肉苁蓉多糖的免疫调节活性及吸收特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的通过考察肉苁蓉多糖(polysaccharides of Cistanche deserticola CDPS)对小鼠脾淋巴细胞增殖及巨噬细胞活化的作用,研究肉苁蓉多糖的免疫调节药理学活性,并通过不同角度和层次对其吸收特性进行研究。
     方法MTT法检测小鼠脾淋巴细胞的增殖。环磷酰胺(cyclophosphamide CTX)复制免疫功能低下的动物模型,分别测定正常及免疫低下动物脾脏、胸腺指数。胸腺细胞增殖法测定白细胞介素-2(IL-2)活性。
     采用中性红法测定小鼠腹腔巨噬细胞吞噬活性;Griess试剂法测定NO释放量;L929细胞法及小鼠胸腺细胞法测定TNF-α及IL-1释放。碳粒廓清法测定小鼠腹腔巨噬细胞吞噬功能。
     在建立的Caco-2单层细胞模型上通过测定每孔电阻值(R_(true tissue),比较膜两侧碱性磷酸酶(ALP)活性,确定Caco-2细胞单层的可靠性。测定CDPS经Caco-2单层细胞模型A→B 3h转运后受侧浓度,计算其药效P_(app)值,从体外模型判断CDPS的吸收特性;经体外和体内口服给药药效比较及口服给药途径和腹腔注射给药途径药效的比较从不同角度对肉苁蓉多糖口服吸收特性进行判断。
     结果CDPS在剂量达7.8mg/L时可促进丝裂原(ConA及LPS)活化淋巴细胞增殖及IL-2的分泌,对未活化淋巴细胞剂量需达25mg/L时加药组与对照组吸光度值才有显著性差异。腹腔给药显示CDPS(125mg/kg)可明显提高正常及免疫低下小鼠的脾指数,对因CTX所致胸腺指数的降低也有显著地对抗作用。
     CDPS在6.25~50mg/L剂量范围内可剂量依赖性地增强BALB/c小鼠腹腔巨噬细胞吞噬中性红能力和促进NO释放;在2.8~100mg/L剂量范围内可使正常和免疫抑制的RAW264.7细胞NO释放明显增加;在0.56~7.2mg/L或3.6~10mg/L范围促进RAW264.7细胞TNF-α或IL-1产生,均具有良好的量效关系。CDPS可在一定程度上提高CTX致免疫功能低下小鼠碳粒廓清指数K。
     R_(true tissue)值在细胞单层形成过程中稳定增长,细胞模型两侧培养液中ALP活性差异逐步加大,表明建立的Caco-2细胞模型在完整性、细胞极性方面符合药物吸收特性研究的要求,CDPS过Caco-2细胞模型求得P_(app)值为9.41×10~(-8)cm/s<10×10~(-6)cm/s;对于相同或相关药效指标,CDPS显示出体外及腹腔给药有效,而口服(体内)无效的特征。
     结论CDPS明显促进小鼠脾淋巴细胞增殖,提高正常及免疫抑制小鼠的脾指数,该作用可能与其促IL-2分泌有关。CDPS可显著提高巨噬细胞吞噬及分泌功能,活化巨噬细胞。显示CDPS是肉苁蓉免疫调节的主要物质基础。但口服吸收不良,因此临床应综合权衡,选择适合的给药方式,以达最佳疗效。
Objective To study the immunomodulatory activity of polysaccharides of Cistanche deserticola (CDPS) was assayed by macrophages promoting lymphocyte proliferation and activating macrophage. The absorptive character of CDPS was inveatigated by the comparation of different model systems.
     Methods The lymphocyte proliferation with or without mitogen was assessed by MTT method in vitro. The immunosuppression mice were induced by cyclophosphamide, and the spleen and thymus were weighted up to determine the immune organ indexes in normal or immunosuppression mice. Thymocytes proliferation was employed to investigate activity of IL-2.
     The phagocytic ability of peritoneal macrophage (M_Φ) was evaluated with neutral red dye phagocytosis assay; Nitric oxide (NO) production was examined by Griess reaction, the activity of tumor necrosis factor-α(TNF-α) and interleukin-1 (IL-1) secreted were measured by L929 cells bioassay and proliferation of mouse thymocyte. The phagocytic ability of peritoneal macrophage (M_Φ) in vivo was tested with carbon clearance test. Caco-2 cell monolayer was evaluated by determining resistance per well (R_(true tissue)) and comparing bilateral ALP activity in model. The concentration of BL was measured for calculating "pharmacodynamic" P_(app) values when CDPS transported from A to B across Caco-2 cell monolayer for 3 h, from which the absorption character of CDPS was evaluated. The absorption character of CDPS was assayed from different aspects, which was acrossing Caco-2 monolayer model, comparison of CDPS efficacy in vitro and by oral in vivo, and comparison of CDPS efficacy via oral and i.p. in vivo.
     Results At the concentration of 7.8 mg/L, CDPS could significantly promote the secretion of IL-2 and proliferation of lymphocyte activated by mitogen (ConA or LPS), there were significant differences between the absorptance of administration groups and that of control groups when CDPS was up to 25 mg/L in non-activated lymphocyte. CDPS (125 mg/L, i.p.) remarkably increased indexes of spleen in normal or immunosuppression mice, and also improved indexes of immunosuppression mice induced by cyclophosphamide.
     CDPS at the concentration range of 6.25~50 mg/L enhance the phagocytic ability and NO release of peritoneal macrophage in a dose-dependent manner at the dose of 2.8~100 mg/L significantly increased NO secretion of normal or immunesuppressed RAW264.7 cells. TNF-αproduction by RAW264.7 cell were promoted after incubation of RAW264.7 cells with CDPS at concentration of 0.56~7.2 mg/L. IL-1 release of RAW264.7 cells were obviously elevated by CDPS at dose of 3.6~10 mg/L,and both show good dose-effect relationship. CDPS could enhance the carbon clearance index K to a certain extent in immune- suppressed mice induced by clophosphamide (CTX).
     R_(true tissue) and the difference of bilateral ALP activity were increased in cell monolayer developing process, the integrity and polarity of cell monolayer in cell model were satisfactory, which showed that the established Caco-2 cell model can be used to study the intestinal absorption mechanism of oral administration drugs.
     The P_(app) values of CDPS was 9.41×10~(-8) cm/s, which was less than < 10×10~(-6) cm/s; For the same or correlated pharmacodynamics indexes, CDPS showed the character that it was ineffective by oral, but effective in vitro or by ip.
     Conclusion CDPS can significantly promote the proliferation of splenic lymphocytes, and increased indexes of spleen in normal or immune-suppression mice, which may relate with the promotion of the secretion of IL-2 in splenocyte. CDPS can activate M_Φ, and remarkably promote the phagocytic and secretory of M_Φ. The result suggested that CDPS was the material base of immunomodulatory activity of Cistanche deserticola. But CDPS was malabsorption drug by orial, Therefore the appropriate delivery method should be selected to achieve the best effect in clinical we should weigh the clinical, select the appropriate delivery method to achieve the best effect in clinical practice.
引文
[1]赵俊霞.刺五加多糖对人小细胞肺癌H446细胞的抑制作用及免疫调节作用研究[D].石家庄:河北医科大学,2008:
    [2]Ovodov Ⅰ.Polysaccharides of flower plants:structure and physiological activity.Bioorg Khim,1998,24:483-501
    [3]Sherenesheva NI,Fin'ko VE,Blanko FF,et al.Anticarcinogenic effect of palustan on development of tumors induced by 3-(1-alpha-l-arabinopyranosyl)-1-methyl-1-nitrosourea(AMNU) in rats.Bull Exp Biol Med,1998,125:566-568
    [4]Lazareva EB,Spiridonova TG,Chemega EN,et al.Topical pectins for the treatment of burn wounds.Antibiot Khimioter,2002,47:9-13
    [5]Igor A.Schepetkin,Mark T.Quinn.Botanical polysaccharides:Macrophage immunomodulation and therapeutic potential[J].International Immunopharmacology,2006,6(3):317-333
    [6]中国卫生管理局,中华人民共和国药典(一部)[M].北京:北京工业出版社,2000.103
    [7]成喜雨,郭斌,倪文,等.肉苁蓉研究进展[J].天然产物研究与开发,2005,27(2):235
    [8]肖培根,李大鹏,杨世林,等.中药志[M].新版,第三部分,北京:化学工业出版社,2001,107-114
    [9]Xu WH,Qiu SX,Zhao JH,et al.Study of chemical components of Cistachte deserticola[J].Chin Tradit Herbal Drugs.1994,25(10):509-51
    [10]Tu PF,He YP,Lou ZQ,et al.Chemical components study of Cistanche deserticola [J].Chin Tradit Herbal Drugs,1994,25(9):451-452
    [11]Song ZH,Mo SH,Chen Y,et al.Studies on chemical constituents of Cistaache tubulosa(schenk) R.wight[J].China J Chin Materia Med.2000,25(12):728-730
    [12]Xue DJ,Zhang M.Analysis of three saccharides constituents of Cistanche deserticola[J].Chin Med,1994,17(2):36-37
    [13]薛德均,章明,吴小红等.肉苁蓉抗衰老活性成分的研究[J].中国中药杂志,1995,20(11):687
    [14]吴波,付玉梅.肉苁蓉多糖对衰老小鼠脂质过氧化的影响[J].广州医学院学报.2004,32(4):27-28
    [15]孙云,王德俊,祝瑾等.肉苁蓉多糖对衰老小鼠肺蛋白含量与抗氧化功能关系的影响[J].中国药理学通报,2001,17(1):101-103
    [16]孙云,王德俊,刘晓梅等.实验性衰老小鼠肺功能和超微结构的变化及肉苁蓉多糖的影响[J].中国药理学通报.2002,18(1):84-87
    [17]徐辉,魏晓东,张鹏霞,欧芹等.肉苁蓉多糖对衰老大鼠肝线粒体保护作用的研究[J].中国老年学杂志.2008,28:866-867
    [18]陈志伟,祝彼得,许惠玉.肉苁蓉多糖对骨髓抑制性贫血小鼠造血调控的实验研究[J].中华中医药学刊.2007,25(7):1473-1474
    [19]Gao H,Yan H,Zhang HQ,et al.Effect of polysaccharide of Cistanche deserticola on fibre cell growth of human[J].Chin Tradit Patent Med,1998,20(4):43
    [20]何伟,舒小奋,宗桂珍.等.肉苁蓉炮制前后补肾壮阳作用的研究[J].中国中药杂志,1996,21(9):534-7
    [21]曾群力,郑一凡,吕志良.肉苁蓉多糖的免疫活性作用及机制[J].浙江大学学报(医学版),2002,31(4):284-287.
    [22]Paulsen BS.Plant polysaccharides with immunostimulatory activities[J].Curr Org Chem 2001,5(9):939-50.
    [23]张磊.玉屏风散免疫作用机制的研究[D].成都:成都中医药大学,2006:
    [24]王彦荣.黄芪多糖小肠吸收机制研究[D].天津:天津大学药物科学与技术学院,2007:
    [1]曾群力,郑一凡,吕志良.肉苁蓉多糖的免疫活性作用及机制[J].浙江大学学报(医学版),2002,31(4):284-287.
    [2]魏伟,沈玉先,徐叔云.免疫细胞培养技术[A].见:徐叔云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2002:1421
    [3]徐叔云,卞如濂,陈修.药理实验方法学[M].第3版,北京:人民卫生出版社,2002:1440-1441.
    [4]周道洪,沈元珊,赵曼瑞.测定淋巴细胞转化和鼠白细胞间素2活性的新方法--MTT比色分析法[J].中国免疫学杂志,1986,2(1):39-43.
    [5]张旭,张国蓉,车伟,等.胶原蛋白多肽-铬(Ⅲ)螯合物对糖尿病小鼠免疫力的影响[J].中国实验动物学报,2008,16(1):11.
    [6]陈奇主编.中药药理研究方法学[M].第一版.北京:人民卫生出版社,1993:779.
    [7]郭静,许建宁,王全凯,等.大豆提取物(CKBN)对免疫低下小鼠免疫功能的影响[J].中国比较医学杂志,2008,18(12):46.
    [8]程忠玲,许实波,许东晖,等.褐藻多糖硫酸酯的抗凝和纤溶活性[J].中草药,2001,32(11):1015-1018
    [9]盛玉青.螺旋藻多糖硫酸酯的制备及其抗肿瘤和免疫活性的初步研究[D].南京:南京中医药大学,2006:
    [10]蔡文娥.玉郎伞多糖抗肿瘤作用及其机制的研究[D].南宁:广西医科大学,2008:
    [11]张秀军,徐俭,林志彬.羧甲基茯苓多糖对小鼠免疫功能的影响[J].中国药学杂志,2002,37(12):916
    [12]陈静.马尾藻多糖的抗肿瘤活性及其免疫作用的研究[D].南宁:广西大学,2006:
    [13]李俊,黄艳,廖日权等.罗汉果多糖对小鼠免疫功能的影响[J].中国药理学通报,2008,24(9):1239
    [14]王宇翎,张艳,方明,等.白花蛇舌草总黄酮的免疫调节作用[J].中国药理学通报,2005,21(4):446
    [1]Tzianabos AO.Polysaccharide immunomodulators as therapeutic agents:structural aspects and biological function[J].Clin Microbiol Rev,2000,13(4):523-533
    [2]Paulsen BS.Plant polysaccharides with immunostimulatory activities[J].Curr Org Chem,2001,5(9):939-950.
    [3]何伟,舒小奋,宗桂珍,等.肉苁蓉炮制前后补肾壮阳作用的研究[J].中国中药杂志,1996,21(9):534-537.
    [4]Green LC,Wagner DA,Glogowski J,et al.Analysis of nitrate,nitrite,and[~(15)N]nitrate in biological fluids[J].Analytical Biochemistry,1982,126(1):131-138.
    [5]李敏,刘耕陶.双环醇对脂多糖诱导巨噬细胞iNOS蛋白的表达和NF-κB活 化的抑制作用[J].中国药理学通报,2006,22(12):1438-1443.
    [6]李英杰,齐春会,赵修南,等.枸杞糖缀合物和糖链对小鼠巨噬细胞功能的影响[J].中国药理学通报,2005,2l(11):1304-1308
    [7]Shahan T A,Siegel P D,Sorenson W G,et al.A sensitive new bioassay for tumor necrosis factor[J].J Immunol Methods,1994,175(2):181-187
    [8]沈玉先,魏伟,徐叔云.细胞因子测定[A].见:徐叔云,卞如濂,陈修.药理实验方法学[M].北京:人民卫生出版社,2002:1438-1440.
    [9]王聚乐,孙洋,周惠英,等.藏药忍冬果对小鼠腹腔巨噬细胞吞噬功能及分泌细胞因子的影响[J].中国中药杂志,2006,31(2):145-147
    [10]Vandenabeele P,Declercq W,Libert C,et al.Development of a simple,sensitive and specific bioassay for interleukin-1 based on the proliferation of RPMI 1788 cells.Comparison with other bioassays for IL-1.J Immunol Methdos.1990,135(1-2):25-32
    [11]杨四旬,李晓玉.一种简便实用的IL-1测定方法.上海免疫学杂志,1989,9(6):363-365
    [12]李俊,徐叔云.单核巨噬细胞功能的测定[A].见:徐叔云,卞如濂,陈修。药理实验方法学[M].北京:人民卫生出版社,2002:1455-1456
    [13]王鹏云,王赛贞,林树钱,等.灵芝孢子和破壁孢子多糖对体外培养的小鼠脾淋巴细胞及腹腔巨噬细胞免疫调节活性的比较[J].北京大学学报(医学版),2005,37(6):569-574
    [14]Weeks BA,Keisler AS,Mvrvik QN,Warinner JE.Differential uptake of neutral red by macrophages from three species of estuarine fish[J].Dev Comp Immunol,1987,11(1):117-124.
    [15]胡月娟,陈子珺.免疫药理实验方法[A].见:李仪奎.中药药理实验方法学[M].上海:上海科学技术出版社,2006:741-742.
    [16]许启泰,张瑜,杜钢军,等.嗜酸乳杆菌胞外多糖对小鼠免疫功能的影响[J].中国药理学通报,2004,20(12):1401-1403.
    [17]郭芳,刘秀书,孟祥琴,等.六味地黄发酵液的免疫调节作用[J].河北医科大学学报,2001,22(2):72-74.
    [18]C.A.Janeway and R.Medzhitov,Innate immune recognition,Annu Rev Immunol 20(2002),197-216
    [19]S.Uthaisangsook,N.K.Day,S.L.Bahna,R.A.Good and S.Haraguchi,Innate immunity and its role against infections,Ann Allergy Asthma Immunol 88(2002),253-264
    [20]R.W.Birk,A.Gratchev,N.Hakiy,O.Politz,K.Schledzewski and P.Guillot et al.Alternative activation of antigen-presenting cells:concepts and clinical relevance,Hautarzt 52(2001),193-200
    [21]B Beutler,Innate immunity:an overview,Mol Immunol 40(2004),pp.845-859
    [22]Brume B.Nitric oxide:NO apotosis or thrning it ON?[J].Cell Death Differ,2003,(10):864-869
    [23]Brume B.Swain SD.Rohn TT,Quinn MT.Neutrophil priming in host defense:role of oxidants as priming agents[J].Antioxid Redox Signal,2002,(4):69-83
    [24]MacMicking J,Xie QW,Nathan C.Nitric oxide and macrophage function[J].Annu Rev Immunol,1997,15:323-350
    [25]Baugh JA,Bucola R.Mechanisms for modulating TNF alpha in immune and inflammatory disease[J].Curr Opin Drug Discov Devel,2001,(4):635-650
    [26]Balk FR,Naylor MS,Malik S.Tumour necrosis factor as an anticancer agent[J].Eur J Cancer,1990,26(5):641-4
    [27]Branellec D,Chouaib S.TNF:antitumoral agent at the border lines of immunity and inflammation[J].Pathol Biol(Paris),1991,39(3):230-239
    [28]金伯泉.细胞和分子免疫学.第2版.北京:科学出版社,2001.137
    [29]龚非力.医学免疫学[M].北京:科学出版社医学出版分社,2004:171-174.
    [30]葛金芳,李俊,胡成穆,等.枇杷叶三萜酸的免疫调节作用研究[J].中国药理学通报,2006,22(10):1197.
    [31]戴岳,黄罗生,冯国雄.地肤子对单核巨噬系统及迟发性超敏反应得抑制作用[J].中国药科大学学报,1994,25(1):44-48.
    [1]王翔岩,齐云,蔡润兰,等.肉苁蓉多糖的巨噬细胞活化作用[J].中国药理学通报,2009,25(6):421-424.
    [2]高其品,陈慧群,王坤等.银耳多糖在大鼠体内的吸收、分布和排除[J].中国药学杂志,2002,37(3):206.
    [3]郑年新,阮金秀,张永祥等.六味地黄多糖在小鼠体内的吸收[J].中国药理学通报,2000,16(4):403-405
    [4]张磊.玉屏风散免疫作用机制的研究[D].成都:成都中医药大学,2006:
    [5]蔡润兰,王敏,齐云等.Caco-2细胞模型验证指标的选择与评判[J].中国药学杂志,2008,43(24):1871-1875.
    [6]SUSSMAN N L,ELIAKIM R,RUBIN D,et al.Intestinal alkaline phosphatase is secreted bidirectionally from villous enteroCTXtes[J].Am J Physiol,1989,267:14-23
    [7]牟永平,吴刚,周立社,等,Caco-2细胞模型在药物研究中的应用[J]中国药 理学通报,2005,21(5):5362-5391
    [8]王敏,齐云.Caco-2细胞模型及其在药物吸收研究中的应用新进展[J].中国药学杂志,2007,42(16):1201-1204.
    [9]KIM D C,BURTON P S,BORCHARDT R T.A correlation between the permeability characteristics of a series of peptide using an in vitro cell culture model (Caco-2) and those using an in situ perfused rat ileum model of the intestinal mucosa [J].Pharm Res.1993,10(12):1710-1714
    [10]STENBERG P,LUTHMAN K,ARTURSSON P.Prediction of membrane permeability to peptides from calculated dynamic molecular surface properties[J].Pharm Res,1999,16(2):205-210
    [11]KRARUP L H,CHRISTENSEN I T,HOVGAARD L,et al.Predicting drug absorption from molecular surface properties based on molecular dynamics simulation[J].Pharm.Res,1998,15(7):972
    [12]HILLGREN K M,KATO A,BORCHARDT R T.In vitro systems for studying intestinal drug absorption[J].Med Res Rev,1995,15(1):83
    [13]MACK J G,JAMES E P.Prediction of dissolution-absorption relationship from a dissolution/Caco-2 system[J].Inter J Pharm,1999,177:177
    [14]郭涛.Caco-2细胞模型在药物动力学研究中的应用[J].中国药师,2003,6(12):774-776.
    [15]BERGER V,LARONDELLE Y,TROUET A,et al.Transport mechanisms of the large neutral amino acid:Phenylalanine in the human intestinal epithelial Caco-2 cell line[J].J Nutr,2000,130(11):2780.
    [16]山莽挺,王广基.Caco-2模型在肽类药物吸收特性研究中的应用[J].药学进展,2001,25(2):96.
    [17]杨晓达,王夔.细胞层次ADME/Tox研究方法简介.中药研究现代方法学(王夔主编)[M].北京:化学工业出版社,2004:
    [18]Min Wang,Chen Xie,Run-Lan Cai,Xiao-Hong Li,Xiu-Zhen Luo and Yun Qi.Studies on Antioxidant Activities of Breviscapine in the Cell-free System [J].The American Journal of Chinese Medicine
    [19]王敏.Caco-2细胞模型作为中药体外“药筛”的方法学研究[D].北京:北京协和医学院,2008.
    [20]TEE S Y.In vitro permeability across Caco-2 cell(colonic) can predict in vivo (small instestinal) absorption in man-fact or myth[J].Pharm Res,1997,14(6):763-766.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700