用户名: 密码: 验证码:
新疆柽柳属植物抗盐机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用盐生植物是人们大面积改造盐碱地、荒漠化土地的重要途径之一。但目前为止,人们只对少数盐生植物耐盐特性有一定的认识,对于大多数盐生植物适应生理和耐盐机理还缺乏研究。柽柳是能够在盐土生境下生长发育的一种抗逆性非常强的泌盐盐生植物。
     本研究以新疆柽柳属植物的部分特有种为试验材料,在0-200mmol/L NaCl盐胁迫条件,测定柽柳对盐胁迫的生理反应。200mmol/L NaCl处理3周使细穗柽柳的与对照相比相对干重降低了17.3%,多枝柽柳相对干重下降了26.9%,盐胁迫时地上部受抑制的程度较地下部严重,相对含水量降低,而密花柽柳相对电解质渗漏率增加,紫杆柽柳脯氨酸含量增加。柽柳地上部对无机离子的累积表明,Na~+和Cl~-是主要的渗透调节剂。总之,柽柳是兼性盐生植物。
     本研究定量研究了柽柳泌盐对其叶中盐分平衡的贡献,通过连续监测刚毛柽柳扦插苗的蒸腾速率、叶的Na~+绝对分泌量、木质部蒸腾流中的Na~+浓度、叶中Na~+含量,计算流入和流出柽柳幼苗的盐分,进一步分析,发现蒸腾速率与盐分分泌呈负相关,泌盐机制的效率体现在相对分泌能力上,柽柳的相对分泌能力在根际盐分低时效率最高,刚毛柽柳根际盐浓度为50mmol/L NaCl时泌盐机制效率最高,随着盐浓度继续增加,相对分泌能力反而下降。50-200mmol/L NaCl,盐分的绝对分泌量始终是增加的,Na~+的绝对分泌量从247增加到348mmol a~+g~(-1)f.w。研究表明柽柳根的排斥机制是最主要的机制,它排斥了随着蒸腾流带到根表的89-96%的盐离子,白天吸收进入植物体内的盐离子中有31-59%被盐腺分泌出去。
     总之,柽柳靠三种主要机制来适应盐渍环境,1、避盐,通过根的低透性避免大量的盐离子进入植物体内;2、耐盐,植物体甚至细胞中盐离子含量高时,利用这些离子参与渗透调节,或将它们区隔化在液泡中,或产生有机小分子物质从而维持正常的代谢活动;3、泌盐,通过分泌盐分将植物体内的离子含量维持在一恒定水平,从数量上和质量上对柽柳适应盐渍环境作出贡献。
Surpervised by associate Professor Dong Yuzhi&Professor Zhang Fusuo
    The utilization of halophyte has been proposed as a strategy to expand cultivation onto unfavorable land, however, halophyte mainly have been considered for their tolerance and performance in extremely saline environment, and only a few species have been characterized in terms of their tolerance and physiological responses to salinity .The functional biology underlying salt tolerance in plants is still poorly understood. Tamarix-spp is a perennial recretohalophyte capable of growing under extreme condition, from very dry environments to highly saline soils. To quantify its response to salinity , Tamarix .leptostachys seedlings were exposed to ON 50s 100s 150> 200mM NaCl for 4weeks, in a sand culture and growth, root activity ,and solute accumulation were measured, the presence of NaCl induced a 26.9 % relative decrease in dry weight of Tamarix ramosissima.,and a 173% decrease in dry weight of Tamarix .leptostachys relative to non-salinized controls, these changes were associated with a decrease in relative
     water content, The solute leakage and proline content were increased in Tamarix arceuthoides. Analysis of ion accumulation revealed that Tamarix .spp accumulated Na* and Cl' as a primary osmoticum in contrast to proline. Generally, Tamarix is a facultative halophyte.
    The contribution of each of the salt-transporting processes to the NaCl balance of the leaves of the salt-recreting Tamarix was quantitatively investigated. Transpiration rates, xylem sap concentration , shoot salt content ,recretion rates were continuously monitored during three day periods and the salt fluxes in and out of the shoot were calculated . The diurnal excretion pattern ,which gradually decreased toward midday, showed a negative correlation with the daily transpiration pattern, The relative excretion, which is the ratio between the absolute excretion of Na* and the change in its internal content ,was maximal at 50mM NaCl ,and decreased when the concentration of NaCl in the root environment increased ,by contrast ,the absolute excretion increased from 247 to 348 mmol Na+
    
    
    
    g-1 f.w with increase in the total media salinity from 50 to 200 mM NaCl .respectively .Selectivity of the salt-excretion mechanism is in favor of sodium and against potassium, on the other hand ,potassium has a high affinity for the accumulation systems within the shoots. The results indicated that salt filtration by the roots is by far the most important salt-rejecting mechanism, preventing some 89- 96% of the salt which is carried towards the root surface by the transpiration stream, from entering the shoot .out of the remaining quantity of salts which enter the root xylem and reach the leaves ,only 31-59% is removed by the salt-recreting glands.
    In conclusion, it is suggested that salt resistance of Tamarix.spp is based upon three different mechanisms: 1) Salt avoidance -where the roots have low permeability to salts, this is by far the most important mechanism .2)Salt tolerance-the capability to preserve normal metabolic activity even in the presence of high intraceliular salt levels.3)Salt evasion -recretion of the penetrating ions, but retention of others .the magnitude of salt recreation in Tamaruuspp does not yield a quantitative solution to the problem of excess accumulation of salt ,Still, recreation may contribute to the mineral balance of T. in a qualitative way ,by changing the ratio between the nutritive ions and the interfering ones. The rejection mechanism at the plant roots and the secrection mechanism at shoots allow the plant to maintain its internal salt content at an approximately constant level despite the great variation in rhizosphere salinity .
引文
1 邓彦斌,姜彦成等,新疆10种藜科植物叶片和同化枝的旱生和盐生结构的研究。植物生态学报,1998,22(2)164-170
    2 贾恢先,赵曼容,几种典型盐地植物显微和亚显微结构的研究。植物学通报,1995,3(3):49-51
    3 刘铭庭,1995。柽柳属植物综合研究及大面积推广应用。兰州大学出版社。
    4 马焕成,蒋东明,木本植物抗盐性的研究进展。西南林学院学报,1998,18(1)52-59
    5 任坤,吴雪峰等,植物抗盐性研究进展综述。宁夏农学院学报,1995,16(4)60-66
    6 汪贵斌,曹福亮等,盐胁迫对4树种叶片种K+和Na+的影响及耐盐能力的评价。植物资源与环境学报,2001,10(1):30-34
    7 王霞,侯平等,水分胁迫对柽柳组织含水量和膜透性的影响。干旱区研究,1999,16(2):123-15
    8 翁建尧,林鸿淇,水仔之无机营养。中国农业化学杂志,1998,36(5)483-492
    9 肖雯,贾恢先,蒲陆梅,几种盐生植物抗盐生理指标的研究。西北植物学报,2000,20(5)818-825
    10 姚晓玲,黄培佑,短穗柽柳幼苗水分状况研究。新疆大学学报(自然科学版),1999,16(1)86-89
    11 尹林克,王烨,高浓度氯化钠溶液对三种柽柳插穗的伤害作用。干旱区研究,1991,2:22-27
    12 尹林克,中亚荒漠生态系统中的关键种-柽柳。干旱区研究,1995,12(3)43-47
    13 张立运,夏阳等,塔克拉玛干沙漠植被的生态学性质和持续发展。干旱区研究,1995,12(3)26-33
    14 赵可夫,1998。中国盐生植物。北京:中国科学出版社。
    15 Agbaria, H.,Heuer, B.,Zieslin,N.,1996.Shoot-root interaction effect on nitrate reductase and glutumine synthetase activities in rose graftlings.J.Plant Physiol. 149,559-563
    16 Apse MP, Aharon GS, Snedden WA, Blumwald E. Salt tolerance conferred by overexpression of a vacuolar Na~+/H~+ antiport in arabidopsis. Science. 1999,285(5431):1256-1258
    17 Arrillaga, Gisbert Sales, Serrano, et al. Expression of the yeast HAL2 gene in to moto incrase the in vitro salt tolerance of transgenic progenied [J]. Plant Science, 1998,136(2):219-226
    18 Ball MC. 1988. Salinity tolerance in the mangroves Aegiceras corniculatum Avicennia marina I Water use in relation to growth,carbon partitioning,and salt balance Australian Journalof Plant Physiology 15:447-464
    19 Bates,l.,Waldren,R.P.,Teare,J.D.,1973.Rapid determination of free proline for water stress studies.Plant Siol.39,205-207
    20 Bogemans,J.,Stassart, JM.,and Nerinckx, L, 1990.Effects of NaCL stress on ion retranslocation in barley. Journal of Plant physiology. 135,753
    21 Campbell N and Thomson WW 1975,Chloride localization in the leaf of Tamarix Protoplasma 83:1-14
    22 CramerG. R, Lauchli A,Polito VS.1985.Displacement of Ca~(2+)by Na~+ from the plasmalemma of root cells :a primary response of stress? Plant physiology 28:89-121
    23 Downton WJS. 1982. Growth and osmotic relations of the mangrove Avicennia marina as influenced by salinity. Aust J Plant Physiol. 9:519-528
    
    
    24Drennan,P.and Pammenter,N.W.1982. Physiology of salt excretion in the mangrove Avicennia marina (Forsk O Vierh.-New Phytol,91:597-606
    25 Epstein E.1972. Mineral nutrition of plants:principles and perspectives,New York-John Wiley
    26 Flowers T J.Torke P F,Yeo.A R The mechanism of salt tolerance in halophytes.Ann.Rev.Plant Physiol 1977,28:89-121
    27 Glenn,E.P.Brown,J.J.,Blumwald ,E. 1999 Salt tolerance and crop potential of halophytes.Crit.Rev.Plant Sci 18:227-255
    28 Gorhm.J., 1987 Photosynthesis,Transpiration and salt fluxes through leaves of Leptochloa fusca L.Kunth.Plant CellEnviron. 10,191-196
    29 Grattan S.R and Grieve C.M 1992 Mineral element acquisition and growth response of plants grown in saline environment Agriculture ,Ecosystems and Environment 38:275-300
    30 Greenway H ,Munns R.The mechanis of salt tolerance in non-Halophtes.Ann.rev. Plant physio.1980,31:149-190
    31 Hayashi, H., Alia,Mustardy ,L.Deshnium,P.,Ida.M.,Murata,.N., 1997 Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumlation of glycinebetaine and enhanced tolerance to salt and cold stress. PLANT j.12,133-142
    32 Hayashi, H., Alia,Mustardy ,L.Deshnium,P.,Ida.M.,Murata,.N., 1997 Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumlation of glycinebetaine and enhanced tolerance to salt and cold stress. PLANT j.12,133-142
    33 Hedrich R, shroeder JL. The physiology of ion channels and electrogenic pumps in higher plants . Ann Rev Plant Physiol. 1989,40:539-556
    34 Hellebust , J.A..1976. Osmoregulation-Annu.Rev Plant Physiol.27:485-505 Horton-JL: Kolb-TE: Hart-SC 2001 Leaf gas exchange characteristics differ among Sonoran Desert riparian tree species Tree-Phvsiologv. 2001, 21:4, 233-241;
    35 Kurth E,Cramer GR,Lauchli A,Epstien E1986. Effects of NaCL and CaCL2on cell enlargement and cell production in cotton roots.Plant physiology 82:1102-1106
    36 Larkum A.and Hill A E.Ion and Water Transport in Limonium.V.The Ionic Status of Chloroplasts in the Leaf of Limonium Vulgare in Relation to the Activity of the salt glands Biochim Biophys Acta,1970,(203) :133-138
    37 Liu Z-Q, Zhang Sh-Ch.l994. Plant Resistant Physiology. Beijing : China Agriculture Press.232-282
    38 Luttge.U.,Smith,.A.C.1984 Salinity tolerance in plants:Strategies for crop improvement. Wiler.New York pp 125-150
    39 Lutts,S.,Kinet,J.,Bouharmont,J.,1996b.NaCL-induced senscence in leaves of rice cultivars differing in salinity resistance .Ann.Bot.78,389-398
    40 Maggio ,A., Bressan,R.A. Hasegawa.P.M., Locy, R.D.1997 Morderatly increased constitutive proline accumulation does not alter osmotic stress tolerance,Physiol.Plant 110,240-246.
    41 Marloth,R.1887. Zur Bedeutung der Salz abscheidenden Dr U sen der Tamariscineen-Ber ,Deut.Bot.Ges.5:319-324
    42 Michelet B, Boutry M. The plasma membrane H+-ATPase. A. highlhy regulated enzyme with multiple physiological functions . Plant Physiol. 1995. 108:1-6
    
    
    43 Munns R,Termaat A.Whole plant resposess to salinity,Aust,J.Plant Physiol,1986,13:143-160
    44Niu, X.,Bressan,R.A.,Hasegawa,.P.M.,Pardo,J.M., 1995. Ion homeostasis in NaCL stress enviroments.Plant Physiol.109,73 5-742
    45Rozema J,Gude H ,Pollak G1981 An ecophysiological study of salt secrection of four halophyte New phytologist 89:201-217
    46Rozema,J. and Riphagen,I.1977. Physiology and ecologic relevance of salt gland of Glaux maritime L.Oecologia(Berlin),29,349-359
    47Shannon MC,Grieve CM, Francois LE. 1994. whole-plant response to salinity.In:Wilkinson RE,ed.Plant-Environment Interactions.Marcel Dekker Inc.,New York,Basel,Hong Kong: 199-244.
    48Solomon,A Beer.S Waisel,G Jones and Paleg L.G 1994Effects of NaCLon the carboxylating activity of Rubisco from Tamarix jordanis in the presence and absence of proline-related compatible solutes.Physiologia Plantarum 90:198-204
    49Stelzer.R., and Lauchli.A 1978 Distribution and localization of ions in the plant. Z Pflanzenphysiol.88,437-448.
    50Sugino M, Hibino T, Tanaka, Y, et al. Overexpression of Dna K from a halotolerant Cyanobacterium Aphanothece halophytica acquires resistance to salt stress in transgenic tobacco plants[J]. Plant Scienxe, 1999,146(2) :81-88
    51 Sutcliffe,J,F.,and Baker,D.A., 1974. Plants and mineral salts.Edward Arnold, Ltd. London ,3-4
    52Thomson WW.Faraday CD.Oross JW.1988:Slat glands.In:Baker DA.Hall JL,eds.Solute Transport in Plant Cells and Tissues.Harlow,Essex,UK:Longman,498-537.
    53Volkmar KM, Hu Y, Steppuhn H. Physiological responses of plants to salinity : a review . can J Plant Sci. 1998,78:19-27
    54 Waisel,Y.1972 .Biology of Halophyte.Academic Press,New York,pp141-165 ISBNO-12-730850-4
    55Waisel,Y.Eshel,A. and Agami,M.1986 Salt balance of the leaves of the mangrove Avicennia marina.-Physiol.Plant.67:67-72.
    56Woodrow, LE and Berry J.A 1988 Enzymatic regulation of photosyntheic CO2 fixation in C3plants-Annu.Rev.Plant. Physiol.Plant Mol.Biol.39:533-594
    57WUS, DING L, ZHU J. Sosl, a genetic locus essential for salt tolerance and pltassium acquisition [J]. Plant Cell, 1996. 8:617-627

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700