天然沸石的改性及处理含镍废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以浙江缙云天然斜发沸石为原料,采用NaOH熔融,并结合水热合成改性制得到Na-Y型改性沸石。它对Ni~(2+)的饱和吸附量(37.85mg/g)比天然沸石(3.87mg/g)提高9倍,也远大于Na型沸石(4.46mg/g)、H型沸石(4.59mg/g)、P型沸石(15.54mg/g)。研究了Na-Y型沸石对镍离子的吸附行为,并对其用于实际含镍废水的处理和再生实验进行了探讨。
     实验结果表明,Na-Y型沸石在水溶液中对镍离子具有较高的吸附能力,表现出“快速吸附,缓慢平衡”的吸附特点,对时间吸附曲线进行拟合,符合班厄姆公式。对Ni~(2+)的吸附量随着温度升高和初始浓度的增加而增大,同时也受溶液pH的影响,在pH<4时吸附较小,当pH>8时因溶液中的Ni~(2+)会沉淀而无法进行吸附除去,因而,控制溶液的pH范围在4~8之间。
     Ni~(2+)的去除率随着沸石投加量的增加而增大,也与Ni~(2+)的初始浓度有关,在初始浓度为196.52mg/L的Ni~(2+)溶液中,当沸石投加量为1.8%(重量比)时去除率达90%以上。对吸附量和Ni~(2+)浓度的关系进行拟合,符合Langmuir和Freundlich公式。
     改性沸石的再生实验表明,用0.5mol/L的HCl和NaCl按体积比为1:1混合作为淋洗剂效果最佳,5次再生使用后,改性沸石对Ni~(2+)的吸附能力基本不变。
     实验中选择了四种竞争离子进行实验,发现竞争阳离子的存在降低了沸石对Ni~(2+)的吸附量,影响顺序为:Ca~(2+)>Co~(2+)>Fe~(3+)>K~+。
     在对实际含镍废水(Pb~(2+)、Ni~(2+)、Zn~(2+)的含量分别为37.2mg/l、25.4 mg/l、30.3mg/l)中,加入Na-Y型沸石0.4%(重量比),在温度为20℃,pH=4.5时,吸附处理2h后溶液中残余的Ni~(2+)浓度为0.05mg/l小于国家排放标准(<1mg/l)。
The natural zeolite (clinoptilolite) of Zhejiang Jinyun were used as the experimental materiel. The modified Na-Y zeolite was got by combining NaOH melting the natural zeolite with hydro-thermal synthesis method. It was found the saturation exchange capacity (37.85 mg/g) for Ni~(2+)on Na-Y zeolite is improved nine multiples than that of the natural zeolite (3.87 mg/g). The adsorption behavior of Ni~(2+) on the Na-Y zeolite was studied and discussed. The Na-Y zeolite was also applied to study the adsorption behavior and regenerative experiments of water waste that contained Ni~(2+).
     Experimental results show that the Na-Y zeolite is more high exchange capacity than that of natural zeolite for Ni~(2+) in water solution, and has the characteristic of "quick adsorption, slow equilibrium". The fit curve between time and adsorption amount could be well according with theequation of (?).
     The exchange capacity of Ni~(2+)) on Na-Y zeolite increase dramatically with the increase of temperature , the initial concentration and pH, but the value of pH is smaller than 4 the exchange capacity is small, while it is larger than 8, because the Ni~(2+) would be precipitated. So the value of pH should be controlled between 4 and 8 during the experiment.
     The elimination percent of Ni~(2+) increases with the adding amount of zeolite. When the initial concentration is 196.52mg/L and the adding amount of zeolite is 0.45g, The elimination percent is larger than 90%. The fit curve between adsorption and the concentration of Ni~(2+) is well agreement with equations of Langmuir and Freundlich.
     The regenerative experiments show that the best result is obtained by the mix solutions of 0.5mol/L HCl and NaCl.The modified zeolite has still high exchange capacity after using five times.
     It was found that the existence of four competitive cations would decrease the exchange capacity for Ni~(2+) on zeolite, and the order of the influence is : Ca~(2+)>Co~(2+)> Fe~(3+)> K~+.
     The Na-Y zeolite are applicable in eliminating Ni~(2+) under low concentration. The elimination percent can be achieve 99% when the initial concentration of Ni~(2+) is under 200 mg/L. 0.2g Na-Y zeolite was added to the water waste which containing Pb~(2+), Ni~(2+), Zn~(2+), and their concentrations are 37.2mg/l, 25.4 mg/l, 30.3 mg/l respectively. After 2 h adsorption handing under 20℃and PH=4.5, the concentration of Ni~(2+) is 0.05 mg/l which is lower than the water waste letting standard of our country.( <1mg/l)
引文
[1] 国外医学地理分册,2000.9(21):.3
    
    [2] 毛梯和 主编,北工废水处理技术,化学工业出版社,2000.北京.1-5
    
    [3] 胡信国,北学镀镍新技术及其在工业中的应用,电镀与精饰,1998,20(2):30-32
    
    [4] 胡信国,张钦京,.化学镀镍技术的新进展,新技术新工艺,2001,(2):35-37
    
    [5] 中村实等[日],电镀废水闭路循环的理论与应用,北京:机械工业出版社。1986.
    
    [6] 冯敏,工业水处理技术.北京:海洋出版社,1992.
    
    [7] 铁道部专业设计院.污水处理的基本方法及应用.北京:中国铁道出版社,1997.
    
    [8] 杨春芬,彭小红。用乳状液膜从水溶液中提起钴(Ⅱ)、镍(Ⅱ)的配位效应,膜科学 与技术,1991,11(1,2):102-107
    
    [9] 娄金生,水污染治理新工艺与设计.北京:海洋出版社,1999.
    
    [10] 朱耀华,电镀废水治理技术综述.北京:中国环境科学出版社,1992.
    
    [11] 江芳 韩永忠,铁氧体法处理含镍废水的最佳工艺条件研究,西南给排水,2002(5): 24
    
    [12] 张瑞华,液膜分离技术。南昌:江西人民出版社,1984。
    
    [13] 欧阳深耕,王晓光,用无机膜处理含镍废水。电镀与环保,2002,22(3):35-36
    
    [14] Norman Ni Li,Somerset N J.Separating with Liquid Membranse[p].USP:3410 794,1968-11-12
    
    [15] 周军,金奇庭,电解法处理废水的研究进展。水处理技术,2002,26:130-135
    
    [16] 刘淑兰等 用电解法从电镀废水中回收金属镍,材料保护,1995,27(7):24-
    
    [17] 北京水环境技术和设备研究中心等.三废处理工程技术手册(废水篇)[M].北京:化学 工业出版社,1999.223.238.
    
    [18] 李春华,离子交换法处理电镀废水.北京:轻工业出版社,1987.
    
    [19] 郑礼胜,王士龙,张虹,王友,用沸石处理含镍废水 材料保护,1998年07期
    
    [20] 马万山,严泽群,多孔质沸石颗粒对Ni~(2+)的吸附性能及再生研究 非金属 矿.2001,24(4).45-46
    
    [21] A. Alberti, C. Vezzalini, in: L.B. Sand, F.A. Mumpton (Eds.),Natural Zeolites, PergamonPress, New York, 1978, pp. 85-98.
    
    [22] Ciambelli P. Zeolite Synthesis, Structure, Technology and Application American:ElsvierScience Publishers, 1985.
    
    [23] 张诠昌等,天然沸石交换性能及其应用,科学出版社,1986。
    
    [24] 傅东,天然沸石及其在环保领域中的引用前景,中国非金属矿工业导刊,2001(6): 21-24
    
    [25] 李增新,李相仁,天然沸石在环境污染治理中的应用进展,环境污染治理技术与设 备.2004,5(3).-18-22
    
    [26] 朱俊,王宁,天然沸石在环保中的应用,矿物学报.2003,23(3).-250-254
    
    [27] 吴国荣,邓慧萍, 微污染水源水深度处理中天然沸石的应用, 给水排??水.2003,29(7).98-98
    
    [28] 曹晓燕,天然沸石在土地整理中的应用, 国土资源.2002(6).-35-35
    
    [29] Xiao-wei Cheng a, Ying Zhong a,b, Jing Wang a, Juan Guo a,Qiang Huang c, Ying-cai Long Microporous and Mesoporous Materials 83 (2005) 233-243
    
    [30] 张寿庭,赵鹏大,陈建平等,天然沸石吸附性能与阳离子组份之间的关系,地球化学,2001(9):478-482
    
    [31] 潘根兴,殷善达,谭淑豪,赵建业,缙云天然沸石矿—急待开发的农用矿物资源 江苏地质, 1994,18(2)77-80
    
    [32] 张曦等,氨氮在天然沸石上的吸附解吸,环境化学,2003(3):166-171
    
    [33] S.K.Ouki and M.kavannagh Treatment of metals-contaminated wastewaters by use ofnatural zeolites. Water science technology 1999(39) 10-11:115-122
    
    [34] K.Mondale, minerals engineering, The comparative ion exchange capacities of natural sedimentary and synthetic zeolites Volume: 8, Issue: 4-5, April 5, 1995, pp. 535-548
    
    [35] 牟柏林,侯天意,霍丽娟,孙申美,天然沸石负载ZnO/SnO_2复合半导体的光催化活性 硅酸盐学报2005(33)11:1366-1370
    
    [36] 方送生,蒋引珊,王安平,杨正文,李芳菲,TiO_2改性天然沸石的光催化性能,2004(27)1:14-16
    
    [37] 苗茵,王红宇,内蒙古天然沸石的吸附,交换能力及热稳定性内蒙古大学学报:自然科学 版.1996,27(2):198-202
    
    [38] 吴平霄,廖宗文,高表面活性矿物对Zn~(2+)的吸附机理及其环境意义矿物学 报.2001,21(3):335-340
    
    [39] Zorpas A. A., Kapetanios E., Zorpas G., et al. Compostproduced from organic fraction of municipal solid waste. Primary stabilized sewage sludge and natural zeolite. Journal of HazardOUS Materials, 2000, 77(1): 149-159
    
    [40] Zorpas A. A., Constantinides T., Vlyssides A. G , et al. Heavy metal uptake by naturalzeolite and metals partitioningin sewage sludge compost. Bioresource Technology,211O0, 72(4): 113-119
    
    [41] 陈国安,沸石处理重金属离子废水的试验研究,矿产保护与利用,2001(6):17-19
    
    [42] Panayotova M . Use of zeolite for cadmiunremoval from waster [J].Environ Sci Health,2000,A35(9):1591-1601
    
    [43] 田文华,文湘华,钱易,沸石滤料曝气生物滤池去除COD和氨.中国给水排水,2002,18(12): 13-15.
    
    [44] 田文华,文湘华,杨爱华 钱易,沸石生物滤池处理低浓度生活污水的工艺性能及影响 因素.环境科学,2003,24(5):97-101.
    
    [45] 韩惠茹,利用天然沸石处理含铵废水的工艺研究,工业水处理.1997,17(5):33-34
    
    [46] 盂洪,彭昌盛,肖举强等,活化沸石除去水中磷化物的研究,矿产综合利用,2001,(4):378-382.
    
    [47] 肖举强,沸石除油能力初探,环境保护,1996,(2):28-29.
    
    [48] 何杰,刘玉林,谢同风,天然沸石用于去除水体中有机物污染物的效果,水处理技术1998,24(5):286-288.
    
    [49] Li zhaohui,Bowman R S. Sorption of perchoroethylene by surfactant-modified zeolite by surfactant loading .Environ Sci Technol, 1998(32):2278-2282
    
    [50] 李桂荣,肖举强,于连群,新型降氟材料——活化沸石,水处理技术,1994,(20)3:173-176
    
    [51] 刘文质,张玉杰,饮用水沸石除氟 1995,(21)3:166-170
    
    [52] Elizondo, N.V.; Ballesteros, E.; Kharisov, B.I. Cleaning of liquid radioactive wastes using natural zeolites Applied Radiation and Isotopes (Incorporating Nuclear Geophysics) 2000 (52): 1,pp. 27-30
    
    [53] 叶明吕,徐国庆等,放射性锶在沸石中的吸附与迁移的研究,核化学与放射化学,1994 16(4):199-204.
    
    [1] 徐如人,庞文琴,屠昆岗,沸石分子筛的结构与合成[M] 90-99
    
    [2] 张曦等,氨氮在天然沸石上的吸附解吸 环境化学2003.3166-171
    
    [3] 谢华林,李立波,改性沸石对重金属离子吸附性能的试验研究,非金属矿 2005,28(1):47-49
    
    [4] 北浩川, 铃木谦一郎,吸附的基础与设计[M].北京:化学工业出版社,1983,32,48

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700