反辐射导弹的最优检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
反辐射导弹(ARM)对防空雷达系统构成了严重威胁,在最近的几次局部战争中显示了其巨大的威力。有效对抗反辐射导弹的袭击,提高雷达自身的生存能力是决定现代战争胜负的一个关键因素。
     本文结合国防预研基金项目所开展的反辐射导弹检测算法研究,是对抗ARM的有效方式之一。针对现有脉冲体制跟踪雷达,研究了载机发射反辐射导弹初期,雷达自主进行反辐射导弹来袭告警的检测算法及实现问题。
     对反辐射导弹的检测可分为跟踪波门检测和截获波门检测两种情况处理。跟踪波门检测是利用雷达对载机进行正常跟踪状态下,目标距离跟踪波门内进行的检测,其特点是波门内的雷达回波信号为载机信号分量与ARM信号分量二者的合成,因此ARM的检测本质上为多分量信号检测问题。截获波门是专门为ARM检测而设置的距离门,其中的雷达回波信号为单一ARM信号分量。由于反辐射导弹在脱离载机的发射初期为朝向雷达站的匀加速运动,其回波信号为一线性调频信号,因此处于发射初期的反辐射导弹检测属于线性调频信号检测问题。
     本文对反辐射导弹检测研究的成果如下:
     建立了载机发射反辐射导弹的雷达回波解析信号模型。基于经典统计检测理论,建立了跟踪波门及截获波门内基于似然比/广义似然比检测的反辐射导弹最优检测统计量及最优检测系统的结构。截获波门检测的最优检测统计量为回波信号的加速度相位补偿(解线调)后的傅立叶变换。跟踪波门检测的最优检测统计量为抑制载机信号分量后的加速度相位补偿及傅立叶变换。
     研究了基于广义似然比最优检测统计量和基于时频分布的Radon-Wigner变换(RWT)及Radon-Ambiguity变换(RAT)的截获波门ARM检测算法。证明了基于RWT和直接RAT的检测统计量与基于似然比检测的最优检测统计量的同一性。根据瞬时自相关矩阵的结构特点,提出了一种瞬时自相关矩阵的构造方法,在不增加运算量的条件下使WVD和AF的输出信噪比提高了3dB,改善了检测性能。
     重点研究了距离跟踪波门内ARM的检测技术,提出了回波信号的载机信号分量抑制思想。针对时域CLEAN法抑制载机分量时存在的问题,提出了基于频域CLEAN法的频域白化CLEAN载机抑制方法。利用载机回波信号的谱特性设计载机信号白化滤波器,克服了时域CLEAN法对信号参数的敏感问题,提高了载机抑制算法的稳健性。
     根据维纳滤波理论,提出一种基于自适应线性预测误差滤波的载机抑制算法。利用回波信号的延时形式预测当前的载机信号分量,在线性最小均方意义下使得预测误差输出最小而达到载机信号分量的消除。该法充分利用了回波信号中载机信号自身的强相关性和ARM信号的弱相关性,使得载机信号分量被消除的同时ARM信号分量得以保留。该算法计算量小,易于实现。仿真表明该算法的载机信号抑制效果优良,在ARM信号分量低达-5dB的输入信噪比下,虚警及漏警的控制较为理想,原理上可在低信噪比情况下可靠地实现ARM的一发射即告警。
     利用小波包分解算法对载机信号分量抑制进行了尝试,载机抑制效果较为理想,但信号的小波包分解和重构计算量偏大。
     对两种波门下的检测统计量的检测性能从检测概率和输出信噪比两个方面进行了理论和定量分析。表明虽然在输出信噪比上基于线性包络的检测统计量与基于平方包络的检测统计量不同,但二者在奈曼-皮尔逊准则意义上其检测概率在给定的虚警概率条件下是完全相同的。
     针对目前防空雷达的现状,提出了现役雷达加装ARM检测告警设备的构想。针对基于自适应线性预测误差滤波结合加速度相位补偿频谱分析的ARM检测算法,给出了实现跟踪波门ARM检测和截获波门ARM检测的检测系统结构原理框图。
     对硬件及算法实现上的一些具体问题进行了分析,并对运算量影响较大的复量求模算法进行了研究,提出一种改进的近似求模算法,提高了模值计算的精度。
Anti-radiation Missile (ARM) is a fatal threat to modern radar systems. It has shown great power in several recent regional conflicts. Developing counter-Anti-radiation missile techniques and preventing radar systems from being attacked by ARM is one of the key factors of leading to victory or defeat.
     The research work of this thesis is supported by the National Defence Foundation. Its main task is to develop practical algorithms for ARM launching detection. ARM launching warning is one of the effective measures for counter-Anti-radiation Missile. The optimum detectors with realization considerations are proposed in the thesis. The detectors are more suitable for pulsed tracking radars to detect an incoming Anti-radiation Missile at the first fire stage while the radar is in its tracking situation.
     ARM detection can be either made in the radar Range Gate (RG) or in an Interception Gate (IG) specially settled for ARM. Detection of ARM in RG is made by making use of the ordinary radar RG while the radar is in tracking of an aircraft. The radar echoes in RG are composed of two components. One is from aircraft, and the other is from ARM. Detection in this gate is essentially a multi-components signal detection problem. Whereas in IG, the radar echoes is only composed of ARM. In the first flying stage of an ARM, it moves toward the radar in a constant acceleration speed. The echoed signal from an ARM is a Linear Frequency Modulated (LFM) sinusoid wave. Hence, ARM detection is essentially LFM signal detection problems in lower signal to noise ratio.
     The main achievements of the thesis are as follow:
     The analytical radar signal model for ARM at its fire stage is established. The likelihood-ratio test based optimum detection criterion and decision-making rules for ARM detection in RG as well as in IG are constructed. The optimum statistical detector is configured based on the classic statistical detection theories. The optimum detection in IG is composed of Dechirping and Fourier transforming. However, in RG, an additional aircraft component canceller is included.
     The generalized likelihood ratio test based optimum detector, the Radon Wigner Transform (RWT) based detector and the Radon ambiguity transform (RAT) based detector for ARM detection in IG are analyzed. The identity in performance of the three detectors is demonstrated. Based on structure analysis of the simultaneous auto-correlation matrix, a modified method for the matrix construction is proposed. The result shows that a 3dB SNR gain can be obtained for WVD and AF, which improves the detection performance.
     ARM detection techniques in RG are discussed intensively and the idea of aircraft echo elimination is proposed. Because CLEAN in time domain is more sensitive to parameter estimation errors, a frequency domain CLEAN method called whiten filtering technique is introduced, which overcomes the shortage inherent in time domain CLEAN and improves the robustness of the detection algorithm.
     Based on the Wiener filtering theory, an adaptive aircraft echo canceller based on linear prediction error filtering (LPEF) is developed. The principle of the canceller is due to the auto-correlation of the input signals. With the method, the highly correlated aircraft echo with a mono frequency component can be eliminated perfectly while the feebly correlated ARM echo with a linearly modulated frequency can be hold. The advantages of this method are its less computation requirement and suitable for real-time processing. Computer simulation results show that reliable detection performance can be attained in lower signal to noise ratio. False alarm and miss detection is under better controlled. ARM echo signal can be detected immediately at the ARM's first launch stage with this detector.
     Aircraft echo elimination based on Wavelet packet decomposition is proposed. Good elimination result obtained. However, the computation burden is great due to the wavelet packet decomposition and reconstruction of the signal.
     The performance of the proposed detector is analyzed quantitatively in detection ability and in output signal to noise ratio. The optimum linear envelope detector and the square envelope detector have essentially the same detection performance under the Neyman-Pearson Criterion in spite of the difference in their output SNR.
     Aimed at the present situation of our air defence radar systems, the idea of preventing radar systems against ARM attack by supplementing ARM detection units for current radar systems is introduced. The basic structure of the ARM detection unit based on the ALPEF with quadratic phase compensation Fourier analysis is given.
     Some problems related to the detection realization are considered. Complex modulus approximation, which is more computation wasted, is studied. The modifing CORDIC coefficients are given, which improves the precision of modulus approximation.
引文
[1]. Texas Instruments ASM-N-10/AGM-45 Shrike. Directory of U.S. Military Rockets and Missiles http://www.designation-systems.net/dusrm/m-45.html. Andres Parsch. 2002
    [2]. General Dynamics AGM-78 Standard ARM. Directory of U.S. Military Rockets and Missiles http://www.designation-systems.net/dusrm/m-78.html. Andres Parsch. 2002
    [3]. Raytheon (Texas Instruments) AGM-88 HARM. Directory of U.S. Military Rockets and Missiles http://www.designation-systems.net/dusrm/m-88.html. Andres Parsch.2002
    [4]. Draft Navy Training System Plan For The AGM-88 HARM System N88-NTSP-A-50-8101B/D, JUNE 1998
    [5]. Major milestones surround HARM's recent live-fire tests. The Weaponeer 21, January 1999
    [6]. Greg Goebel. Anti-Radar Missile, http://www.vectorsite.net/twbomb8.html. Chapter8. Nov.2004
    [7]. Boston. Ground-based Tactical Radar to Get Arm Attack Protection. AW&ST,1988(9)
    [8]. FY 2006 Navy & Marine Corps Tactical Aviation Programs, March 3,2005, p9
    [9]. FY 2006 Navy Critical Systems Capabilities Programs, March 15,2005, p27
    [10].Lee Brady. Advanced Anti-Radiation Guided Missile (AARGM).Suppression of Enemy Air Defences, SEAD 2005, London, March 2005
    [11].H. R. Mayer. Anti-Radiation Missile With Intelligent Guidance Extended Range (ARMIGER). Suppression of Enemy Air Defences SEAD 2005, London, March 2005
    [12].Navy Training System Plan For The AGM-88 High-Speed Anti-Radiation Missile (HARM) And Advanced Anti-Radiation Guided Missile (AARGM) Systems N88-NTSP-A-50-8101C/D, JUNE 2002
    [13].Hajime Ozu:Missile 2000-Reference Guide to World Missile Systems, Shinkigensha,2000
    [14].温杰.Harpy反辐射无人机的现状与发展.飞航导弹,2000(7),4-5
    [15].文婷.反辐射导弹的电子对抗技术飞航导弹.1998(5),49-54
    [16].陈富生.国外反辐射导弹的发展综述http://news.cetin.net.cn/storage/cetin2 /p1/p11/zb-71.htm
    [17].王春兰.反辐射武器的技术特点和对抗措施http://news.cetin.net.cn/storage/ cetin2/p1/p11/zb-45htm
    [18]. 反辐射导弹对抗技术综述
    [19]].裴云,刘利利.对雷达对抗反辐射导弹作战效能的评估.现代雷达,2004,26.(9),26-28
    [20].周义.俄罗斯反辐射导弹撷览.中国航天,2001(10),29-31
    [21].Tamar Peli, Peter Monsen Signal Processing Improvements For Infrared Missile Warning Sensors IEEE Trans 1997 1052-1064
    [22]司锡才.雷达抗反辐射导弹的技术途径及效果分析.现代雷达.1994(6),1-9
    [23]童宁宁,张永顺.准多基地抗ARM系统的性能分析及优化设计.现代雷达,1999(10)14-18
    [24]吕彤光.姜文利等.两点源诱偏被动雷达导引头性能分析.系统工程与电子技术.2002(4),48-50
    [25]袁嗣杰,贾鑫等.舰载抗反辐射导弹雷达和通路数字信号处理系统.指挥技术学院学报1996(2),17-21
    [26].文树梁,秦忠宇.基于脉冲相关技术的反辐射导弹检测.现代雷达,1997(4),1-8
    [27]张善文,甄蜀春等.基于Morlet小波的反辐射导弹告警技术探讨.航天电子对抗,2000(4),4-6
    [28]张向兵,李侠等.反辐射导弹攻击时雷达生存概率计算法.空军雷达学院学报,2001(1),20-22
    [29]殷浩.机载相控阵雷达ARM检测工作方式研究.现代雷达,1999(2),1-8
    [30]文树梁,秦忠宇.反辐射导弹的最优检测.系统工程与电子技术,1997(12),38-42
    [31]A. Black. Pulse Doppler for Missile Approach. Journal of Electronic Defense.1991(8)
    [32]Chen Jianchun, Geng Fulu. A Study on Anti-Radiation Missile Launching Warning Technique.1994 International Symposium on Noise and Clutter Rejection in Radars and Imaging Sensors(ISNCR-94).485-490
    [33]陈建春.耿富录.基于自适应线性预测滤波的反辐射导弹检测技术.电子学报,2001(6),55-57
    [34]张宏宽,陈建春,杨万海.基于Radon-Ambiguity变换的反辐射导弹检测识别技术.西安电子科技大学学报2004(3),446-449
    [35]陈建春,张宏宽,杨万海.一种基于小波包变换的反辐射导弹检测技术.系统工程与电子技术,2004(1),1385-1387
    [36]张贤达,保铮.非平稳信号分析与处理,国防工业出版社,1998
    [37]周立松.反辐射导弹目标检测与告警技术的研究.西安电子科技大学学位论文,1997
    [38]. M. Wang, A.K. Chan, C.K. Chui.Linear frequency modulated signals detection using wavelet packets,ambiguity function and Radon transform, IEEE Antennas Propagat. Soc. Int. Symp, USA, IEEE,1995,308-311.
    [39].M. Wang, A.K. Chan, C.K. Chui. Linear frequency-modulated signal detection using Radon-Ambiguity transform, IEEE Trans SP,1998, VOL.46(3),571-586
    [40].Brian K.Jennison. Performance of a linear frequency-modulated signal detection algorithm, IEEE International Radar Conference, NewYork, IEEE AES Society. 2000,447-450.
    [41]Shi Zhuoer, Bao Zheng, et al. Group-Normalized Wavelet Packets for Target Extraction. Proc. IC-SP'96[C], Beijing, Proceedings of ICSP,1996,323-326.
    [42]R.Altes, Detection, estimation and classification with spectrograms, J.Acoust. Soc. Am., Vol.67,1980.1232-1246
    [43]J.F.Allen, L.R.Rabiner, A unified approach to short-time Fourier analysis and synthesis, Proc. IEEE, Vol.65,1977,1558-1564
    [44]L.Cohen, Generalized phase-space distribution functions, J.Math. Phys.,Vol7,1966, 781-786
    [45]Hyung-Choi and William J.Wilhams, Improved time-frequency representation of multicomponent signals using exponential kernels, IEEE Trans. ASSP, Vol.37, (6),1989.
    [46]Richard G. Baraniuk, Douglas L. Jones, A signal-dependent time-frequency representation:fast algorithm for optimal kernel design, IEEE Trans. SP, Vol.42, (1),1994,134-146
    [47]Douglas L. Jones, Richard G. Baraniuk, An adaptive optimal-kernel time-frequency representation, IEEE Trans. SP, Vol.43, (10),1995,2361-2379
    [48]R.N.Czerwinski, D.L.Jones,Adaptive cone-kernel time-frequency analysis, IEEE Trans. SP, Vol.43, (7),1995.1715-1719
    [49]Wisur-Olsen L F, Baraniuk R.G., Optimal kernels for time-frequency analysis. Proc. ICASSP'96,1996,419-22
    [50]T. K. Bhattacharya and S. Haykin, Application of time-varying distributions for improved radar target detection, Proc. ICASSP, Apr.1992,509-512.
    [51]B. V. K. V. Kumar and C. W. Carroll, Performance of the Wigner distribution function based detection methods, Opt. Eng., vol.23,1984 (6),732-737
    [52]John C.Wood and Daniel T.Barry, Tomographic time-frequency analysis and its application toward time-varying filtering and adaptive kernel design for multicomponent linear-FM signals, IEEE Trans. SP, Vol.42,(8),1994,2094-2103
    [53]J.C.Wood and Daniel T.Barry, Radon transformation of time-frequency distributions for analysis of multicomponent signals, IEEE Trans. SP, Vol.42, (11), 1994,3166-3177
    [54]Peter T.Gough, A Fast Spectral Estimation Algorithm Based on the FFT, IEEE Trans. SP-42, (6),1994,1317-1322
    [55]陈伯孝,吴铁平,张伟,张守宏,高速反辐射导弹探测方法研究.西安电子科技大学学报,2003(6),726-729
    [56]李侠,袁志伟,杨波.ARM诱饵系统部署方案及诱偏效果分析.系统工程与电子技术2005(3),39-40
    [57]张锡祥.用两点源对抗反辐射导弹攻击的技术研究.电子对抗技术,1996(1)13-16
    [58]司锡才.反辐射导弹防御技术导论.哈尔滨工程大学出版社,1997
    [59]张德文.对反辐射导弹的电子对抗.电子对抗技术,1998(4),11-15
    [60]宿富林靖涛李绍滨.基于AR模型的反辐射导弹检测算法.哈尔滨工业大学学报2005(5)664-666
    [61]文树梁.一种基于神经网络的识别反辐射导弹方法.系统工程与电子技术,1996(9):12-19
    [62]文树梁.基于时频分布的反辐射导弹检测技术.航天电子对抗.2005(1)6-11
    [63]穆学禄,陈建春,张宏宽.基于Wigner-Hough变换的反辐射导弹检测技术.西安电子科技大学学报,vol.32,(4),2005,616-618
    [64]L.科恩著,白居宪译.时频分析:理论与应用.西安交通大学出版社,1998
    [65]邹红.多分量线性调频信号的时频分析.西安电子科技大学学位论文,2000
    [66]Shengli Wang, Li Zhu. Detecting of anti-radiation missile by applying changeable-sample ratios technology in the AEW system.ICR-2001,289-292
    [67]Wang Fan, He RiLong, Sha Xiang. Anti-ARM technique_ feature analysis of ARM warning radar.ICR-2001,293-296
    [68]刘爱芳,朱晓华.基于Radon Ambiguity变换的多分量LF M信号检测与参数估计.南京理工大学学报Vol.28,(4),2004,409-413
    [69]W. Li.Wigner Ditribution Method Equivalent to Dechirp Method for Detecting a Chirp Signal. IEEE Trans. ASSP-35 Aug,1987.
    [70]Pingyi Fan. A modified discrete chirp-Fourier transform scheme. Proceedings of ICSP2000,57-60
    [72]王小宁,许家栋.离散调频-傅里叶变换及其在雷达成像中的应用.系统工程 与电子技术.2002(3),14-15
    [73]夏海廷,马东立,郑明强.雷达间歇辐射对抗反辐射导弹作战效能分析.现代防御技术,2004(2),20-23
    [74]邹虹,保铮.一种有效的基于Chirplet自适应信号分解算法.电子学报,2001,(4),515-517
    [75]陈忠飞等.反辐射导弹告警技术.电子对抗,1997(3),34-39.
    [76]李英祥,肖先赐.低信噪比下线性调频信号检测与参数估计.系统工程与电子技术.2002(8),43-45
    [77]M.D.斯里纳思,P.K.雷杰斯卡兰著,朱正中,田立生译.统计信号处理及其应用导论.国防工业出版社,1979
    [78]丁鹭飞,张平.雷达系统.西北电讯工程学院出版社,1984
    [79]M. I. Skolnik.著.王军等译.雷达手册.电子工业出版社,2003
    [80]丁鹭飞,耿富录.雷达原理.西安电子科技大学出版社,2002
    [81]R.M.S.S.Abeysekra, B.Baoshash. Time frequency domain features of ECG signals:Their application in P wave detection using the cross Wigner-Ville distribution. Proc. IEEE ICASSP-89,1989,1524-1527
    [82]J. Ville. Theory and applications of the notion of complex signal. RAND Corporation technical report T-92, Santa Monica, CA 1958
    [83]Olivier Besson, Mounir Ghogho. Parameter Estimation for Random Amplitude Chirp Signals. IEEE Trans-SP, VOL.47, (12),1999,3208-3219
    [84]C.I. Coman, I.C. Vizitiu, S. Demeter. Small arms fire tracking with an array of Doppler sensors. Proceedings.1st European Radar Conference. Amsterdam, Oct. 2004,25-28
    [85]Andre M.Dean, David P. Matthews. The demonstration of advanced radar techniques Anti-radiation missile analysis group model suite. UK
    [86]Chen, V. C., W. J. Miceli, Time-varying spectral analysis for radar imaging of maneuvering targets, IEE Proceedings on Radar Sonar and Navigation, vol.145, Special Issue on radar Signal Processing,1998.262-268
    [87]Chen, V. C., S. Qian, Joint time-frequency transform for radar range-Doppler imaging, IEEE Trans.on Aerospace and Electronic Systems, vol.34, May 1998.
    [88]Wang G., X.-G. Xia, V. C. Chen, Signal-to-Noise Ratio analysis in the joint time-frequency domain for ISAR imaging, Proceedings of SPIE,1998.164-173,
    [89]A.V. Bronnikov, Theory of quantitative phase-contrast computed tomography. J. Opt. Soc. Am. A,19,2002,472-480
    [90]Shing-chow Chan, Ka-leung Ho.Efficient computation of the discrete wigner-ville distribution. IEEE,1990,2165-2168
    [91]LJubisa Stankovic, Vladimir Katkovnik, The Wigner Distribution of Noisy Signals with Adaptive Time-Frequency Varying Window. IEEE Transactions On Signal Processing, Vol.47, (4),1999,1099-1108
    [92]L. Giulieri, N. Thirion-Moreau, P. Y. Arques, Blind source separation using bilinear and quadratic time-frequency representations. Proceedings of ICA 2001, San Diego,2001.
    [93]L. Cohen, Time-frequency distributions-a review, Proceedings of the IEEE, vol. 77, (7),1989,941-979.
    [94]Amin, Moeness G., Zhang, Yimin. Direction Finding Based on Spatial Time-Frequency Distribution Matrices. Digital Signal Processing 2000 (10),325-339.
    [95]Richard Baraniuk, Mark Coates, Philippe Steeghs. Hybrid Lineanquadratic Time-Frequency Attributes.IEEE2000 681-684
    [96]G. Zhou, G. B. Giannakis, A. Swami, On polynomial phase signals with time-varying amplitudes, IEEE Trans. Signal Processing. vol.44,1996.848-861
    [97]Weifeng Mu, Moeness G. Amin, Yimin Zhang. Bilinear Signal Synthesis in Array Processing.2000
    [98]Boualem Boashash, Peter O'Shea. Polynomial Wigner-Ville Distributions and Their Relationship to Time-Varying Higher Order Spectra. IEEE Transactions On Signal Processing, Vol.42, (1),1994,216-220
    [99]B. Barkat, B. Boashash. Design of Higher-Order Polynomial Wigner-Ville Distributions. IEEE Trans. on Signal Processing,47(9),1999,2608-2611
    [100]Suleesathira, R., Chaparro, L. F., Akan, A., Discrete evolutionary transform for time-frequency signal analysis, J. Franklin Institute, Special Issue on Time-Frequency Signal Analysis and its Applications. Vol.337,(4),2000,347-364
    [101]M. S. Richman, T. W. Parks Discrete-time, discrete-frequency time-frequency analysis, IEEE Trans. Signal Processing, vol.46,1998,1517-1527
    [102]P. Rao, F.J. Taylor. Estimation of IF using the discrete Wigner-Ville Distribu-tion. Electronics letters.26,1990,246-248
    [103]H. Narpast. Dense target signal processing. IEEE Trans on Signal Processing 37, 1991,317-327
    [104]B. Barkat, B. Boashash. IF Estimation of Linear FM Signals Corrupted by Multiplicative and Additive Noise:A Time-Frequency Approach. ICASSP2000
    [105]B. Barkat, B. Boashash. Instantaneous Frequency Estimation of Polynomial FM Signals Using the Peak of the PWVD:Statistical Performance in the Presence of
    Additive Gaussian Noise. IEEE Trans. SP.47 (9),1999,2480-2490
    [106]Suleesathira R., Chaparro L. F. Interference mitigation in spread spectrum using Discrete Evolutionary and Hough Transforms, Proc. ICASSP-2000, Istanbul, Turkey.2821-2824
    [107]O. Besson, M.Ghogho, A. Swami. On Estimating Random Amplitude Chirp Signals. In Proc. of the ICASSP, volume Ⅲ, Arizona, U.S.A,1999,1561-1564
    [108]L. Cohen, Time-Frequency Analysis. Englewood Cliffs, NJ:PrenticeHall,1995
    [109]A. Bultheel H. Mart'inez. A shattered survey of the Fractional Fourier Transform. Report TW337, April 2002.1-42
    [110]Zbigiew L.,Tadusz L. Time-Frequency analysis of three phase signals using Wigner distribution. IV International Workshop Computational Problems of Electrical Engineering,2002,81-84
    [111]Chukiet Sodsri. Time-Varying Autoregressive Modelling For Nonstationary Acoustic Signal And Its Frequency Analysis. The Pennsylvania State University, doctor Thesis, December 2003
    [112]M. Pasquier, P. Goncalves, R. G. Baraniuk. Hybrid Linear/Bilinear Time-Scale Analysis. IEEE, Trans. SP.,1998.
    [113]Fulvio Gini, Georgios B. Giannakis Hybrid FM-Polynomial Phase Signal Modeling:Parameter Estimation and Cram'er-Rao Bounds. IEEE Transactions On Signal Processing, Vol.47, (2),1999,363-377
    [114]Z. Bao G. Wang L. Luo. Inverse synthetic aperture radar imaging of maneuvering targets. Optical Engineering, Vol.37, (5),1998,1582-1588
    [115]S. Mallat. A wavelet tour of signal processing. AcademicPress,1998.
    [116]Michael J., Gerald M., Franz H. Time-Frequency-Autoregressive Random Processes:Modeling And Fast Parameter Estimation proc. IEEE ICASSP-2003, Hong Kong, April 2003, vol. Ⅵ,125-128.
    [117]LJubisa Stankovic. On the Realization of the Polynomial Wigner-Ville Distribution for Multicomponent Signals. IEEE Signal Processing Letters, Vol.5, (7),1998,157-159
    [118]Jack McLaughlin, Les E. Atlas. Applications of Operator Theory to Time-Frequency Analysis and Classification.
    [119]Emmanuel Candes. Chirplets:Multiscale Recovery and Detection of Chirps. Multiscale Geometric Analysis in High Dimensions:Workshop #4, IP AM, UCLA, November 2004
    [120]P. Flandrin, Ambiguity functions in Time Frequency Signal Analysis and
    Processing:A Comprehensive Reference.2003
    [121]Peter O'Shea. Fast Parameter Estimation Algorithms For Linear FM Signals IEEE,1994,17-20
    [122]Barbarossa, S. Scaglione A.,Adaptive time-varying cancellation of wideband interferences in spread spectrum communications based on time-frequency distributions. IEEE Trans. SP.,1999,957-965
    [123]V. Sucic, B. Boashash. On the selection of quadratic time-frequency distributions and optimisation of their parameters. Proceedings of the Third Australasian Workshop on Signal Processing Applications, WoSPA 2000.,
    [124]B. Boashash,V. Sucic. A resolution performancemeasure for quadratic time-frequency distributions. Proceedings of the IEEE Workshop on Statisitcal Signal and Array Processing, SSAP 2000,584-588
    [125]Yimin Zhang., Weifeng Mu, Moeness G.A. Time-frequency maximum likelihood methods for direction finding Journal of the Franklin Institute 337, 2000,483-497
    [126]Yimin Zhang, Weifeng Mu, Moeness G. Amin. Subspace Analysis of Spatial Time-Frequency Distribution Matrices. IEEE Transactions On Signal Processing, Vol.49, (4),2001,747-759
    [127]Xiang-Gen Xia, Discrete Chirp-Fourier Transform and Its Application to Chirp Rate Estimation. IEEE Transactions On SP., Vol.48,(11),2000,3122-3133
    [128]James William H. Time Frequency Analysis Techniques in Terahertz Pulsed Imaging. Doctor Thesis,December 2003
    [129]M. Joao D. Rendas. Ambiguity in Radar and Sonar. IEEE Transactions On Signal Processing, Vol.46, (2),1998,294-305
    [130]D. Boutana, B. Barkat, F. Marir. A Proposed High-Resolution Time-Frequency Distribution for the Analysis of Multicomponent and Speech Signals. International Journal of Signal Processing Volume 1 (2),2004,167-170
    [131]B. Barkat and B. Boashash A High-Resolution Quadratic Time-Frequency Distribution for Multicomponent Signals Analysis, IEEE Transaction on signal processing,Vol.49, (3),2001.
    [132]Guillermo G. Gaunaurd, Hans C. Strifors, Applications of (Wigner-Type) Time-Frequency Distributions to Sonar and Radar Signal Analysis
    [133]LJubisa Stankovic. Time-Frequency Distributions With Complex Argument. IEEE Transactions On Signal Processing, Vol.50, (3),2002,475-486
    [134]Jenho T, Steinberg B D. Reduction of sidelobe and speckle artifacts in microwave imaging:The CLEAN technique. IEEE Trans on Antennas and Propagation,1988, 36(4),543-556.
    [135]冉鑫,马世伟,曹家麟.基于Radon-Wigner变换的多分量LFM信号的检测.上海大学学报,2001(4),119-122
    [136]Tatiana Alieva, Martin J. Bastiaans.Radon-Wigner transform for optical field analysis
    [137]Ahmet Kemal Ozdemir, Orhan Arikan, Fast Computation of the Ambiguity Function and the Wigner Distribution on Arbitrary Line Segments, IEEE Transactions On Signal Processing, Vol.49, (2),2001381-393
    [138]John C. Wood, Daniel T. Barry, Linear Signal Synthesis Using the Radon-Wigner Transform IEEE Transadions On SP, Vol.42, (8),1994,2105-2111
    [139]Tomograms and other transforms:a unified view, J. Phys. A:Math. Gen.34,2001, 8321-8332
    [140]J. Sijbers, A. J. Den Dekker, D. Van Dyck, Estimation of signal and noise from Rician distributed data。Proceedings of the International Conference on Signal Processing and Communications, Spain, February,1998,140-142
    [141]Ali Abdi, Mostafa Kaveh, On the Estimation of the K Parameter for the Rice Fading Distribution. IEEE communications letters, vol.5, (3),2001,92-94
    [142]孙晓起,皇甫堪.基于Wigner Hough变换的多分量LF M信号检测及离散计算方法.电子学报,Vol.31(2),2003,241-244
    [143]戴征坚郁文贤胡卫东.强干扰下LFM信号的检测与参数估计.国防科技大学学报,Vol.21(3),1999,50-54
    [144]朱振波何明浩.强背景噪声环境下的线性调频信号检测.现代雷达,Vol.26(3),2004,46-70
    [145]刘庆云,李志舜基于自适应核时频分布的多普勒频移及多径时延估计.西北工业大学学报.Vol.22(1),2004,29-32
    [146]邵智超,吴彦鸿,贾鑫.基于时频分析的LF M信号检测与参数估计.装备指挥技术学院学报,Vol.15(2),2004,1-75
    [147]姚萍承,张涛.基于去调频宽带LFM信号的二次距离压缩算法及其实时实现.电子与信息学报,Vol.26(2),2004,181-187
    [148]邹虹,保铮.基于频域"CLEAN" Wigner-Ville分布中交叉项的抑制.电子与信息学报,Vol.24(1),2002,2-5
    [149]孟虎,邓云凯.时频分析在线性调频信号相位误差估计中的应用.测试技术学报,Vol.18(1),2004
    [150]李国林,王宝林,施聚生.近程雷达目标多分量信号处理研究.系统工程与 电子技术,Vol.22(9),2000,44-46
    [151]Martin Ronald Beaulieu. Launch detection satellite system engineering error analysis. AD A311524, March 1996
    [152]Report on the audit of the acquisition of the tacit rainbow ARM system. ADA379856,1991
    [153]Dinger R.J., Development of a shipboard high frequency surface wave radar for anti-ship missile detection. ADA381980,1998
    [154]Ken-Weng Chan. A radial basis function neural network approach to two-color infrared missile detection. ADA391929, March 2001
    [155]Abdulkadir Guner. Ambiguity Function Analysis And Directpath Signal Filtering Of The Digital Audio Broadcast (DAB) Waveform For Passive Coherent Location (PCL). ADA401573, March,2002
    [156]崔锦泰著,程正兴译,小波分析导论,西安交通大学出版社,1995
    [157]章潜五著,随机信号分析,西安电子科技大学出版社,1990
    [158]B.Widrow著,王永德等译,自适应信号处理,四川大学出版社,1991
    [159]R.Hippenstile. Detection and Parameter Estimation of Chirped Radar Signals-Final rept. AD A372866, Jan.2000
    [160]Moon-Chuen Lee, Chi-Man Pun. Texture classification using dominant wavelet packet energy features.4th IEEE Southwest Symposium. Hong Kong, IEEE, Image Analysis and Interpretation,2000. Proceedings.2000(2).301~304.
    [161]S. Barbarossa, Analysis of multicomponent LFM signals by a combined Wigner-Hough transform, IEEE Trans. Signal Processing, vol.43, June 1995.
    [162]S.Bhaktavatsala. DSP Applications In Radar.2002
    [163]TMS320C6414T,6415T,6416T Fixed-Point Digital Signal Processor Data Manual, Texas Instruments,2004
    [164]A. Bakers dozen. Magnitude approximations and their detection statistics. IEEE. AES-12(1),1976,86-89
    [165]Ray Andraka. A Survey Of CORDIC Algorithms For FPGA Based Computers. ACM-1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700