活骨组织应力与重建适应实验及其生物模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
应力与生长是生物力学活的灵魂,功能性适应是生物力学普遍规律。应力与生长关系的研究主要包括两个方面:其中一个方面是从宏观上研究骨生长与重建对其应力环境的适应过程,以期建立一个恰当、准确、实用又能量化的“模型”,使其能够精确表达如何由于功能适应性而形成骨的各种内部组织。另一方面是从微观角度研究应力环境同细胞生长与活力的关系及其力学—生物学转导机制,以期从本质上阐明应力与生长关系的机制。
     尽管对骨力学的研究已有上百年的历史,但至今还不能说它已形成一个成熟的分支。把力学原理引进生物体、生物组织与器官是一件非常困难的事,因为生物体的主要特点是有生命,有生命的活组织与无生命的工程材料的结构有根本的区别。
     本文从生物力学角度出发,将计算机仿真技术、三维图形重构、计算力学、参数识别反问题等理论、近代医学理论与动物实验相融合,发挥多学科交叉的优势,进行骨骼解剖结构和力学性能与正常功能相适应的研究,并建立活骨组织应力与重建适应生物模型。这种生物建型是在宏观尺度意义下进行的。
     论文各章节主要工作概述如下:
     第一章主要阐述了生物力学及骨力学的定义,简单介绍了生物力学和骨力学的发展简史、研究特点、研究意义和骨力学的研究方法。接着给出了骨骼生长与重建的基本概念和基本理论。回顾了应力与骨重建理论的发展进程。简要介绍了国内生物力学的发展状况。最后概述了论文的临床背景和研究意义。
     第二章首先概述了骨的组织学和生理学,然后建立大鼠动物实验模型,进行3次实验研究,系统研究不同应力环境对大鼠股骨的宏观几何结构、解剖学、组织形态学、骨计量学、骨密度以及股骨生物力学性能的影响,并对应力环境对大鼠股骨生长与重建影响的机理进行了讨论。实验结果发现,活骨组织通过改变其自身的结构、形状、组织成分以及生物力学性能来适应环境。
     第三章建立大鼠胫骨骨折模型,从医学和生物力学多角度研究不同的受力状态对动物骨折愈合在组织水平和分子水平的影响;分别在组织学和力学细胞生物学水平探讨了
    
    应力与骨重建的机理。研究发现,应力环境影响可间充质细胞的增殖和分化,同时影响
    胞外基质分子的表达和巨噬细胞的迁入,并改变着参与骨折愈合的细胞间的相互作用。
    最后进行了长骨内开口效应对其力学性能和应力分布影响的有限元分析,所得结论为临
    床上骨科手术的实施提供有价值的参考。
     第四章是本论文的重点内容。首先详细介绍了活骨组织应力与重建适应生物力学模
    型的发展现状,然后在动物实验基础上,运用反问题的理论与方法对骨生长与重建方程
    中的关键参数进行反演识别。再利用正演结合动物实验来验证和修订所建模型。从而得
    到能够正确反映大鼠骨骼随应力环境变化而进行骨重建的生物力学模型。最后进行大鼠
    股骨医学CT图像的三维重建。为深入研究生物建模奠定基础。
     第五章总结全文,并展望今后的研究方向和研究内容。
     本文的研究工作是国家自然科学基金项目(基金号:10472025)、高等学校博士点专
    项基金项目(基金号2000014107)以及辽宁省科学技术基金项目(基金号:20032109)的一
    部分。
     关键词:动物实验;骨组织:生长与重建;生物模型;反问题;应力环境;有限元
    方法:生物力学;骨折;CD68;BMP2;
     注:本文作者是名临床骨科医生,虽然进入力学专业学习已有3年半的时间,但对
    于广博的力学知识而言,自己所掌握的可以说只是沧海一粟,九牛一毛,对力学专业的
    某些名词的理解尚不够深刻。本论文的参考资料有些来自医学、生物医学工程以及生物
    力学等领域的文献,其中引用的某些术语从纯力学的角度看可能不够准确,如:应力遮
    挡、应力保护、应力环境等。可见,将交叉学科领域里的名词和术语进行规范和标准化
    无疑也是我们面临的重要任务之一。希望我的工作能起到抛砖引玉的作用。
The relationship between stress and growth is alive ghost of biomechanics, functional adaptation is a universal rule of biomechanics. The study of relationship between stress and growth mainly includes two aspects: one is to investigate the adaptation procedure of bone growth and remodeling to its stress environment in order to set up a aptitude, accurate, practical and can be quantified "model", which can precisely express how functional adaptation form the inner tissue of bone; The other is to study the relationship between stress environment and cell growth and energy as well as its mechano-biology transduction mechanism at microcosmic point of view in order to essentially illuminate the mechanism of the connection of stress and growth.Although the biomechanics has been studied for more than one century, but it has not formed a mature embranchment up to the present. It is very difficult to introduce mechanical theory into organism, biological tissue and apparatus, because the main characteristic of organism is that it has "life" there is essential difference between the structure of alive tissue and nonliving engineering material.From biomechanical point of view, this research integrates computer simulation technique, three-dimension image reconstruction, computing mechanics, parameter inversion identification theory and animal experiments. Possessing advantages of multiple subjects crossing, it carries through the investigation of bone anatomical structure and mechanical property adapting to its normal function, and creates stress and remodeling adaptation biological model of living bone tissue. The building of this biological model is carried through under macroscopic scale meaning.The main work of each chapter of the research is summarized in the following:In chapter one, the definitions of biomechanics and bone mechanics aremainly expatiated. The brief history, investigation feature, study meaning of
    
    biomechanics and bone mechanics are simply introduced. And then, the basic concept and essence theory of bone growth and remodeling are presented. The development course of stress and bone remodeling is reviewed. The development status of biomechanics in our country is briefly introduced. At last, the clinic background and research meaning of the thesis are summarized.In the chapter two, the histology and physiology of bone are firstly summarized, then animal experimental model of rat is built, three experimental studies are put up, the influence of different stress environment on the macroscopic geometrical structure, anatomy, tectology, metrology, bone density and biomechanical property of rat femur is investigated systematically. How the stress environment affects rat femur growth and remodeling is discussed. The experiment result shows that living bone tissue adapts its environment by changing its structure, shape, tissue component and biomechanical property. In chapter three, rat tibia fracture model is created, the influence of stress environment on animal fracture healing at tissue level and molecule level is studied from medical and biomechanical point of view; the mechanism of stress and remodeling is discussed at tissue and mechanocytobiology level respectively. The research shows that stress environment can influence the proliferation and differentiation of mesenchymal cell, at the same time, it also affect the expression of extracellular matrix molecules and the immigration of macrophages, further more change the interaction of cells which participate in fracture healing.At last, a finite element analysis of the effect of open section within a long bone on its mechanical property and stress distribution is carried through, the obtained conclusion provides a valuable reference to clinical orthopaedic operation.The chapter four is the keystone content of the thesis. At first, the development status in quo of living bone tissue stress and remodeling adaptation biomechanical model is particularly introduced, and then, on the basis of animal
    
    biomechanical model is particularly introduced, and then, on the
引文
1.陶祖莱.应力与生长关系—生物力学的一个新前沿.生物力学新进展,第5届全国生物力学学术会议暨生物力学发展研讨会论文集,成都科技大学出版社出版,成都1996:15-17.
    2.王前,钟世镇,杨桂通.力学环境对骨生长和改建的影响及机理.医用生物力学,1993,2:28.
    3.陶祖莱.应力与生长.二十一世纪自然科学发展,北京,科学出版社出版,1997:86-89.
    4.曾衍均.生物力学现状与展望.北京工业大学学报,1996,1:1.
    5.王西十,王岷.活骨组织应力与重建适应模型的研究现状与展望.生物医学工程学杂志,2001,18(3):479-483.
    6.王远亮,蔡绍皙.生物力学与骨组织工程.力学进展,1999,29(2):232-240.
    7.冯元桢.生物力学简述.北京:科学出版社,1980.
    8.第三届世界生物力学大会会议文集,1997.
    9. Wolff, J.(1884): Das Gesetz der transformation der inneren architectur der knochen bei pathologischen ver(?)nderungen der (?)usseren knochenform. Sitz. Ber. Press. Akad. d. Wiss. 22. Sitzg., physik-math. kl.
    10.杨桂通,吴文周.骨力学科学出版社,1989.
    11.柳兆荣,覃开荣世纪之交的生物力学盛会—第三次世界生物力学大会和第五届中日美新生物力学学术会议.力学进展,1998;4:35]
    12. Y. C Fung. Biomechanics, The basic equication of biomechanics. University of California, San Diego, USA. 1990.
    13.郑秀瑗等.运动生物力学进展,国防工业出版社,1998.
    14.蔡绍皙.生物力学研究的热点:应力和活组织重建.重庆大学生物工程学院,1999,10,26.
    15.曾其蕴等.生物复合材料的特征及仿生的探讨.复合材料学报,1993(3),10(1).
    16. Dibbers J. M. H. One century of Wolff's law. In: Carlson D S, Goldstein S A, eds. Bone dynamics in orthodontic and orthopaedic treatment. Center for human growth and development, University of Michigan Press, Ann Arbor, 1992: 1-13.
    17. Larray A. T. Biomechanics of growth, remodeling, and morphogenesis. Appl Mech. Rev, 1995(8), 48(8): 438-578.
    18. Cowin S. C., Hegedus D.M Bone remodeling Ⅰ: A theory of adaptive elasticity. J. Elasticity, 1976, 6: 313.
    19. Hegedus D. M, Cowin S. C. Bone remodelingll: Small strain adaptive elasticity. J. Elasticity, 1976, 6: 337.
    
    20. Cowin S. C., Nachlinger RR. Bone remodeling Ⅲ: Uniqueness and stability in adaptive elasticity theory. J. Elasticity, 1978, 8: 285.
    21. Cowin S.C., Van B. WC. Surface bone remodeling induced by a medullary pin. J. Biomechanics, 1979, 12: 269.
    22. Cowin S. C. Firoozbakhsh K. Bone remodeling of diaphysical surfaces under constant load: theortical prediction. J. Biomechanics, 1981, 14: 471-484.
    23. Currey J. D. The mechanical adaptions of bones. Princeton Unversity, Press, 1984.
    24. Carter D. R. Relationship between loading history and femoral cancellous bone architecture. J. Biomechanics, 1989, 22(3): 231-244.
    25. Carter D.R., Wong M. Role of mechanical loading histories in the development of diarthrodial joints. J. Orthop. Res. 1988, 6(6), 804-816.
    26. Frost H. M Bone dynamics in osteoporosis and osteomalacia. Springerfield, Thomas, 1966.
    27. Currey J. D. Three anologics to explain the mechanical properties of bone. Biorheology, 1968, 2: 1-10.
    28. Frost H.M Bone "mass" and the "mechnostat":a proposal. Anat Rec, 1987, 219: 1-9.
    29. Gjelsvik A. Bone remodeling and piezoelectricity-I.J.Biomechanics, 1973,6: 69-77.
    30. Dominique P. Pioletti, Lalao R. Rakotomanana., Can the increasee of bone mineral density following bisphosphonates treatments be explained by biomechanical consideration? .Clinical Biomechanics 2004(9):170-174.
    31. Cross D., Williams W.S. Streaming potential and the electromechanical response of physiologically moist bone. J. Biomechanics, 1982, 15: 277-295.
    32. Kummer B. K. F Biomechanics of bone: mechanical properties, functional structure, and funchonal adaptation. In Biomechics: 1st foundations and objectives, ed. Y. C. Fung et al. 237-271.
    33. Cowin S.C., Van B.W.C. Surface bone remodeling induced by a medullary pin. J. Biomechanics, 1979, 1: 269-276.
    34. Tanaka M, Adachi T. Preliminary study on mechanical bone remodeling permitting residual stress. JSME Int, 1994, 37: 87-95.
    35. Cowin S. C, Hart R. T, Balser J. R et al. Functional adaptation in long bones: Establishing in vivo value for surface remodeling rate coefficients. J. Biomechanics, 1985, 18: 665-684.
    36. Cowin S. C, Hegedus D. M. Bone remodeling: A theory of adaptive elasticity. J Elasticity, 1976, 6: 313-337.
    
    37. Firoozbkhsh K, Cowin S. C. An analytical model of pauwels function adaptation mechanism for bone. ASME, J Biomech. Engin, 1981, 103; 246.
    38. Currey J. D. The mechanical adaptations of bones, Princeton Univ. Press, 1984
    39. Fyhrie D. P, Carter D. R. A unifying principle relating stress to trabecular bone morphology. J. Biomechanics. 1986,23: 1-10.
    40. Fyhrie D. P, Schaffler M. B. The adaption of bone apparent density to applied load. J. Biomechanics. 1995, 28: 135-146.
    41. Charles H.T., Vital A., Ramana M.V. A uniform strain criterion for trabecular bone adaption: do continuum-level strain gradients drive adaptation? J. Biomechanics, 1997, 30 (6): 555-563.
    42. Christopher R.J., Juan C. S, Gray S. Beaupre. Adaptive bone remodeling incorporating simultaneous density and anisotropy considerations. J. Biomechanics, 1997, 30(6): 603-613.
    43. Moalli, M.R., Caldwell, N. J., Patil, P. V. et al. 2000. An in vivo model for investigations of mechanical signal transduction in trabecular bone. Journal of Bone and Marterial Research 15(7), 1346-1353.
    44. Sadeh, A.M., Luo, GM., Cowin, S. C., 1993. Bone ingrowth: an application of the boundary element method to bone remodeling at the implant interface. Journal of Biomechanics 26(2), 167-182.
    45. Huiskes, R., Ruimerman, R., van Lenthe, G.H.,2000. Effects of mechanical forces on maintenance and adaptation of form in trabecular bone. Nature 405, 704-706. 46
    46. Ken-ichi Tsubota, Taiji Adachi, Yoshihiro Tomita. Functional adaptation of cancellous bone in human proximal femur predicted by trabecular surface remodeling simulation toward uniform stress state. [J]J.Biomechanics, 35(2002):1541-1551.
    47. Tsili, M. C., Theoretical solutions for internal bone remodeling of diaphyseal shafts using adaptive elasticity theory. Journal of Biomechanics 33(2000)235-239.
    48. Papathanasopoulou, V. A., Fotiadis, D. I., and Massalas, C.V., A theoretical analysis of surface remodeling in long bones. International Journal of Engineering Science 42(2004)395-409.
    49. Adachi, T., Tomita, Y., Sakaue, H.,et al., 1997. Simulation of trabecular surface remodeling based on local stress nonuniformity. JSME International Journal 40C(4),782-792.
    
    50. Adachi , T., Tanaka, M., Tomita, Y., 1998. Uniform stress state in bone structure with residual stress. Transactions of the ASME, Journal of Biomechanical Engineering 120(3),342-347.
    51. Wang, L., Fritton, S.P., Cowin, S. C., Weinbaum, S., 1999. Fluid pressure relaxation depends upon osteonal microstructure: modeling an oscillatory bending experiment. Journal of Biomechanics 32(7), 663-672.
    52. Adachi, T., Tsubota, K., Tomita, Y., et al., 2001. Trabecular surface remodeling simulation for cancellous bone using microstructural voxel finite element models. Transactions of the ASME, Journal of Biomechanical Engineering 123(5),403-409.
    53. Mullender, M.G., Huiskes, R., Versleyen, H.,etal., 1996. Osteocyte density and histomorphometers in cancellous bone of the proximal femur in five mammalian species. Journal of Orthopaedic Research 14, 972-979.
    54. Mullender, M. G., Huiskes, R., 1997. Osteocytes and bone lining cells: which are the best candidates for mechano-sensors in cancellous bone? Bone 20,527-532.
    55. Lanton, C.M., Haire, T.J., Ganney, P.S.,etal., 1998. Dynamic stochastic simulation of cancelous bone resorption. Bone 22,375-380.
    56. Xiaobo Wang, Genevieve A. Dumas., Simulation of bone adaptive remodeling using a stochastic process as loading history. Journal of Biomechanics35(2002)375-380.
    57. Tabor, Z., and Rokita, E., Stochastic simulations of remodeling applied to a two-dimensional trabecular bone structure. Bone. 31 (3),2002:413-417.
    58. Carter D. R Mechanical loading histories and skeletal biology. J. Biomechanics, 1987, 20: 1095-1109.
    59. Fyhrie D. P, Carter D. R. A unifying principle relating stress to trabecular bone morphology. J. Orthop Res, 1986, 4: 304-317.
    60. Stulpner M. A., Reddy B. D., et al. A three-dimensional finite analysis of adaptive remodeling in the proximal femur. J. Biomechanics, 1997, 30(10): 1063-1066.
    61. Huiskes R. Bone remodeling around implants can be explained as an effect of mechanical adaptation. In Total Hip Revision Surgery, Raven Press Ltd, New York, 1995.
    62. Poss R., Roberson D.D, et al. Non-cemented total hip arthroplasty. Chap. 30: Anatomic stem design for press-fit and cemented application, ed. Fitzgerald R., Raven Jr. Press, New York, 1988.
    63
    
    63. Burr, D. B. Targeted and non-targeted remodeling. Bone. 30: 582-584; 2001.. Parfitt, A. M. Targeted and non-targeted bone remodeling: Relationship to BMU origination and progression. Bone. 30: 585-587; 2001.
    64. Mori, S. and Burr, D. B. Increased intracortical remodeling following fatigue damage. Bone14: 103-109; 1993
    65. Li, J., Mashiba, T., and Burr, D. B., Bisphosphonate treatment suppresses targeted repair of microdamage. Trans Orthop Res soc 26: 320; 2001.
    66. Martin, R. B., Is all cortical bone remodeling initiated by microdamage? Bone. 30(1): 8-13, 2002.
    67. Ozan Akkus, Clare M. Rimnac., cortical bone tissue resists fatigue by deceleration and arrest of microcrack growth. Journal of Biomechanics 34(2001)757-764.
    68. Ramtani, S., and Zidi, M., Damaged-bone remodeling theory: Thermodynamical approach. Mechanics Research Communications, 26(6): 701-708, 1999.
    69. Bruce Martin, R., Fatigue damage, remodeling, and the minimization of skeletall weight. J. theor. Biol. (2003)220, 271-276.
    70. Dominique P. Pioletti., Lalao R. Rakotomanana., Can the increasee of bone mineral density following bisphosphonates treatments be explained by biomechanical consideration? Clinical Biomechanics 19(2004)170-174.
    71.朱兴华,白雪飞.骨折愈合塑形的力学机理Ⅰ—骨表面再造理论的应用[J].生物医学工程学杂志,2000,17(4):410-414.
    72.张春秋,朱兴华.骨折愈合塑形的力学机理Ⅱ—骨自优化理论的应用[J].中国生物医学工程学报,2002,21(2):132-137.
    73.张春秋,朱兴华 改变力学环境后松质骨胞元结构的预测,中国生物医学工程学报,20(2):175-181,2001.
    74.朱兴华,周振平,董心苏继军长骨表面再造仿真中死区控制模型研究中国生物医学工程学报,19(2):194-199,2000.
    75.朱兴华,郭同彤 朱伟民 应变能密度作控制变量的骨干表面再造—理论预测中国生物医学工程学报,18(4):426-432,1999.
    
    76.宫赫,朱兴华.初始密度对骨自由化结果的影响.中国生物医学工程学报,2000,19(2):276-280.
    77.宫赫,朱兴华.拓朴优化在骨结构模拟中的应用.吉林工业大学自然科学学报,2000,30(2):47-51.
    78.朱东,宫赫,董玉双.骨再造方程中参考激励值的变化对自由化结果的影响,吉林工业大学自然科学学报:31(3):41-44,2001.
    79.张子军,卢世壁等.引导性骨再生的实验研究.中华外科杂忠.1996,34(10):599-601.
    80.朱兴华,白风德等.三面固定槽形加压钢板内固定后股骨表面再造模拟.中国生物医学工程学报.1997,16(2):128-133.
    81.王颖坚.松质骨的细观力学研究评述.力学进展 1996,26(3):416-423.
    82.李德源,陈海斌.松质骨粘弹性的数值分析.重庆大学学报.2001(7),24(4):91-94.
    83.刚芹果.含液体骨单元的力学模型.生物物理学报.2000,16(2):367-372.
    84.郭玉明,张宏民.松质骨材料粘弹性性质研究.山西农业大学学报.2000,20(3):271-273.
    85.欧阳钧,杨桂通等,人体腰椎松质骨的生物力学性质.中国生物医学工程学报.1997,16(4):289-293.
    86.罗卓荆,胡蕴玉等.牛松质骨力学强度与去抗原处理时限的相关性实验.第四军医大学学报.1996,17(6):434-436.
    87.华筑信,刚芹果.未成年人股骨近端松质骨的力学性质及讨论[J].中国生物医药工程学报,1998,17(4):355-357.
    88.郭玉明,贾潇凌.国人胫骨松质骨力学性质的实验研究.中国生物医学工程学报.1999,18(3):250-255.
    89.王永豪,王世迪.人体股骨中断的力学性能[J].生物医学工程学杂志,1986,3(1):18-23.
    90.赵均海,孙家驹.人密质骨的撞击试验研究[J].中国生物医学工程学报,2001,20(2):170-174.
    91.王前,钟世镇.人密质骨动态力学性能及其电效应[J].中国生物医学工程学报,1995,14(3):280-284.
    92.冯祖德.皮质骨在拉伸剪切和撕裂型加载条件下的断裂韧性一纵向断裂和横向断裂的比较[J].生物医学工程学杂志,1997,14(3):199-204.
    93.张宏民,杨育勇.牛密质骨的粘塑性实验分析.1996(9),15(3):249-252.
    94.朱兴化,苏继军,郭同彤等.骨表面再造数值模拟在人工股骨头假体优化设计中的应用[J].中国生物医学工程学报,2001,20,(6):560-565.
    
    95.俞能宝,董天华,孙俊英.复合材料股骨头假体三维有限元分析,医用生物力学,2001,16(3):155-159.
    96.王国喜,吴耐庆.不稳定骨盆骨折发病机制的生物力学研究[J].医用生物力学,1998,13(4):215-221.
    97.李英子,王海波.电测技术在人体骨骼力学性能分析中的应用[J].哈尔滨理工大学学报,1998,(2):101-103.
    98.张建辉,李书岐.股骨颈骨折外闭合复位内固定手术直针与弧形针固定稳定对比分析[J]医用生物力学,1997,12(4):240-244.
    99.徐晓虹,孙淑珍.磁性生物陶瓷与动物骨结合性研究[J].华中理工大学学报1997,25(1):67-70.
    100.李强—,王以进.骨盆截骨术治疗髋脱位的生物力学分析与临床应用[J].医用生物力学,2001,16(1):48-52.
    101.朱振安,戴克戎等.接骨板同定及取出后局部骨量、骨结构和骨强度变化的相关研究.医用生物力学.1999(6),14(2):102-106.
    102.沈铁城,苏虹,徐晓峰等.成人创伤性桡骨头脱位的生物力学研究.医用生物力学.1998,15:116.
    103.石瑾,欧阳钧等.不同储存及处理方法对人骨拉力螺钉生物力学性能的影响.临床生物力学.2000,18(3):268-270.
    104.张树桧,李昂等.齿接触半环抱槽式加压钢板固定肱骨骨折的生物力学原理.医用生物力学.2000(9),15(3):190-193.
    105.祝联,崔磊等.骨制松质骨螺钉生物力学性能实验研究.医用生物力学.2001(6),16(2):99-104.
    106.卞建洪,黄煌渊,陈世盖等.髌骨倾斜导致髌股关节接触压力与面积改变.中国运动医学杂志.1997,16(3):183-185.
    107.徐永清.人工腕关节的研究进展[J].西南国防医药,1999,9:55.
    108.瞿东滨,朱青安,江建明等.内固定下机械振动诱发骨折间微动的测量及其意义[J].医用生物力学,1998,13(3):185.
    109.邱贵兴.《中华医学论坛报》2000年3月16日,26卷第10期.
    110.郭艾,罗先正等.人工髋关节置换的同顾和进展.中华骨科杂志,1994,5(14):314.
    111.林剑浩,吕厚山等.股骨头假体置换厉假体周围骨量变化的观察.中华骨科杂志,1995,8(15): 494-496.
    11
    
    112.中国数字化虚拟人体的科技问题—香山科学会议第174次学术讨论会简报 香山科学会议简报第163期 香山科学会议办公室2002年1月7日.
    113.宫赫 朱兴华 朱东 骨自优化方程获得稳定解的条件的非线性分析方法 中国生物医学工程学报21(4)2002:289-297.
    114. Carter D. R., Hayes W. C. The compressive behavior of bone as a two-phase porous structure. J. Bone Joint Surg., 1977, 59-A: 954-962.
    115. Carter D. R., Fyhrie D. P., Whalen R. T. Trabecular bone density and loading history: regulation of connective tissue biology by mechanical energy. J. Biomechanics. 1987, 113: 191-197.
    116. Svetlana V. Komarova, Robert J. Smith, S. Jeffrey Dixon, et al., Mathematical model predicts a critical role for osteoclast autocrine regulation in the control of bone remodeling. Bone. 33(2003) 206-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700