城市交通拥堵传播机理及其控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
交通拥堵是城市交通的常见现象并且具有传播特性,即交通拥堵会打破城市交通网络原有的交通稳态,由拥堵发生路段蔓延到交通网络中的局部区域甚至整个网络。对拥堵传播机理进行研究,目的就是为了描述拥堵传播的规律,深化城市交通流动态特性认识,并利用它进行交通拥堵的控制。
     对拥堵传播机理的研究立足于宏观交通流,用时间离散化的方式,以当量车流量作为车辆在交通网络中演进的基本单位,从路段、交叉口、驾驶员、交通网络四个角度展开,具体内容如下:
     1.提出了一般道路交通流离散模型来表达交通拥堵在路段上的传播机理。模型将路段划分为合流、基本路段、排队三个部分,车辆在合流以及排队分流区域的演进特性由路段两端的交叉口特性决定。基本路段区域的交通状态则划分为四个交通相,交通相变由路段交通量决定,而流入路段车流量在基本路段上的演进由交通相、流量守恒和车辆先入先出规则来决定。模型据此可表达车辆在路段上的拥堵传播过程特性。
     2.提出了交叉口时刻通行能力分配离散模型来表达交叉口去向路段对来向路段的拥堵传播机理。首先,模型考虑了交叉口诸多要素的相互作用来计算交叉口来向路段驶向去向路段的车流量,如去向路段交通流特性、相位配时、来向路段交通流特性。其次,基于第一点,定义了拥堵传播强度以及拥堵传播效应指标,发现了信号设置会使路段成为城市交通网络拥堵的瓶颈因素。
     3.提出了基于用户均衡理论的驾驶员随机用户均衡择路分流离散模型来表达交叉口来向路段对去向路段的拥堵传播机理。模型能对城市交通网络环境中驾驶员择路分流发生条件及分流量进行刻画。仿真结果表明驾驶员择路分流对来向路段上的拥堵传播具有缓冲抑制作用,对分流去向路段有交通量负荷增益作用。
     4.根据路段以及交叉口传播机理,借助于传染病模型,得到交通网络拥堵传播机理。给出了拥堵传播源、拥堵传播方向、路段拥堵免疫力,列举了一些拥堵瓶颈,定义了拥堵在交通网络内的传播范围指标,从网络拥堵传播的角度给出了路段从非拥堵状态到拥堵感染路段状态的状态转化关系。
     基于交通拥堵传播机理,提出了实时性拥堵控制策略和适应交通流时空演变带有预测性的拥堵控制策略。两种控制策略都采用遗传变异算法搜索控制路段汇入车流的优化相位时序组合来实现控制目的。同时,以拥堵传播为策略间的通讯媒介,构建了交通网络拥堵的多种控制模式。
     最后,建立了城市交通拥堵传播模型综合表达拥堵传播机理和拥堵控制策略,并通过对应的仿真平台对交通拥堵传播机理和控制策略进行了验证。
Traffic congestion, a common phenomenon of urban traffic, has a propagationcharacteristic, that is, breaking the original traffic steady state of an urban traffic network andspreading from a congestion road to its local area or even entire network. With the aim todepict the law of congestion propagation, research on the mechanism of congestionpropagation will greatly help deepen the understanding of dynamic characteristics of urbantraffic flow and manage traffic congestion.
     With the equivalent flow volume for the vehicle evolution travel in the traffic networkand based on the macroscopic traffic flow and time discretization, research on the mechanismof congestion propagation is carried out in four aspects-road segments, intersections, drivers,and traffic network. The details are as follows:
     1. A discrete model for traffic flow on a generic road is developed to represent themechanism of congestion propagation on a road segment. The model regards the roadsegment as three logical parts, that is, the merging section, the basic section, and the queuingsection. The evolutional travel characteristics of vehicles on the merging section and queuingsection are determined by the characteristics of intersections on two ends of the road segment.The dynamic vehicle states of the basic section are classified into four-phase traffic, whosetransitions are determined by the number of vehicles on the section, whereas the evolutionaltravel characteristics of the inflows traffic on the basic section are dominated by the trafficphase, the vehicle conservation law, and the rule of vehicle FIFO(First In First Out). Themodel is used to represent the characteristics of congestion propagation of the vehicles on aroad segment.
     2. A discrete model for the assignment of instant time traffic capacity of intersections isdeveloped to represent the mechanism of congestion propagation from outgoing roadsegments to incoming road segments. Firstly, the model formulates the rate of traffic goingfrom the incoming road segments to the outgoing road segments with taking account ofelement interactions, such as the characteristics of traffic on the outgoing road segments, thephase timing, and the characteristics of traffic on the incoming road segments. Secondly, anintensity indicator and an effect indicator of congestion propagation are defined. It is discovered that intersection signal settings may turn a road segment into a congestionbottleneck in the urban traffic network.
     3. A discrete model for the driver’s route choice on stochastic user equilibrium isdeveloped to represent the mechanism of congestion propagation from incoming roadsegments to outgoing road segments. The model simulates the occurrence conditions and thetraffic volume of the driver’s route choice in the urban traffic network. The simulation resultsshow that the driver’s route choice has buffering effects on the congestion propagation on theincoming road segments, and has gain effects on the traffic load of the routed outgoing roadsegments.
     4. Based on the two mechanisms above and referring to epidemic models, the mechanismof congestion propagation in a traffic network is deduced. Some conceptions are given such asthe sources of congestion propagation, the direction of congestion propagation, and the roadcongestion immunity. Some bottlenecks of the network congestion are identified and thecongestion propagation range within the traffic network is defined. In addition, with respect tothe congestion propagation in the traffic network, transition relationship from a non-congestedroad segment to a congested road segment is discovered.
     Based on the mechanism of traffic congestion propagation, real-time congestion controlstrategies and predictable congestion control strategies, adapting to the traffic flowevolutional spatialtemporal travel, are proposed, in which the Genetic Algorithm is adopted tosearch optimal phase timing corresponding to the inflow traffic on the controlled roadsegment in order to achieve the control goal. Meanwhile, using the congestion propagation asthe communication medium between the strategies, diverse control patterns of congestion inthe traffic network are built, too.
     In summary, models for the congestion propagation in urban traffic are developed tocomprehensively represent the congestion propagation mechanism and control strategies,which are verified by the corresponding simulation platform.
引文
[1]吴奇兵,陈峰,黄垚等.北京市机动车拥堵成本测算与分析[J].交通运输系统工程与信息,2011,11(1):168-172.
    [2]王进,史其信.短时交通流预测模型综述[J].中国公共安全,2005,1:92-98.
    [3]孙莉芬.城市交通拥堵疏导决策支持系统的研究[D].武汉:华中科技大学,2005.
    [4]WRIGHT C, ROBERG P. The conceptual structure of traffic jams [J]. Transport Policy,1998,5(1):23-35.
    [5] Mineta N. National Strategy to Reduce Congestion on America's Transportation Network[J]. US Department of Transportation,2006.
    [6] Downs A. Can traffic congestion be cured?[J]. The Washington Post,2006(4):955-974.
    [7] Assocoation A.p.t. Critical relief for traffic congestion[R].2002.
    [8]黄良彪,张艳.城市道路交通拥堵的原因及其治理对策[J].政法学刊,2007,24(1):114-118.
    [9]穆祥纯,刘璇亦.关于解决特大城市交通拥堵地段交通问题的案例分析[J].城市道桥与防洪,2008,(5):1-4.
    [10]徐丽丽,王秋平.西安市交通拥堵问题及对策分析[J].交通科技与经济,2008,(1):85-86.
    [11]杨晓光,褚浩然.错峰出行对城市交通影响分析[J].同济大学学报(自然科学版),2006,34(7):899-903.
    [12]杨佩昆.智能交通[M].上海:同济大学出版社,2002:99-119.
    [13]杨兆升.智能运输系统概论[M].北京:人民交通出版社,2003:1-19.
    [14]杨成国,李英子.我国大城市交通拥堵问题对策研究[J].北京建筑工程学院学报,2007,23(4):62-64.
    [15]余冰等.城市交通拥堵问题研究综述[J].物流技术,2011,30(6):4-6.
    [16]中华人民共和国公安部.城市道路交通管理评价指标体系[S].北京:公安部交通管理局,2002.
    [17]达庆东,张国伍.交通拥堵定量分析方法[J].交通运输系统工程与信息,2002,2(4):45-48.
    [18]姜桂艳,江龙晖,王江锋.城市快速路交通拥堵识别方法[J].交通运输工程学报,2006,6(3):87-91.
    [19]庄斌,杨晓光,李克平.道路交通拥堵事件判别准则与检测算法[J].中国公路学报,2006,19(3):82-86.
    [20]张仁.北京市二、三环路交通改善方案设计综述[J].城市道桥与防洪,2000,(2):1-5.
    [21]雷丽,董力耘,宋涛等.基于元胞自动机模型的高架路交织区交通流的研究[J].物理学报,2006,55(4):1711-1717.
    [22]任福田,刘小明,荣建.交通工程学[M].北京:人民交通出版社,2003:100-106.
    [23]何蜀燕,关伟.城市快速路交通流状态跃迁的实证分析[J].中国公路学报,2008,21(5):81-86.
    [24]关伟,何蜀燕.基于统计特性的城市快速路交通流状态划分[J].交通运输系统工程与信息,2007,7(5):42-50.
    [25]郝媛,徐天东,孙立军.城市快速路常发性交通拥堵分析[J].交通与计算机,2007,25(2):91-98.
    [26]郝媛,孙立军,徐天东等.城市快速路交通拥堵分析及拥堵阈值的确定[J].同济大学学报(自然科学版),2008,36(5):609-614.
    [27]Kerner B S. Introduction to Modern Traffic Flow Theory and Control: The Long Road toThree-Phase Traffic Theory [M]. Berlin: Springer,2009.
    [28]Rehborn H, Klenov S L, Palmer, J. Common Traffic Congestion Features studied in USA,UK, and Germany based on Kerner's Three-Phase Traffic Theory[C]//IEEE.2011IEEEINTELLIGENT VEHICLES SYMPOSIUM (IV). Baden-Baden,GERMANY:IEEE,2011:19-24.
    [29]Schonhof M, Helbing D. Criticism of three-phase traffic theory[J]. TransportationResearch Part B,2011,43(7):784-797.
    [30]徐立,吴聪,杨兆升.信号交叉口通行能力计算方法[J].交通运输工程学报,2001,1(1):82-85.
    [31]王炜,高海龙,李文权等.公路交叉口通行能力分析方法[M].北京:科学技术出版社,2001:20-22,63-64
    [32]邹杰.基于元胞自动机的交通流模型研究[D].山东:山东科技大学,2007.
    [33]贾斌,高自友,李克平等.基于元胞自动机的交通系统建模与模拟[M].北京:科学出版社,2007:18-45.
    [34] Long J, Gao Z, Zhao X,Lian A,Orenstein P. Urban traffic jam simulation based on thecell transmission model[J]. Networks and Spatial Economics,2011,11(1):43-64.
    [35]YANG Q D. A simulation laboratory for evaluation of dynamic traffic managementsystems[D]. Boston: Massachusetts Institute of Technology,1997.
    [36]DELL'ORCO M. A dynamic network loading model form eso-simulation intransportation systems[J]. European Journal of Operational Research,2006,175(3):1447-1454.
    [37]Burghout W,Koutsopoulos H N,Andreasson I. Hybrid micro-scopic mesoscopic trafficsimulation [J]. Journal of the Transportation Research Board,2005,1934(1):218-255
    [38]陆化普等.交通规划理论与方法[M].北京:清华大学出版社,1998:192-214.
    [39]高自友,任华玲.城市动态交通流分配模型与算法[M].北京:人民交通出版社,2005:318-322.
    [40]Li Shu-Guang. DETERMINATION OF OPTIMAL WORK START TIME [J].TRANSPORT,2007,22(1):45–49.
    [41]YOSHIMURA, M, OKUMURA, M. Optimal commuting and work start time distributionunder flexible work hours system on motor commuting [J]. In Proceedings of the EasternAsia Society for Transportation Studies,2001,3(2):455–469.
    [42]David Watling. User equilibrium traffic network assignment with stochastic travel timesand late arrival penalty [J]. European Journal of Operational Research,2006,175(3):1539–1556.
    [43]Friesz Terry L, Mookherjee Reetabrata. Solving the dynamic network user equilibriumproblem with state-dependent time shifts [J]. Transportation Research Part B,2006,40(3):207–229.
    [44]SHI Feng, LUO Duangao. Model and Solution Algorithm for Multiclass UserEquilibrium Assignment Problem in Degradable Road Network [J]. JOURNAL OFTRANSPORTATION SYSTEMS ENGINEERING AND INFORMATIONTECHNOLOGY,2008,8(4):70–76.
    [45]Lim Y.Heydecker B. Dynamic departure time and stochastic user equilibriumassignment[J]. Transportation Research Part B,2005,39(2):97-118.
    [46]Li Shuguang, Xu Hongke. Physical-Queue Discrete-Time Dynamic Network Loadingwith Multiple Vehicle Types [J]. JOURNAL OF TRANSPORTATION SYSTEMSENGINEERING AND INFORMATION TECHNOLOGY,2009,9(1):56-61.
    [47]况爱武,王正武,李炳林.多用户类弹性需求随机用户均衡模型及其求解[J].长沙理工大学学报(自然科学版),2007,4(2):16-20.
    [48]陆化普,黄海军.交通规划理论研究前沿[M].北京:清华大学出版社,2007:251-262.
    [49]吴哲辉. Petri网导论[M].北京:机械工业出版社,2006:前言.
    [50]Rene D,Hassane A. On Hybrid Petri Nets [J]. Discrete Event Dynamic Systems: Theoryand Applications,2001,11(1-2):9–40.
    [51]岳昊.基于混合Petri网的城市道路交通网络建模与仿真[D].山东:山东科技大学,2009.
    [52] Darbari M,Singh V K,Asthana R. N-dimensional self organizing petri net for urbantraffic modeling[J]. International Journal of Computer Science Issues,2010,4(2).
    [53]Gallego J L, Farges J L, Henry J J. Design by Petri nets of an intersection signalcontroller [J]. Transportation research,1996,4(4):231-248.
    [54]List G, Cetin M. Modeling Traffic Signal Control Using Petri Nets[J]. IEEE transactionson intelligent transportation systems,2004,5(3):177-187.
    [55] Barzegar S, Davoudpour M, Meybodi M R. Formalized learning automata with adaptivefuzzy coloured Petri net; an application specific to managing traffic signals[J]. ScientiaIranica,2011,18(3):554-565.
    [56]Dos Santos Soares M, Vrancken J. Scenario analysis of a network of traffic signalsdesigned with Petri nets [J]. WIT Transactions on the Built Environment,2007,96:289-297.
    [57]Febbraro A, Giglio D, Sacco N. Urban traffic control structure based on hybrid Petrinets[J]. IEEE Transactions on Intelligent Transportation Systems,2004,5(4):224-237.
    [58]Febbraro A, Sacco N. On Modeling Urban transportation networks via hybrid Petri Nets[J]. Control Engineering Practice,2004,12(10):1225-1239.
    [59]Tolba C, Lefebvre D, Thomas P, Moudni A. Continuous and timed Petri nets for themacroscopic and microscopic traffic flow modeling [J]. Simulation Modelling Practiceand Theory,2005,13(5):407-436.
    [60]Dotoli M, Fanti M. An urban traffic network model via coloured timed Petri nets[J].Control Engineering Practice,2006,14(10):1213-1229.
    [61]Chung T H, Huang Y S. Design of a Supervisor for Traffic Light Systems [J]. LectureNotes in Computer Science,2007,4693:704-711.
    [62]Wang Jia-cun, Jin Chun, Yi Deng. Performance analysis of traffic networks based onStochastic Timed Petri Net models[C]//IEEE. International Conference on ComputerEngineering and Technology. Chengdu, China: IEEE,2010:9-17.
    [63] Zhang L G, Zhen L, Chen Y Z. Hybrid petri net modeling of traffic flow and signalcontrol[C]//IEEE.Proceedings of the7th International Conference on Machine Learningand Cybernetics. Kunming, China: IEEE,2008:2304-2308.
    [64] CHOWDHURY D, SANTEN L, SCHADSCHNEIDER A. Statistical physics ofvehicular traffic and some related systems [J]. Physics Report,2000,329(4):199-329.
    [65]HELBING D. Traffic and related self-driven manyparticle system [J]. Review of ModernPhysics,2001,73(4):1067-1141.
    [66]MAERIVOET S, MOOR B D. Cellular automata models of road traffic [J]. PhysicsReport,2005,419(1):1-64.
    [67]Zhang H M. A finite difference model of nonequilibrium traffic flow [J]. TransportationResearch B,2001,35(5):337-365.
    [68]姜锐,吴清松,朱祚金.一种新的交通流动力学模型[J].科学通报,2000,45(17):1895-1899.
    [69]姜锐,吴清松,朱祚金.各向异性交通流动力学模型的波动特性[J].应用数学与力学,2002,23(4):371-375.
    [70]吴正.关于交通流中扰动传播和发展的数值模拟[J].力学学报,2006,38(6):785-791.
    [71]汪茂林,吴正.高速公路交通事故和干涉车流波的数值模拟[J].水动力学研究与进展,2001,16(3):265-273.
    [72]王殿海.交通流理论[M].北京:人民交通出版社,2002:69-77.
    [73]Biham O, Middleton A, Levine D. Self organization and a dynamical transition in trafficflow models [J]. Physical Review A,1992,46(10):6124-6127.
    [74]Brockfeld E, Barlovic R, Schadschneider A et al. Optimizing traffic lights in a cellularautomaton model for city traffic [J]. Physical Review E,2001,64(5):056132.
    [75]Huang P H, Kong L J, Liu M R. A study of a main-road cellular automata traffic flowmodel [J]. Chinese Physica B,2002,11(7):678-683.
    [76]Jiang R, Wu Q S. The traffic flow controlled by the traffic lights in the speed gradientcontinuum model [J]. Physic A,2005,355(2):551-564.
    [77]Sasaki M, Nagatani T. Transition and saturation of traffic flow controlled by traffic lights[J]. Physic A,2003,325(3):531-546.
    [78]Jiang R, Wu Q S, Zhu Z J. Full velocity difference model for a car-following theory [J].Physical Review E,2001,64(1):017101.
    [79]唐铁桥,黄海军,徐刚等.考虑信号灯影响的交通流模型与数值模拟[J].物理学报,2008,57(1):56-60.
    [80]GAO Z Y, WU J J, SUN H J. Solution algorithm for the bi-level discrete network designproblem [J]. Transportation Research Part B,2005,39(6):479-495.
    [81]GAO Z Y, WU J J, SONG Y F. A reserve capacity model of optimal signal control withuser-euqilibrium route choice [J]. Transportation Research Part B,2002,36(4):313-323.
    [82]YING J Q, LU H P, SHI J. An algorithm for local continuous optimization of trafficsignals [J]. European Journal of Operational Research,2007,181(3):1189-1197.
    [83]LONG J C,GAO Z Y,REN H L. Urban traffic congestion propagation and bottleneckidentification[J]. Science in China Series F:Information Sciences,2008,51(7):948-964.
    [84]LO H K, CHANG E, CHAN Y C. Dynamic network traffic control [J]. TransportationResearch Part A,2001,35(8):721-744.
    [85]周涛,傅忠谦,牛永伟等.复杂网络上传播动力学研究综述[J].自然科学进展,2005,15(5):513-517.
    [86]Chung K, Rudjanakanoknad J, Cassidy M J. Relation between traffic density and capacitydrop at three freeway bottlenecks[J]. Transportation Research Part B,2007,41(1):82-95.
    [87] Tang Tie-Qiao, Li Peng, Wu Yong-Hong, Huang Hai-Jun. A macro model for trafficflow with consideration of static bottleneck[J]. Communications in Theoretical Physics,2012,58(2):300-306.
    [88] Guumlnther G, Coeymans J E, Muntildeoz J C, Herrera, J C. Mitigating freewayoff-ramp congestion: A surface streets coordinated approach [J]. TransportationResearch Part C,2012,20(1):112-125.
    [89] Guido Gentile, Lorenzo Meschini, Natale Papola. Spillback congestion in dynamic trafficassignment:A macroscopic flow model with time-varying bottlenecks[J]. TransportationResearch Part B,2007,41(10):1114-1138.
    [90] Wei-Hsun Lee, Shian-Shyong Tseng, Jin-Lih Shieh. Discovering Traffic Bottlenecks inan Urban Network by Spatiotemporal Data Mining on Location-based Services[J]. IEEETransactions on Intelligent Transportation Systems,2011,12(4):1047-1056.
    [91]Kerner, B S. Optimum principle for a vehicular traffic network: minimum probability ofcongestion[J]. Journal of Physics A: Mathematical and Theoretical,2011,44(9):092001
    [92]尹胜超,许润民,张毅,李志恒.城市快速路瓶颈区域控制策略研究[J].交通运输系统工程与信息,2012,12(2):27-33
    [93]Agiza, H N, Elgazzar, A S, Youssef S A. Phase transitions in some epidemic modelsdefined on small-world networks, http://arxiv.org/pdf/cond-mat/0301004v1.pdf,2003/2012-01-15.
    [94]Pastor-Satorras R, Vespignani A. Epidemic dynamics in finite size scale-free networks,http://arxiv.org/pdf/cond-mat/0202298v1.pdf,2002/2012-01-15.
    [95]Zou, C C.Towsley D, Gong, W. Email Virus Propagation Modeling and Analysis,http://borax.polux-hosting.com/madchat/vxdevl/papers/avers/emailvirus.pdf,2003/2012-01-15
    [96]李树彬,吴建军,高自友等.基于复杂网络的交通拥堵与传播动力学分析[J].物理学报,2011,60(5):50701.
    [97]Lo H K, Szeto W Y. A cell-based dynamic traffic assignment model: formulation andproperties[J]. Mathematical and Computer Modelling,2002,35(7):849-865
    [98]Lo H K, Szeto W Y. A cell-based variational inequlity formulation of the dynamic useroptimal assignment problem [J]. Transportation Research Part B,2002,36(5):421-443.
    [99]Szeto W Y, Lo H K. A cell-based simultaneous route and departure time choice modelwith elastic demand [J]. Transportation Research Part B,2004,38(7):593-612.
    [100]连爱萍,高自友,龙建成.基于路段元胞传输模型的动态用户最优配流问题[J].自动化学报,2007,33(8):852-859.
    [101]高自友,龙建成,李新刚.城市交通拥堵传播规律与消散控制策略研究[J].上海理工大学学报,2011,33(6):701-707.
    [102]陶经辉,李旭宏,毛海军.无信号交叉口通行能力[J].交通运输工程学报,2003,3(4):100-103.
    [103]高海龙,王炜,常玉林等.无信号交叉口临界间隙的理论计算模型[J].中国公路学报,2001,14(2):78-80.
    [104]黄荣,郭敏,陈绍宽等.拥堵状态下信号交叉口通行能力计算方法[J].交通运输系统工程与信息,2008,8(3):58-65
    [105]张鹏,常玉林.信号交叉口延误-通行能力联合优化配时方法研究[J].交通运输系统工程与信息,2008,8(1):118-122.
    [106]陈东彦,李冬梅,王树忠.数学建模[M].北京:科学出版社,2007:55-62.
    [107]杨启航,方道元.数学建模[M].浙江:浙江大学出版社,1999:109-112.
    [108]TROUTBECK R J, KAKO S. Limited priority merge at unsignallized intersections [J].Transportation Research Part A,1999,33(4):219-304.
    [109]HARWOOD D W, MASON J M, BRYDIA R E. Design policies for sight distance atstop-controlled intersections based on gap acceptance [J]. Transportation Research PartA,1999,33(3):199-216.
    [110]AL-MADAN H M N. Dynamic vehicular delay comparison between a policy-controlledroundabout and a traffic signal [J]. Transportation Research Part A,2003,37(8):681-688.
    [111]YAND H, YAGAR S. Traffic assignment and signal control in saturated road networks[J]. Transportation Research Part A,1995,29(2):125-139.
    [112]YAND H, LAM W H K. Optimal road tolls under conditions of queuing and congestion[J]. Transportation Research Part A,1996,30(5):319-332.
    [113] Zhao D, Dai Y, Zhang Z. Computational Intelligence in Urban Traffic Signal Control:A Survey[J]. IEEE Transactions on Systems, Manand Cybernetics, Part C: Applicationsand Reviews,2012,42(4):485-494.
    [114]Roberg-Orenstein P, Abbess C R, Wright C. Traffic jam simulation [J]. Journal of Maps,2007,3(1):107-121.
    [115]Long J, Gao Z,Orenstein P,Ren, H. Control Strategies for Dispersing Incident-BasedTraffic Jams in Two-Way Grid Networks[J]. IEEE Transactions on IntelligentTransportation Systems,2012,13(2):469-481.
    [116] LI Yanfeng, GAO Ziyou, LI Jun. Vehicle routing problem in dynamic urban trafficnetwork[C]//Service Systems and Service Management (ICSSSM),20118thInternational Conference on yanfeng2011vehicle. IEEE,2011:1-6.
    [117] Vasirani M, Ossowski S. A Computational Market for Distributed Control of UrbanRoad Traffic Systems[J]. IEEE Transactions on Intelligent Transportation Systems,2011,12(2):313-321.
    [118] Wright C, Roberg-Orenstein P. Simple models for traffic jams and congestion control[J]. Proceedings of the Institution of Civil Engineers: Transport,1999,135(3):123-130.
    [119]龙建成.城市交通拥堵传播规律与消散控制策略研究[D].北京:北京交通大学,2010.
    [120] Guo Xiaojian, Zhu Quan. A Traffic Flow Forecasting Model Based on BP NeuralNetwork[C]//Power Electronics and Intelligent Transportation System (PEITS),20092nd International Conference on.2009,3:311-314.
    [121] Srinivasan D,Wai Chan C,Balaji P G. Computational intelligence-based congestionprediction for a dynamic urban street network[J]. Neurocomputing,2009,72(10):2710-2716.
    [122]陆宇,岳昆,刘惟一.一种基于贝叶斯网的交通拥堵预测方法[J].云南大学学报(自然科学版),2010,32(SI):355-363.
    [123]卫寒梅,郑应文.基于粗糙集和D-S证据理论的交通拥堵预警[J].福州大学学报(自然科学版),2008,36(1):69-72.
    [124]ROBERG P, ABBESS C R. Diagnosis and treatment of congestion problems in centralurban are areas [J]. European Journal of Operational Research,1998,104(1):218-230.
    [125]刘学礼,马丁玲,孔庆典等.重塑人类常识的20大科学实验[M].上海:上海文化出版社,2005:89-98.
    [126]CHABINI, I. Analytical dynamic network loading problem: Formulation, solutionalgorithms, and computer implementations [J]. Journal of the Transportation ResearchBoard,2001,1771(24):191–200.
    [127]Rubio-Ardanaz J.M, Wu J.H, Florian M. Two improved numerical algorithms for thecontinuous dynamic network loading problem [J]. Transportation Research Part B,2003,37(2):171-190.
    [128]OROSZ G, WILSON R E, ST PN G. Traffic jams: dynamics and control [J].Philosophical Transactions of the Royal Society A,2010,368(1928):4455-4479.
    [129]孙勇.城市干道交通流运动状态特性研究[D].哈尔滨:哈尔滨工业大学,2007.
    [130]祝付玲.城市道路交通拥堵评价指标体系研究[D].南京:东南大学,2006.
    [131]王曦,祝付玲.基于高斯混合分布的交通拥堵评价模型[J].公路交通科技,2011,28(2):127-132.
    [132]迟骋.北京市路段交通拥堵评价体系研究[D].北京:北京交通大学,2007.
    [133]张毅媚,黄进堂.基于模糊数学的交通拥堵评价指标[J].华中科技大学学报(城市科学版),2008,25(1):65-68.
    [134]任其亮,肖裕民.城市路网交通拥堵H2Fuzzy评判方法研究[J].重庆交通大学学报(自然科学版),2008,27(5):763-766.
    [135]Shu-Guang Li. Genetic algorithm for solving dynamic simultaneous route and departuretime equilibrium problem [J]. Transport,2008,23(1):73-77.
    [136]邹亮,徐建闽.基于遗传算法的动态网络中最短路径问题算法[J].计算机应用,2005,25(4):742-744.
    [137]刘智勇.智能交通控制理论及其应用[M].北京:科学出版社,2003:164-224.
    [138]王俊刚,于泉,高颖等.变带速干线协调控制模型研究[J].公路交通科技,2005,22(4):108-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700