)研究了氧化亚铁硫杆菌在煤炭表面的吸附行为;对比分析了在不同基质上生长的氧化亚铁硫杆菌的表面特性;利用多种检测手段分析了煤炭经氧化亚铁硫杆菌作用后的表面特性。综合分析微生物浸出脱硫体系中的界面作用,提出了氧化亚铁硫杆菌脱除煤中黄铁矿硫的界面生物氧化模型:煤炭生物浸出脱硫过程中,氧化亚铁硫杆菌分泌更多的蛋白质、多糖、类脂等胞外多聚物,通过静电吸引、疏水作用、氢键及化学键合等作用接触吸附到煤炭表面,催化氧化煤中黄铁矿溶解;溶液中的铁离子作为氧化剂继续与浸出体系中的黄铁矿和单质硫反应,产生亚铁离子供细胞循环利用,同时一部分铁离子生成黄铵铁矾沉淀并释放氢离子;黄铁矿中的硫在细菌的催化氧化作用下形成单质硫、链状硫、硫代硫酸盐与连四硫酸盐等中间产物。
     论文共包含92幅图,27个表格,156篇参考文献。
Coal is the main energy resource in China. This comes a time when coal energy has been consumed too fast and mechanized coal mining developed rapidly resulting in more proportion of high-sulfur, high-ash and fine particles coals. Research on coal biodesulfurization before combustion,which is of low cost, low energy consumption and environmental friendship, will contribute to the clean coal processing and efficient utilization and the ecological environment protection, and have very important economic and social significance.
     With the research of Acidithiobacillus ferrooxidans (A.f) optimum cultivation as a start, the bacterial oxidation of ferrous ions and the influences of electrochemistry and bioreactor scale-up culture to A.f growth were analyzed. On the basis of solution chemistry studies of medium with A.f and element sulfur or pyrite, the processing parameters in coal biodesulfurization were optimized. The surface characteristics of A.f and solid substrates were investigated with the employment of integrated approaches such as sulfur K-edge X-ray near structure spectrums. The research of interface effects in coal desulfurization system with A.f leaching was concluded and the interface bio-oxidation model was proposed to support the design of coal biodesulfurization process theoretically. The detailed research contents and results were summarized to four aspects as follow.
     (1) The optimum flasks cultivation of A.f with ferrous ions as energy source were tested by varying the conditions of initial pH, initial ferrous ions concentration and applied potential. In the scaled-up batch cultivation of A.f with ferrous ions as energy source, culture temperature and initial ferrous ions concentration were analyzed to be the more important influence factors by factor variance analysis. Adding energy source FeSO4 into the medium to maintain ferrous ion concentration of (4-5) g/L were experimented to be the optimum feeding strategy. The results above proved the promotion of applied negative potential to A.f growth and the high-density and fast cultivation of A.f in bioreactor with the maximum bacterial concentration of 2.30×109 cells per mL in 70 hours.
     (2) The additions of ferric ions and L-Cysteine into the medium were discussed for the influence of bacterial growth activities on element sulfur. The bioleaching behaviors of pyrite were experimented. After A.f oxidation, the surface characteristics of element sulfur and pyrite changed significantly through the methods of K-edge XANES, FTIR, SEM, XRD, Zeta potential and contact angle. The results above indicated that the extracellular proteins with sulfhydryl group played a big role in the activation of circular sulfur to linear sulfur, and the sulfhydryl group of L-Cysteine served as the bridge between A.f and solid substrates.
     (3) The coal slurry concentration, coal size and bacterial incubation were explored for the influence of coal biodesulfurization effects. The orthogonal experiments for gaining optimum desulfurization conditions with applied potential were carried out and in 7 days bioleaching, the desulfurization ratio of coal reached 59.47%. The fed-batch experiments using bioreactor for coal desulfurization achieved good results of depyritization ratio 80.45% and deash ratio 44.80%. Experimental results demonstrated that, the utilization of applied potential methods positively influenced A.f growth activity and coal surface modification, as well as the feasibility of coal bioleaching using bioreactor was proved. On these theoretical basis above, a set of apparatus including electrochemical catalyzed culture of A.f, scaled-up optimized culture of A.f and coal desulfurization by bioleaching was designed.
     (4) The adsorption behavior of A.f cells to coal surfaces was studied. Comparison of A.f cells grown in ferrous ion solutions and on solid substrates showed different surface characters. After the coal bioleaching for depyritization, SEM, XRD, FTIR and sulfur K-edge XANES methods were used to compare the coal surface characteristics. The research of interface effects in coal desulfurization system with A.f leaching was concluded and the interface bio-oxidation model was proposed: planktonic cells with more extra-secretion become sessile on coal surface through electrostatic attraction, hydrophobic interaction, hydrogen bonding and chemical bonding. Pyrite is dissolved to ferric ions and a series of sulfur compounds by A.f. The ferric ions act as a mediator to oxidize sulfur compounds and pyrite producing ferrous ions, which is utilized as energy source by A.f and form the precipitation of jarosite. The catalytic oxidation of sulfur in pyrite by A.f results in the formation of the intermediate products of element sulfur, linear sulfur, tetrathionate and persulfate.
     The thesis contains 92 figures, 27 tables and 156 references.
引文
[1]王立敏.从动荡与结构变化中认知世界能源市场,国际石油经济[J].2009,7:44-52.
    [2]张双全.煤化学[M].徐州:中国矿业大学出版社,2004.
    [3]刘金艳,陶秀祥,梅健.煤系黄铁矿的生物电化学联合脱硫进展[J].煤炭工程,2007,11:94-96.
    [4]虞继舜.煤化学[M].北京:冶金工业出版社,2000.
    [5]唐跃刚,张会勇,彭苏萍,郑兴贵,张霞.中国煤中有机硫赋存状态、地质成因的研究[J] .山东科技大学学报(自然科学版),2002,21(4):1-4.
    [6]赵新法,张光华,杨黎燕.煤有机硫赋存形态模拟与为生物脱硫研究进展[J].煤炭转化,2003,26(3):16-20.
    [7]曹新鑫,柳菲,高艳芳,齐雯妍,黄定国.煤中硫的赋存状态及成因[J].安徽化工,2008,34(2):1-4.
    [8]訾建威,杨洪英,巩恩普.煤中硫的赋存特性及微生物脱硫[J].选煤技术,2004,01:4-8.
    [9]秦建华.选煤是当前我国煤炭脱硫的首选方法[J].选煤技术,2000,01:10-12.
    [10]朱银惠,张现林,李文红,边习棉.煤在炼焦过程中热解脱硫降低焦炭中硫含量[J].洁净煤技术,2008,14(4):76-78.
    [11]杨艳峰,赵福水,孙志国,李海军.半水煤气脱硫系统优化运行总结[J].氮肥技术,2009,30(4):28-30.
    [12]田文华.电力系统化学与环保试验[M].北京:中国电力出版社,2008.
    [13]电厂化学资料网.煤质对火力发电厂的影响[J].(2009-06-14).http:// www. qgyhx.cn/ Ar- ticle.asp?id=521854.
    [14]牛建刚,牛荻涛,周浩爽.酸雨的危害及其防治综述[J].灾害学,2008,23(4):110-116.
    [15]姜晓娟.煤炭行业二氧化硫的危害及防治[J].煤炭加工与综合利用,2010,(1):47-19.
    [16]李艳青,闫志华,栾雪娜.国内外烧结烟气脱硫现状及发展趋势[J].莱钢科技,2009,(4):4-9.
    [17]谢向阳,汤秋林.浮选柱的研究现状应用与前景[J].科技信息,2007,37:646-672.
    [18]路阳,曹亦俊,章新喜,刘炯天.微粉煤摩擦电选脱硫降灰试验研究[J].选煤技术,2006,6:3-6.
    [19]刘德军,陈平.快速热解在高硫煤燃烧前脱硫中的应用可行性研究[J].煤炭转化,1999, 22(3):58 -61.
    [20]程刚,王向东,蒋文举,叶云辉,林松,万正武.微波预处理和微生物联合煤炭脱硫技术初探[J].环境工程学报,2008,2(3):408-412.
    [21]梅健,陶秀祥,刘金艳,袁鹏慧.外控电场对氧化亚铁硫杆菌脱硫的影响[J].煤炭学报,2008,33(3):330-333.
    [22]刘晓,曲增杰.含碱工业废弃物用于固硫实验研究[J].科技创新导报,2009,33:101-102.
    [23]袁基刚,许景媛.燃煤固硫技术研究现状[J].中国井矿盐,2008,39,(6):31-33.
    [24]何亚丽,朱伟萍.燃煤型硫氧化物的控制对策[J].煤炭工程,2005,11:37-39.
    [25]郝吉明,王书肖,陆永琪.燃煤二氧化硫污染控制技术手册[M].北京:化学工业出版社,2001.
    [26]张静,张育婵,丁朋果.湿法烟气脱硫机理与效率分析[J].能源与环境,2010,1:68-69.
    [27] S.K.Kawatra,K.A.Natarajan.Mineral biotechnology:Microbial aspects of mineral beneficiation,metal extraction,and environmental control[M].USA:Society for mining,metallurgy,and exploration,Inc,2001.
    [28]魏以和,王军,钟康年(编译).矿物生物技术的微生物学基本方法[J].国外金属矿选矿,1996,01:14-27.
    [29] Rudolf W.Oxidation of pyrites by microorganisms and their use for making mineral phosphates available[J].Soil Science,1922,14:135-147.
    [30] Rudolf W,Helbronner A.Oxidation of zinc sulfides by microorganisms[J].Soil Science, 1922,14:459-464.
    [31] Clomer A R,Hinkle M E.The role of microorganisms in acid mine drainage:a preliminary report[J].Science,1947,106:253-256.
    [32] Kargi F.Enhancement of microbial removal of pyritic sulfur from coal using concentrated cell suspension of A.ferrooxidans and an external carbon dioxide supply[J].Bioengineering,1982,24:749-752.
    [33] Monticella D J,Finnerty W R.Microbial desulfurization of fossil fuels[J]. Microbiology, 1985,37:371-389.
    [34] Olson G J,Brinckmann F E.Bioprocessing of coal[J]. Fuel,1986,65:1638-1646.
    [35] Klein J,Beyer M,Afferden M,et al. Coal in biotechnology[J]. Biotechnology,1988,6:497-567.
    [36] Kitae Baek,Chung-Sik Kim,Hyun-Ho Lee,Hyun-Jae Shin,Ji-Won Yang.Microbial desulfurization of solubilized coal[J].Biotechnology Letters,2002,24:401-405.
    [37] Mao M W H,Dugan P R,Martin P A W,Tuovinen O H. Plasmid DNA in chemoorganotrophic Thiobacillus ferrooxidans and Thiobacillus acidophilus[J].FEMS Microbiol. Letters,1980,8:121–125.
    [38] Holmes D S,Yates J R,Lobos J H,Doyle M V. Strategy for the establishment of a genetic system for studying the novel acidophilicheterotroph Acidiphilium organovorum[J].Biotechnol. Appl Biochem,1986,8:258–268.
    [39] Rawlings D E,Tributsch H,Hansford G S.Reasons why 'Leptospirillum '-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores[J].Microbiology,1999,145:5-13.
    [40] Rawlings D E,Woods D E.Mobilization of Thiobacillus ferrooxidans plasmids among Escherichia coli strains[J].Appl Environ Microbiol,1985,49(5):1323-1325.
    [41] S Ghosh,N R Mahapatra,P C Banerjee.Metal resistance in Acidocella strains and plasmid- mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli[J]. Applied and environmental microbiology,1997,63(11):4523-4527.
    [42] Jamshid Raheb , Mohammad Javad Hajipour , Babak Memari.Increasing of biodesulfurization activity of newly recombinant Pseudomonas Aeruginosa ATCC9027 by cloning the flavin reductase gene[J].International journal of biotechnology and biochemistry,2010,6(2):219-229.
    [43]徐毅,钟慧芳,蔡文六.微生物法脱除煤中黄铁矿硫[J].微生物学报,1990,30(2):134-140.
    [44]张东晨,张明旭,陈清如,李庆,吴学凤.草分枝杆菌选择性絮凝脱除煤中黄铁矿硫的研究[J].煤炭学报,2004,29(5):585-589.
    [45]周长春,陶秀祥,刘炯天.红假单胞菌浮选脱硫影响因素研究[J].煤炭转化,2005,28(3):35-38.
    [46]张明旭,孙剑峰.球红假单胞菌用于煤炭生物浸出脱硫的研究[J].选煤技术,2009,(4):6-11.
    [47]张东晨.煤炭脱硫微生物菌种选育及脱除煤中黄铁矿硫的研究[D].徐州:中国矿业大学博士学位论文,2004.
    [48]陶秀祥,巩冠群,文杨明,骆振福,陈巍.煤炭脱硫微生物生长代谢的电化学调控[J].中国矿业大学学报,2005,34(6):698-702.
    [49]陶秀祥,巩冠群,刘金艳,梅健,陈增强,陈建中.煤炭生物脱硫的电化学作用机理[J].中国矿业大学学报,2007,36,(4):431-435.
    [50]叶云辉,王向东,蒋文举,田哲,王丽丽,周灵.微波辅助白腐真菌煤炭脱硫试验研究[J].环境工程学报,2009,3(7):1303-1306.
    [51]程刚,王向东,蒋文举,叶云辉,林松,万正武.微波预处理和微生物联合煤炭脱硫技术初探[J].环境工程学报,2008,2(3):408-412.
    [52]谢作晃,赵海霞,黄海燕,连宾.硅酸盐细菌煤炭脱硫实验研究[J].岩石矿物学杂志,2009,28(6):587-592.
    [53]张成桂,夏金兰,邱冠周.嗜酸氧化亚铁硫杆菌亚铁氧化系统研究进展[J].中国有色金属学报,2006,16(7):1239-1249.
    [54] Qiu Guan Zhou,Fu Bo,Zhou Hong Bo.Isolation of a strain of Acidithiobacillus caldus and its role in bioleaching of chalcopyrite[J]. World Journal of Microbiology and Biotechnology,2007,23:1217-1225.
    [55]傅建华.氧化亚铁硫杆菌胞外多聚物在生物浸出中的作用[J].激光生物学报,2004,13:62-66.
    [56] Xia Le-xian,Liu Xin-xing,Zeng Jia,Yin Chu,Gao Jian,Liu Jian-she,Qiu Guan-zhou.Mechanism of enhanced bioleaching efficiency of Acidithiobacillus ferroxidans after adaptation with chalcopyrite[J].Hydrometallurgy,2008,92:95-101.
    [57] Suzuk I I,Chan C W,Takeuchi T L. Oxidation of elemental sulfur to sulfite by Thiobacillus thiooxidans cells[J].Applied Environment Microbiology,1992,58:3767-3769.
    [58] Kinnunen P M,Puhakka J A.Characterization of iron- and sulphide mineral-oxidizing moderately thermophilic acidophilic bacteria from an Indonesian auto-heating copper mine waste heap and a deep South African gold mine[J].Journal of Industrial Microbiology and Biotechnology,2004,31:409-414.
    [59] BrocK T D,BrocK K M,Belly R T,Weiss R L.A new genus of sulfur-oxidizing bacteria living at low pH and high temperature[J].Archives of Microbiology,1972,84:54-68.
    [60] Dopson M,Sundkvist J E,Lindstrom E B.Toxicity of metal extraction and flotation chemicals to Sulfolobus metallicus and chalcopyrite bioleaching[J].Hydrometallurgy,2006,81:205-213.
    [61] Shi Kaiyi,Tao Xiuxiang,Liu Jinyan.Mechanism study on bio-liquefaction of coal:bio-degradation of lignite model compounds[C].Chengdu,China:Asia-Pacific Power and Energy Engineering Conference 2010.
    [62] Silverman M P,Ehrlich H L.Microbial formation and degradation of minerals[J].Advances in applied microbiology,1964,6:153-206.
    [63] Tributsch H.Direct versus indirect bioleaching[J].Hydrometallurgy,2001,59,(2-3):177-185.
    [64] Chandraprabha M N, Natarajan K A.Surface chemical and flotation behavior of chalcopyrite and pyrite in the presence of Acidithiobacillus thiooxidans[J].Hydrometallurgy,2006,83(5):146-152.
    [65]李宏煦.硫化矿细菌浸出过程的电化学机理及工艺研究[D].长沙:中南大学博士学位论文,2001.
    [66] Lesia Harahuc.Control of iron and sulfur oxidation activities of Thiobacillus ferrooxidans and bacterial leaching of metals from sulfide ores[J].Manitoba,Canada:University of Manitoba doctor thesis 2000.
    [67] Crundwell F.The formation of biofilms of iron-oxidising bacteria on pyrite[J].Mineral Engineering,1996,9:1081-1089.
    [68] Blake R C I I,Shute E A,Howard G T.Solubilization of minerals by bacteria:electrophoretic mobility of A.ferrooxidans in the presence of iron,pyrite and sulfur[J].Applied Environment Microbiology,1994,60:3349-3357.
    [69] K H拉塔拉扬.矿物的微生物诱导浮选和絮凝:前景和挑战[J].国外金属矿选矿,2007,3:4-11.
    [70] A.S.Atkins.A Study of the suppression of pyritic sulphur in coal froth flotation by Thiobacillus ferrooxidans[J].Coal Prepration,1987,5:1-13.
    [71]王军,钟康年(编译).细菌对硫化矿可浮性的影响[J].国外金属矿选矿,1996,5:4-10.
    [72]梁海军,魏德洲.氧化亚铁硫杆菌抑制黄铁矿可浮性作用机理[J].东北大学学报,2009,30(10):1493-1497.
    [73] M Misra,R W Smith.Bioflocculation of minerals[J].Mineral Bioprocessing,1991,3: 91-104.
    [74] A M Raichur,M Misra,R W Smith.Differential adhesion of hydrophobic bacteria onto coal and associated impurities[J].Coal Preparation,1995,16(1):51-63.
    [75] Detz D,Barvinchak G.Microbial desulphurization of coal[J]. Min congr J,1979,65:75-86.
    [76] Loi G,Mura A,Trois P,Rossi G.The Porto Torres biodepyritization pilot plant:Light and shade of one year operation[J].Fuel Proc Technol,1994,40:261-268.
    [77] Jürgen Klein.Technological and economic aspects of coal biodesulfurization[J]. Biodegradation,1998,9:293-300.
    [78] A Malik,M G Dastidar,P K Roychoudhury.Factors limiting bacterial iron oxidation in Biodesulphurizaiton system[J].International Journal of Mineral Process, 2004,73:13-21.
    [79] Jorge Cara,Antonio Moran,Teresa Carballo,Fernando Rozada,Angel Aller,The biodesulphurization of a semianthracite coal in a packed-bed system[J].Fuel,2003,82:2065-2068.
    [80]唐利刚,谢广元,石常省.细粒煤脱硫降灰的途径探讨[J].选煤技术,2007,1:49-52.
    [81] Tao Xiu-xiang,Cao Yi-jun,Liu Jing,Shi Kai-yi,Liu Jin-yan,MaomingFan.Studies on characteristics and flotation of a hard-to-float high-ash fine coal[J].Procedia Earth and Planetary Science,2009,1(1):799-806.
    [82] Silverman M P, Lundgren D G.Studies on the chemoautotrophic iron bacterium Ferrobacillus ferrooxidansⅠ:An improved medium and a harvesting procedure for securing high cell yields[J].J Bacterial,1959,77:642-648.
    [83] Smith J R,Luthy G R,Middleton A C.Microbial ferrous iron oxidantion in acidic solution[J].Journal of water pollution control,1988,60(4):518-530.
    [84] Kazuhiro SASAKI,Chigusa IDA,Akikazu ANDO,Norio MATSUMOTO,Hiroshi SAIKI,Naoya OHMURA.Respiratory isozyme, two types of Rusticyanin of Acidithiobacillus ferrooxidans[J].Bioscience,Biotechnology,and Biochemistry,2003,67(5):1039-1047.
    [85]姚英杰,张永奎,赖庆柯.氧化亚铁硫杆菌对硫化矿物作用机理的研究进展[J].湿法冶金,2004,23(3):122-127.
    [86] Anders B Jensen,Colin Webb.Ferrous sulphate oxidation using Thiobacillus ferrooxidans:a review[J].Process Biochemistry,1995,30(3):225-236.
    [87] Hongmei Wang,Jerry M Bigham,Olli H Tuovinen.Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms[J]. Materials science and engineering,2006,26:588-592.
    [88]周顺桂,周立祥,黄焕忠.黄钾铁矾的生物合成与鉴定[J].光谱学与光谱分析,2004,24(9):1140-1143.
    [89] Keiko Sasaki,Osamu Tanaike,Hidetaka Konno.Distinction of jarosite-group compounds by Raman Spectroscopy[J].The Canadian mineralogist,1998,36:1225-1235.
    [90] Boon M,Heijnen J J.Mechanisms and rate limiting steps in bioleaching of sphalerite, chalcopyrite and pyrite with Thiobacillus ferrooxidans[C].The Minerals,Metals,and Materials Society,Warrendale,Pensylvania:TMS Press,1993:217–236.
    [91] Stott M,Watling H,Franzmann.The role of iron hydroxyprecipitates in the passivation of chalcopyrite[J].Minerals Engineering,2000,13:1117-1127.
    [92] Kohr W J,Johansson C,Shield J,Sharder V.Method for improving the heap biooxidation rate of refractory sulfide ore particles that are bioxidized using recycled bioleachate solution[P].USA Patent,5688304, November 18. 1997.
    [93] S M Mousavi,S Yaghmaei,F Salimi,A Jafari.Influence of process variables on biooxidation of ferrous sulfate by an indigenous Acidithiobacillus ferrooxidans[J].Fuel,2006,85:2555-2560.
    [94]周吉奎.三类生物冶金微生物菌种的选育及其与矿物作用研究[D].长沙:中南大学博士学位论文,2004.
    [95] Carol A Jones,D P Kelly.Growth of Thiobacillus ferrooxidans on ferrous iron in chemostat culture:Influence of product and substrate inhibition[J].Journal of chemical technology and biotechnology,1983,33(4):241-261.
    [96]刘新星,武海艳,刘文斌,李寿朋.氧化亚铁硫杆菌中磁小体形成相关基因在不同亚铁浓度刺激下的差异表达[J].生物工程学报,2009,25(1):69-75.
    [97]马志章,蒋成浚.电场对生物细胞的作用及其实际应用[J].细胞生物学杂志,1996,18(3):111-114.
    [98] Yunker S B,Badovich J M. Enhancement of growth and ferrous iron oxidation rates of Thiobacillus ferrooxidans by electrochemical reduction of ferric iron[J].Biotech Bioeng,1986,28(6):1857-1867.
    [99] Blake R C,Howard G T,McGinness S.Enhanced yields of iron oxidizing bacteria by in situ electrochemical reduction of soluble iron in the growth medium[J].Appl Environ Microbiol,1994,60:2704-2709.
    [100] LI Hong-xu,WANG Dian-zuo,QIU Guan-zhou,HU Yue-hua.Growth kinetics of Thiobacillus ferrooxidans in bioelectrochemical cell[J]., Journal of Central South University of Technology,2004,11(1):36-40.
    [101] Norio Matsumoto,Satoshi Nakasono,Naoya Ohmura,Hiroshi Saiki.Extension of logarithmic growth of Thiobacillus ferrooxidans by potential controlled electrochemical reduction of Fe(Ⅲ)[J].Biotechnology and bioengineering,1999,64(6):716-721.
    [102] Livesey-Goldblatt E , Norman P , Livesey-Goldblatt D R. Gold recovery from arsenopyrite/pyrite ore by bacterial leaching and cyanidation[C].Recent progress in Biohydrometallurgy,1983:627-641.
    [103]龚文琪,陈伟,张晓峥,边勋,刘艳菊,刘俊,黄永炳,杨红刚.氧化亚铁硫杆菌的分离培养及其浸磷效果[J].过程工程学报,2007,7(3):584-588.
    [104] Khalid A M,Bhatti T M,Umar M. An improved solid medium for isolation, enumeration and genetic investigations of autotrophic iron and sulphur oxidizing bacteria[J].Appl. Microbiol. Biotechnol,1993,39:259-263.
    [105] Peng JB , Yan WM , Bao XZ.Plasmid and transposon transfer to Thiobacillus ferrooxidans[J].J Bacteriol,1994,176(10):2892-2897.
    [106] Bevilaqua D,Leite A,Garcia O,Tuovinen O H.Oxidation of chalcopyrite by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in shake flasks[J].Process Biochemistry,2002,38:587-592.
    [107] Harmer S L,Thomas J E,Fornasiero D,Gerson A R.The evolution of surface layers formed during chalcopyrite leaching[J]. Geochim Cosmochim Acta,2006,70:4392-4402.
    [108] Fowler T A , Crundwell F K.Leaching of zinc sulfide by Thiobacillus ferrooxidans:experiments with a controlled redox potential indicate no direct bacterial mechanism[J].Applied and Environmental Microbiology,1998,64:3570-3575.
    [109] Mills A L,J S Herman,G M Homberger,J H DeJesus.Effect of solution ionic strength and iron coating on mineral grains on the sorption of bacterial cells to quartz sand[J]. Applied and Environmental Microbiology,1994,60:3300-3306.
    [110] Ohmura N,K Tsugita,J Koizumi,H Saiki.Sulfur binding protein of flagella of Thiobacillus ferrooxidans[J].J Bacteriol,1996,178:5776-5780.
    [111] Corbet C M,W J Ingledew.Is Fe3+/Fe2+ cycling an intermediate in sulfur oxidation by Fe2+ - grown Thiobacillus ferrooxidans[J].FEMS Microbiol Lett,1987,41:1-6.
    [112] Suzuki L,T L Takeuchi,T D Yuthasatrakosol,J K Oh.Ferrous iron and sulfur oxidation and ferric iron reduction activities of Thiobacillus ferrooxidans are affected by grown on ferrous iron,sulfur,or a sulfide ore[J].Applied and Environmental Microbiology,1990,56:1620-1626.
    [113] Ulrike Kappler,Christiane Dahl.Enzymology and molecular biology of prokaryotic sulfite oxidation[J].FEMS Microbiol Lett,2001,203:1-9.
    [114] Sugio T,T Katagiri,M Moriyama,Y L Zhen,K Inagaki,T Tano.Existence of a new type of sulfite oxidase which utilizes ferric ions as an electron acceptor in Thiobacillus ferrooxidans[J]. Applied and Environmental Microbiology,1988,54:153-157.
    [115]何环.典型嗜酸硫氧化菌作用下元素硫的形态及其转化的研究[D].长沙:中南大学博士学位论文,2009.
    [116] P K.Sharma,A Das,Hanumantha Rao,K S E Forssberg.Surface characterization of Acidithiobacillus ferrooxidans cells grown under different conditions[J].Hydrometallurgy,2003,71:285-292.
    [117]张俊,范伟平,方苹,夏场场.底物对亚铁硫杆菌生物氧化过程的影响[J].南京化工大学学报,2001,23(6):37-41.
    [118] Takeuchi T , Suzuki I.Cell hydrophobicity and sulfur adhesion of Thiobacillus thiooxidans[J].Applied Environmental Microbiology,1997,63:2058-2061.
    [119] Nikaido H.Molecular basis of bacterial outer membrane permeability revisited[J]. Microbiology and Molecular Biology Reviews,2003,67:593-656.
    [120] Raina S,Missiakas D.Making and breaking disulfide bonds[J].Annual review of micfobiology,1997,51:179-202.
    [121] Zhang C G,Zhang R Y,Xia J L.The key sulfur oxidation-related extracellular proteins of Acidithiobacillus ferrooxidans[J].Transaction of Nonferrous Metals Society of China,2008,18:1398-1402.
    [122] LIU Jian-she,WANG Zhao-hui, LI Bang-mei,ZHANG Yan-hua.Interaction between pyrite and cysteine[J].Transactions of nonferrous metals society of China,2006,16(4):943-946.
    [123] J.A.Rojas-Chapana , H.Tributsch.Bio-leaching of pyrite accelerated by cysteine[J].Process Biochemistry,2005,35:815-824.
    [124] Jae-Young Yu,Terence J.McGenity,Max LColeman.Solution chemistry during the lag phase and exponential phase of pyrite oxidation by Thiobacillus ferrooxidans[J].Chemical Geology,2001,175(3-4):307-317.
    [125]蒋磊,周怀阳,彭晓彤.氧化亚铁硫杆菌对黄铁矿、黄铜矿和磁黄铁矿的生物氧化作用研究[J].科学通报,2007,52(15):1802-1813. 126] T.Cabral,I.Ignatiadis.Mechanistic study of the pyrite-solution interface during the oxidative bacterial dissolution of pyrite by using electrochemical techniques[J].International Journal of Mineral Processing,2001,62(1-4):41-64.
    [127] K Blight,D E Ralph,S Thurgate.Pyrite surfaces after bio-leaching:a mechanism for bio-oxidation[J].Hydromtatllurgy,2000,58:227-237.
    [128]张东晨,张明旭,陈清如.煤中黄铁矿表面细菌氧化的XRD及SEM/TEM研究[J].中国矿业大学学报,2005,6(10):761?765.
    [129] Sanhueza A, Fisher I J,Vargas T,Amils R,Sánchez C.Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties[J]. Hydrometallurgy,1999,51:115-129.
    [130]顾帼华,孙小俊,李建华,苏丽君,刘玉林,赵开乐.嗜铁钩端螺旋菌对黄铁矿浸出的影响[J].中南大学学报,2010,41(4):1223-1228. 131] Shao-yuan Shi,Zhao-heng Fang.Bioleaching of marmatite flotation concentrate by Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans[J].Transactions of nonferrous metals society of China,2004,14(3):1-10.
    [132] Naoya Ohmura,Keiko Kitamura,Hiroshi Saiki.Selective adhesion of Thiobacillus ferrooxidans to pyrite.Applied and Environmental Microbiology,1993,59(12):4044-4050.
    [133] Devasia P,Natarajan K A,Sathyanarayana D N,Rao GR.Surface chemistry of Thiobacillus ferrooxidans relevant to adhesion on mineral surfaces [J].Applied and environmental microbiology,1993,59(12):4051-4055.
    [134] Douglas E Rawlings.Characteristics and adaptability of iron- and sulfur- oxidizing microorganisms used for the recovery of metals from minerals and their concentrates[J].Microbial cell factories,2005,4(1):13-27.
    [135] Rijnaarts HM,Norde W,Lyklema J,Zehnder A. The isoelectric point of bacteria as anindicator for the presence of cell surface polymers that inhibit adhesion[J].Colloids Surf,1995, B4:191–197.
    [136] George G N,Gnida M, Bazylinski D A,Prince R C,Pickering I J.X-Ray absorption spectroscopy as a probe of microbial sulfur biochemistry:the nature of bacterial sulfur globules revisited[J].Journal of Bacteriology,2008,19:6376-6383.
    [137] Huan He, Cheng-Gui Zhang, Jin-Lan Xia, An-An Peng et al.Investigation of elemental sulfur speciation transformation mediated by Acidithiobacillus ferrooxidans[J].Current Microbiology,2009,58(4):300-307.
    [138] Prange A,Dahl C, Behnke M,Hahn J,Modrow H,Hormes J.Investigation of S-H bonds in biologically important compounds by sulfur K-edge X-ray absorption spectroscopy[J]. European Physical Journal D,2002,20:589-596.
    [139]何环,夏金兰,彭安安,张成桂,邱冠周.嗜酸硫氧化细菌作用下硫的化学形态研究进展[J].有色金属学报,2008,18(6):1143-1149.
    [140] Olegario Martinez,Carlos Diez,Nick Miles et al.Biodesulphurizaiton as a complement to the physical cleaning of coal[J].Fuel,2003,82(9):1085-1090.
    [141] Rubiera F,Arenillas A,Martinez O,Moran A et al.Biodesulfurization of coals of different rank:Effect on combustion behavior[J].Environmental Science & Technology,1999,33(3):476-481.
    [142]杨宇,刁梦雪,邹俐宏,师舞阳,历丽,代沁云,郑必强,邱冠周.煤炭生物脱硫正交实验研究[J].生态环境,2008,17(2):459-465.
    [143] Isabel Cristina Cardona,Marco Antonio Marquez.Biodesulfurization of two Colombian coals with native microorganisms[J].Fuel Processing Technology,2009,90:1099-1106.
    [144] Nattaya Ruamsap,Ancharida Akaracharanya.Pyritic sulfur removal from lignite by Thiobacillus ferrooxidans:Optimizaiton of a bioleaching process[J].J. Sci. Chula. Univ,2002, 27(2):155-163.
    [145] N S Weerasekara,F J Garcia Frutos,J Cara,F C Lockwood.Mathematical modelling of demineralisation of high sulphur coal by bioleaching[J].Minerals Engineering,2008,21:234-240.
    [146] R A Pandey,V K Raman,S Y Bodkhe,B K Handa,A S Bal.Microbial desulphurization of coal containing pyritic sulphur in a continuously operated bench scale coal slurry reactor[J].Fuel,2005,84:81-87.
    [147] G J Olsson.Prospect for Biodesulfurization of coal: mechanisms and related process designs[J].Fuel Processing Technology,1994,40(2-3):103-114.
    [148] K Harneit,A Goksel,D Kock,J H Klock et al.Adhesion to metal sulfide surfaces by cellsof Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans[J].Hydrometallurgy,2006,83:245-254.
    [149] Diana Marcela Ossa Henao, Marco Antonio Marquez Godoy.Jarosite pseudomorph formation from arsenopyrite oxidation using Acidithiobacillus ferrooxidans, Hydrometallurgy, 2010,104(2):162-168.
    [150]梅健,陶秀祥,刘金艳,袁鹏慧.外控电场对氧化亚铁硫杆菌脱硫的影响[J].煤炭学报,2008,33(3):330-333.
    [151]孙先锋,郭爱莲.氧化亚铁硫杆菌的分离及其生长条件的研究[J].西北工业大学报(自然科学版),2000,30(2):143-144.
    [152]贾春云,李培军,魏德洲,张海荣,刘宛.微生物在矿物表面吸附的研究进展[J].微生物学通报,2010,37(4):607-613.
    [153] M Arzal Ghauri,Naoko Okibe,D.Barrie Johnson.Attachment of acidophilic bacteria to solid surfaces:the significance of species and strain variations[J].Hydrometallurgy,2007,85:72-80.
    [154]杨显万,沈庆峰,郭玉霞.微生物湿法冶金[M].北京:冶金工业出版社,2003.
    [155]巩冠群.电化学调控煤炭生物脱硫的研究[D].徐州:中国矿业大学硕士学位论文,2006.
    [156] Angel Aller , Olegario Martinez , Jose A et al.Biodesulphurisation of coal by microorganisms isolated from the coal itself[J].Fuel processing technology,2001,69:45-57.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700