立体仓库时空数据模型的构建与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
物流业是国民经济的重要组成部分,作为国民经济发展的动脉和基础产业,物流业的发展程度已成为衡量一个国家现代化程度和综合国力的重要标志。仓储是物流链上最重要的环节之一,仓储系统的运作效率和成本直接影响了整个物流的效率和成本。随着经济的发展,社会对仓储的需求日趋高水平化和多样化,但目前仓储服务质量和服务效率还远不能满足这种需求,提高仓储管理的效率和服务质量已成为社会普遍关注的热点和难点。
     仓库业务活动是一个典型的时空过程,对地理空间和时间存在较大的依赖。立体仓库是以高层立体货架为主体,以成套搬运设备为基础,以计算机控制技术为主要手段的高效率、大容量储藏系统,对时间和空间的依赖更为突出。伴随立体仓库业务的开展,货物频繁地发生入库、上架、转仓、下架、出库等事件,引发了货物时空状态的快速变化。同时立体仓库对业务变化的应对,导致了仓库储区的变化、货架储位的拆分合并,需要对库内外车辆进行实时监控、对业务流程加以实时优化,这些都加大了立体仓库管理的难度。伴随立体仓库规模的扩大以及立体仓库管理要求的提高,立体仓库业务运作需要大量时空信息的支持,如储位共享存储、储位调整、储位利用率分析、货物时空分布、货物出入库流量分析、货物实时盘库、车辆实时监控等。原有的MIS系统已经难以满足立体仓库新的需求,为了合理配置仓储资源、降低仓储成本、控制仓库业务流程,需要对立体仓库空间对象及其相互之间复杂的时空关系进行研究。综上,开展立体仓库时空数据模型的研究具有重要意义和迫切性。
     因此本文以立体仓库及其业务为研究对象,运用系统科学的观点,采用面向对象的建模方法,对立体仓库时空数据建模及拣货动态优化进行了深入研究,主要研究内容和成果如下:
     (1)分析了立体仓库基本作业流程、组成对象及其时空特征。分别从业务流程和时空特征的角度进行了立体仓库数据的分类,建立了基于立体仓库知识的数据对象分类体系。
     (2)系统论述了立体仓库数据对象的表现形式、获取方式。针对立体仓库数据实时获取和可视化问题,设计了基于条形码、GPS/GPRS、ZigBee技术的数据采集方法,实现了立体仓库业务数据和空间数据的实时采集与表达,为构建立体仓库时空数据模型提供了数据支撑。
     (3)根据立体仓库数据对象的特点,采用事件描述与面向对象分析相结合的方法,分析了立体仓库组成对象及其之间的关系,构建了面向对象的立体仓库时空数据模型。
     (4)分析了立体仓库事件,提出了基于事件序列的对象复杂行为建模方法。对事件、事件联系和事件序列进行了形式化定义,给出了描述对象复杂行为的规范形式化描述模板及具体描述方法。对立体仓库中的事件进行了抽取和编码,并给出了立体仓库时空数据的组织和存储方式。
     (5)基于立体仓库时空数据模型提出了该数据模型的应用框架。以立体仓库拣货作业为切入点,详细分析了立体仓库拣货系统和作业目标,基于立体仓库时空数据模型,提出了一种顾及货物时空特征的立体仓库拣货作业动态调度方案,构建了动态调度优化模型并进行了验证。
     (6)依据面向对象的软件设计方法,开发了基于时空数据模型的立体仓库管理信息系统。阐述了系统开发环境、整体系统架构、数据库设计以及系统的各种功能,并对上述功能进行了实现。通过信息系统在企业中的实际应用,验证了本文构建的立体仓库时空数据模型,同时也为立体仓库的管理和决策提供了解决方案。
     本文具有如下创新之处:
     (1)建立了基于立体仓库知识的仓库数据对象分类体系,运用时空观点系统地对立体仓库组成对象进行了时空特征的分析和表达,为构建立体仓库时空数据模型奠定了基础。
     (2)针对立体仓库的时空特征,构建了面向对象的立体仓库时空数据模型,实现了立体仓库中各类对象的数据表达以及他们之间复杂的时间、空间关系描述。针对面向对象静态模型表达立体仓库对象动态行为的不足,提出了基于事件序列的立体仓库对象复杂行为建模方法,给出了事件、事件联系和事通序列的形式化定义,通过事件的驱动实现立体仓库对象及对象之间的时间、空间及属性行为的各种操作,完成了数据的更新。
     (3)提出了立体仓库时空数据模型的应用框架,以立体仓库拣货动态调度为切入点,给出了一种顾及货物时空特征的立体仓库拣货动态调度方案。结合立体仓库拣货作业的实际情况设计了拣货动态调度优化模型,实现了立体仓库拣货作业动态调度。
The logistics industry is an important part of the national economy. As the artery of national economic development and the basic industries, its development has become the measure of a country's modernization level and an important indicator of comprehensive national strength. Operational efficiency and cost of storage system directly affected the efficiency and cost of logistics due to its important roles in logistics chain. With the social and economic development, the problem that the storage service-quality and storage efficiency can't meet the increasing needs of logistics for society becomes more and more prominent. How to reduce the storage cost and improve storage efficiency are the open topics and should be pay more attentions.
     Warehouse operations are typical spatio-temporal process, which are dependent on geographical space and time greatly. Stereoscopic warehouse is a high-efficiency and high-capacity storage system, which is dependent on the time and space, is composed of high level rack, complete handling equipment and computing technology. With the rapid development of economic, the operational events of inbounding, shelving, outbounding, picking and stock transferring for goods happen frequently in warehouse and leading to spatio-temporal changes to goods. At the same time, the stereoscopic warehouse are vary with business changes leads to the changes in the layout of the warehouse, split and merger of shelf and slotting, the real-time monitoring and management of vehicles and business processes, which increases the difficulty for warehouse management. With the expansion of stereoscopic warehouse scale and increase of stereoscopic warehouse management requirements, the operations of stereoscopic warehouse needs a large amount of spatio-temporal information, such as the slot sharing, changing, utilization analysis, spatial and temporal distribution of goods, goods out of storage traffic analysis, real-time stocktaking of goods, real-time monitoring of vehicles, and so on. The existed MIS systems have difficult to meet new needs of stereoscopic warehouse. In order to allocating storage resources rationally, reducing storage costs and controlling the warehouse business process, it is necessary to analyze and model the objects of stereoscopic warehouse and their relations. So it is a meaningful thing to research the spatio-temporal data model for stereoscopic warehouse.
     Therefore, by setting the stereoscopic warehouse and its business process as the subjects of the study, this paper conducts a thorough research on data acquisition, analysis, modeling and optimization of business processes, with the help of system science and the objected-oriented spatio-temporal modeling technology. The main research contents and achievements are as follows.
     (1) The elements and the basic processes of stereoscopic warehouse are described, and the expression, access methods and spatio-temporal characteristics of stereoscopic warehouse data objects are also elaborated. From the perspective of the business process and spatial-temporal characteristics, the data is classified and the classification system is established based on stereoscopic warehouse knowledge.
     (2) Considering the problem of real-time acquisition and visualization of stereoscopic warehouse data, the data acquisition methods based on barcode, GPS/GPRS and Zigbee are investigated, the real-time acquisition and display of stereoscopic warehouse business data are implemented, and it will be useful for applications of the spatio-temporal data model for stereoscopic warehouse.
     (3) According to data object characteristics of stereoscopic warehouse, the method which combines the event-described and object-oriented technology is used for stereoscopic warehouse data modeling. The elements of the warehouse and its relationship are analyzed, and an object-oriented spatial-temporal data model for stereoscopic warehouse is constructed.
     (4) A modeling method for complex behavior of objects based on sequence of events is proposed by analysis the events of stereoscopic warehouse. The events, events links and events sequence are expressed by formal language, and a formal description template and specific description methods for complex behavior of objects are presented. The events are extracted and coded, and the spatio-temporal data organization and storage method is put forward.
     (5) An application framework for spatio-temporal data model is proposed. Based on goods-picking, the warehouse picking system and operational objectives are analyzed in detail. Taking the spatial-temporal characteristics of the goods into account,, a dynamic scheduling scheme for stereoscopic warehouse picking is proposed, and the dynamic scheduling optimization model is constructed and validated.
     (6) According to object-oriented software development method, a stereoscopic warehouse management information system based on spatial-temporal data model is developed, which describes the system development environment, the overall system architecture, database and the various functions, and implements the above functions at last. Through the system's practical application in the enterprise, not only the correctness of the spatial-temporal data model is verified, but also the solutions for warehouse management and enterprise decision are given.
     The major contributions of this paper are as follows:
     (1) The classification system of stereoscopic warehouse data based on stereoscopic warehouse knowledge is constructed. The spatio-temporal characteristics of stereoscopic warehouse elements are analyzed and expressed, and it is The foundation to construct stereoscopic warehouse spatial-temporal data model.
     (2) Considering the spatio-temporal characteristics of stereoscopic warehouse, the event-driven and object-oriented stereoscopic warehouse spatial-temporal data model is constructed, in which mainly resolved data expression of various objects in stereoscopic warehouse and the description of their complex time and spatial relationships. In order to resolve the problems in dynamic behavior of stereoscopic warehouse objects using static model, a modeling method for complex behaviors of stereoscopic warehouse objects based on event-sequence is proposed. By the driving of events, the time, spatial and attribute operations of those objects and among those objects are implemented, and the data is updated.
     (3) An application framework of spatio-temporal model is proposed. a dynamic scheduling scheme is presented, and it has taken the spatio-temporal characteristics of the goods for stereoscopic warehouse picking and the a dynamic scheduling optimization model into account; at last, the dynamic scheduling for picking operations is implemented.
引文
[1]M. P. Armstrong. Temporality in spatial databases[C]. GIS/LIS 88:Accessing the World,1988:880-889.
    [2]F. Caron, G. Marchet, A. Perego. Routing policies and COI-based storage policies in picker-to-part systems[J]. International Journal of Production Research,1998,36(3):713-732.
    [3]S. Chakravarthy, S.-K. Kim. Resolution of time concepts in temporal databases[J]. Information Sciences,1994,80(1-2):91-125.
    [4]C. Claramunt. Managing Time in GIS:An Event-Oriented Approach[M]. Springer-Verlag,1995.
    [5]G. Copeland, D. Maier. Making smalltalk a database system[C]//Proceedings of the 1984 ACM SIGMOD international conference on Management of data. Boston, Massachusetts,1984:316-325.
    [6]M. B. M. De Koster, E. S. Van der Poort, M. Wolters. Efficient orderbatching methods in warehouses[J]. International Journal of Production Research,1999,37(7):1479-1504.
    [7]R. Dekker, M. B. M. d. Koster, K. J. Roodbergen. Improving Order-Picking Response Time at Ankor's Warehouse[J]. Interfaces,2004,34(4):303-313.
    [8]M. Erwig, R. H. Guting. Spatial-Temporal Data Types:An Approach to Modeling and Quering Moving Objects in Database[J]. Geoinformatica,1999,3(3):269-296.
    [9]M. Goetschalckx, D. H. Ratliff. An efficient algorithm to cluster order picking items in a wide aisle[J]. Comput. Ind. Eng.,1986, 11(1-4):61-64.
    [10]M. Goetschalckx, H. D. Ratliff. Order Picking In An Aisle[J]. IIE Transactions,1988,20(1):53-62.
    [11]T. Goldsby. Lean Six Sigma Logistics[M]. Beijing:China Machine Press,2008.
    [12]T. Hagerstrand. What about people in regional science[C]. Paper of the Regional Science Association, 1970:7-21.
    [13]R. W. Hall. DISTANCE APPROXIMATIONS FOR ROUTING MANUAL PICKERS IN A WAREHOUSE[J].IIE Transactions,1993,25(4):76-87.
    [14]N. W. J. Hazelton. Integrating Time,Dynamic Modelling and Geographic Information Systems:Development of Four-Dimensional GIS[D]. The University of Melbourne 1991.
    [15]J. A. Kelmelis. Time and Space in Geographic Information:Toward a Four-Dimensional Spatio-Temporal Data Model(Topology)[D]. The Pennsylvania State University 1991.
    [16]M. B. M. d. Koster, T. Le-Duc, K. J. Roodbergen. Design and control of warehouse order picking:a literature review[J]. European Journal of Operational Research,2006,182(2).
    [17]G. Langran. Time in geographic information system[D]. University of Washington 1989.
    [18]G. Langran. Time in geographic information system[M]. London:Taylor & Francis,1992.
    [19]T. Le-Duc. Design and control of efficient order picking processes[D]. Erasmus University Rotterdam2005.
    [20]T. Le-Duc, R. B. M. De Koster. Travel distance estimation and storage zone optimization in a 2-block class-based storage strategy warehouse[J]. International Journal of Production Research,2005, 43(17):3561-3581.
    [21]T. Le-Due. Design and control of efficient order picking processes[D]. Erasmus University Rotterdam2005.
    [22]B. Li, G. Cai. A general object-oriented spatial temporal data model[J]. Symposium on Geospatial Theory,Processing and Applications,2002.
    [23]M. Y. C. Pang, W. Shi. Development of a Process-Based Model for Dynamic Interaction in Spatio-Temporal GIS[J]. Geoinformatica,2002,6(4):323-344.
    [24]C. G. Petersen. An evaluation of order picking routing policies[C]//International Journal of Operations & Production Management.1997:1096-1111.
    [25]C. G. Petersen. The impact of routing and storage policies on warehouse efficiency[J]. International Journal of Operations & Production Management,1999,19(10):1053-1064.
    [26]D. J. Peuquet. Time in GIS and Geographical Database[C]//Geographical Information Systems(2En). New York,1999:91-103.
    [27]D. J. Peuquet, N.Duan. An event-based spatiotemporal data model (ESTDM) for temporal analysis of geographical data[J]. International Journal of Geographical Information Science,1995,9(1):7-24.
    [28]H. M. Rafaat, Q. Xiao, D. A. Gauthier. An Extended Relational Database for Remotely Sensed Image Data Management within GIS[J]. IEEE Trans,on Geoscience and Remote Sensing,1991, 29:651-655.
    [29]H. M. Rafaat, Z. Yang, D. A. Gauthier. Relational Spatial Topologies for Historical Geographical Information[J]. Int. Journal of Geographical Information Systems,1994,8:163-173.
    [30]B. Ramachandran, F. Macleod, S. Dowers. Modeling Temporal Changes in a GIS Using an Object-Oriented Approach[J]. Advances in GIS Research,1994.
    [31]H. D. Ratliff, A. S. Rosenthal. Order-Picking in a Rectangular Warehouse:A Solvable Case of the Traveling Salesman Problem[J]. Operations Research,1983,31(3):507-521.
    [32]A. Raza, W. Kainz. Cell tuple based spatio-temporal data model:an object oriented approach[C]//Eight ACM Conference on Information and Knowledge Management(CIKM'99) and Symposium on Geographic Information System(GIS'99). Kansas City,USA,1999:20-25.
    [33]A. Raza, W. Kainz. Designing operators for object-oriented spatial-temporal data model[C]//XIXth Congress of the International Society for Photogrammetry and Remote Sensing(ISPRS). Amsterdam,The Netherlands,2000:863-870.
    [34]A. Renolen. Modelling the spatiotemporal information:the spatiotemporal object model[J].1997.
    [35]A. Renolen. Conceptual modeling and spatiotemporal information systems:how to model the real world[J]. ScanGIS,1997.
    [36]K. J. Roodbergen. Layout and routing methods for warehouse[D]. Rotterdam:Erasmus University2001.
    [37]K. J. Roodbergen, R. Koster. Routing methods for warehouses with multiple cross aisles[J]. International Journal of Production Research,2001,39(9):1865-1883.
    [38]W. Shi, Y. C. Matthew. Dynamic Modelling of Spatial Process and Geo-refferred Systems in Process-Based Temporal GIS[C]. Proceedings of The International Workshop on Dynamic & Multi-Dimensional GIS,1997:173-187.
    [39]R. T. Snodgrass. The temporal query language Tquel[J]. ACM Transactions on Database System,1987, 12(2):247-298.
    [40]R. T. Snodgrass, I. Ahn. Temporal Database[J]. Computer,1986,19(9):35-42.
    [41]T. S. Vaughan, C. G. Pertersen. The effect of warehouse cross aisles on order picking efficiency [J]. International Journal of Production Research,1999,37(4):881-897.
    [42]M. Wachowicz, R. G. Healey. Towards Temporality in GIS[J]. Innovations in GIS,1994.
    [43]M. F. Worboys. A Unified Model for Spatial and Temporal Information[J]. The Computer Journal, 1994,37(1):26-34.
    [44]M. F. Worboys. Object-Oriented approaches to Georeferenced Information[J]. IJGIS,1994, 8(4):385-399.
    [45]M. F. Worboys. Objected-Oriented data modelling for spatial database[J]. International Journal of Geogrphical Information Systems,1990,4(4):368-383.
    [47]丁帅,褚伟.基于RFID无线仓库管理系统的建模研究[J].微计算机信息,2008,(26):168-169.
    [48]尹国明.自动化立体仓库实验台堆垛机结构及控制系统设计研究[D].山东大学2006.
    [49]孔维娜,徐振宇.基于MCGS的立体仓库监控系统的设计[J].电子质量,2010,(11):35-40.
    [50]牛鱼龙.美国物流经典案例[M].重庆:重庆大学出版社,2007.
    [51]王小平,曹立明.遗传算法理论-应用与软件实现[M].西安:西安交通大学出版社,2000:145-179.
    [52]王宏.双区型仓库拣货路径优化方法研究[D].中南大学2007.
    [53]王宏,符卓,左武.基于遗传算法的双区型仓库拣货路径优化研究[J].计算机工程与应用,2009,(06):224-228.
    [54]王志伟,蒋兆远.基于以太网通信的自动化立体仓库管理与监控系统[J].中国工程科学,2004,(06):74-76+84.
    [55]王通,闫祥安,李伟华.基于.net技术的自动化立体仓库管理与控制系统的研究与实现[J].制造业自动化,2004,(04):21-24.
    [56]王琮.自动化立体仓库系统与ERP系统接口设计研究[D].同济大学2006.
    [57]王靖,孙如江,潘雨青.基于多交互方式的物流车辆监控系统设计研究[J].物流科技,2008,(02):127-130.
    [58]王霄,段智敏.自动化立体仓库的设计[J].沈阳工业学院学报,2004,(02).
    [59]王玮.基于RFID的立体仓库仓储管理系统的研究[D].重庆大学2009.
    [60]付强.面向对象的自动化立体仓库存取作业三维仿真研究[D].东北林业大学2006.
    [61]令永卓.REBACCA仓库管理信息系统[J].高压电器,1994,(05):55.
    [62]古振煌,耿振鸿,王铁洪.应用于立体仓库堆垛机的微机控制系统[J].机械工业自动化,1988,(02):32-34.
    [63]史跃明.ERP与立体仓库管理系统间接口的实现方法[J].成组技术与生产现代化,2010,(04):27-28.
    [64]左生龙,刘军.现代仓储作业管理[M].北京:中国物资出版社,2006.
    [65]朱茗.基于射频识别的自动立体仓库信息管理系统[D].北京工商大学2006.
    [66]何芳,王前虹,李爱本.基于组态王6.0的立体仓库网络控制系统[J].控制工程,2003,(S1):86-88.
    [67]何新贵,唐常杰.特种数据库技术[M].北京:科技出版社,2000.
    [68]余志文,张利田,邬永宏.基态修正时空数据模型的进一步扩展[J].中山大学学报(自然科学版),2003,(01):100-103.
    [69]克里斯托弗.物流与供应链管理[M].北京:电子工业出版社,2006.
    [70]宋玮.时空数据模型及其在土地管理中的应用研究[D].郑州:解放军信息工程大学2005.
    [71]宋玮,王家耀,郭金华.面向对象时空数据模型的研究[J].测绘科学技术学报,2006,(04):235-238.
    [72]李梅娟.自动化仓储系统优化方法的研究[D].大连:大连理工大学2008.
    [73]李爽,王石,王鑫.PLC电气控制在立体仓库系统中的应用[J].科技广场,2010,(05):209-212.
    [74]李莞菁.管理信息系统与自动化立体仓库集成技术[J].计算机工程,1996,(S1):347-352.
    [75]李逢玲,郑飞.基于C/S模式的仓库管理信息系统的设计与实现[J].现代电子技术,2008,(16):87-88.
    [76]李晶蕾,程灏.用微观物流管理提升企业核心竞争力[J].经济师,2004,(06).
    [77]李军,郭耀煌.物流配送车辆优化调度理论与方法[M].北京:中国物资出版社,2001.
    [78]李焕贞.物流立体仓库的数据模型研究[D].南京师范大学2008.
    [79]李诗珍.配送中心拣货作业优化设计与控制研究[D].成都:西南交通大学2008.
    [80]李诗珍.配送中心ABC分类存储模式与拣货路径策略选择[J].起重运输机械,2008,(06):4-7.
    [81]李诗珍,杜文宏,彭其渊.低层人至物拣货系统订单拣货路径问题研究[J].起重运输机械,2007,(08):5-9.
    [82]杜道生,舒红.基于同步数据项组和碎分拓扑弧段时间标记的时态地理数据模型[J].武汉测绘科技大学学报,1997,(02).
    [83]谷曼.基于Flexsim的自动化立体仓库系统规划与仿真研究[D].武汉理工大学2010.
    [84]周明,孙树栋.遗传算法原理及应用[M].国防工业出版社,1999.
    [85]周晓光,付莹.基于PC-BASEPLC的自动化立体仓库堆垛机控制系统设计[J].起重运输机械,2006,(02):37-39.
    [86]孟令奎,赵春宇,林志勇.基于地理事件时变序列的时空数据模型研究与实现[J].武汉大学学报(信息科学版),2003,(02):202-207.
    [87]林晨,盛业华,王靖.GIS环境下物流配送中心选址优化模型——以南京市为例[J].中国物流与采购,2010,(06):66-67.
    [88]林广发.基于事件的时空数据模型研究[J].测绘学报,2004,(03):282.
    [89]林广发,冯学智,王雷.以事件为核心的面向对象时空数据模型[J].测绘学报,2002,(01):71-76.
    [90]花永剑,许迅安.仓储管理实务[M].杭州:浙江大学出版社,2008.
    [91]胡赤兵,芦俊,梅丽文.邮包自动化立体仓库的控制与管理系统设计[J].机电工程,1999,(04).
    [92]范君陶.基于Web的仓库管理信息系统框架设计与应用[D].华中科技大学2009.
    [93]苗长艳,崔金珠.集成化自动立体仓库系统[J].工业技术经济,1996,(04):136.
    [94]唐新明,吴岚.时空数据库模型和时间地理信息系统框架[J].遥感信息,1999,(01).
    [95]徐正林,刘昌祺.自动化立体仓库实用设计手册[M].北京:中国物资出版社,2009.
    [96]徐志红.基于事件语义的时空数据模型的研究[D].武汉大学2005.
    [97]徐春辉.自动化立体仓库述要[J].洪都科技,1996:29-13.
    [98]真虹,张婕姝.物流企业仓储管理与实务[M].北京:中国物资出版社,2007.
    [99]郝学江.基于RFID的自动化立体仓库信息管理系统的研究[D].北京邮电大学2008.
    [100]高勇,林星,刘瑜.基于对象关系数据库的时空数据模型研究[J].地理与地理信息科学,2006,(03):26-30.
    [101]高喜斌,谭小磊.基于RFID技术的自动化立体仓库的功能模块的设计[J].甘肃科技纵横,2009,(03):27.
    [102]常发亮,李慕兰,林连序.自动化立体仓库堆垛机PLC控制系统[J].电气自动化,1995,(04):45-47.
    [103]曹志月,刘岳.一种面向对象的时空数据模型[J].测绘学报,2002,(01):87-92.
    [104]盛业华,张桂英.物流管理信息系统[M].北京:科学出版社,2008.
    [105]郭宁.UML及建模[M].北京清华大学出版社:2007.
    [106]郭达志,杨维平,韩国建.矿山地理信息系统中的空间和时间四维数据模型[J].测绘学报,1993,(01):33-40.
    [107]章昌南.自动化立体仓库的自动控制系统[J].起重运输机械,1992,(01):7-11+2.
    [108]程昌秀,周成虎,陆锋.对象关系型GIS中改进基态修正时空数据模型的实现[J].中国图象图形学报,2003,(06).
    [109]舒红,陈军,史文中.时空数据模型研究综述[J].计算机科学,1998,(06):70-74.
    [110]舒红,陈军,杜道生.面向对象的时空数据模型[J].武汉测绘科技大学学报,1997,(03).
    [111]舒红,陈军,杜道生.时空拓扑关系定义及时态拓扑关系描述[J].测绘学报,1997,(04).
    [112]舒红,陈军,杜道生.时态对象结构的代数模型[J].武汉大学学报(信息科学版),1998, (02):137-140.
    [113]葛元,王林泉CIMS环境下自动化车间立体仓库物流计算机控制系统[J].计算机工程,1996,(06).
    [114]葛高丰.自动化立体仓库堆垛机控制系统[J].科技信息(学术研究),2007,(01):28-29.
    [115]葛晓忠,马俊.基于组态王和PLC的小型立体仓库的设计[J].机械制造与自动化,2009,(06):143-145.
    [116]董福庆.物流中心拣货作业[M].台北:工业技术研究院机械工业研究所,1997.
    [117]雷娟娟.基于蚁群算法的仓库拣货路径优化研究[D].合肥工业大学2010.
    [118]熊芳敏,岑宇森,曾碧卿.运用蚁群算法解决物流中心拣货路径问题[J].华南师范大学学报(自然科学版),2010,(02):50-54.
    [119]潘超.可视化立体仓库管理信息系统的研究[D].武汉理工大学2007.
    [120]薛永吉.仓储物流系统仿真及应用研究[D].东南大学2006.
    [121]刘仁义,刘南.基态修正时空数据模型的扩展及在土地产权产籍系统中的实现[J].测绘学报,2001,(02):168-172.
    [122]刘仁义,刘南,苏国中.时空数据库基态修正模型的扩展[J].浙江大学学报(理学版),2000,(02):196-200.
    [123]刘娜.RUP在大型仓库管理信息系统开发中的应用[J].中国科技信息,2005,(01):10-25.
    [124]吴耀华,高峰.基于以太网方式的自动化立体仓库管控中间件的开发应用[J].组合机床与自动化加工技术,2005,(08):30-31.
    [127]孙亮.随机型仓库管理信息系统[J].鞍钢技术,1986,(04):44-47+43.
    [128]孙会君,高自友.考虑路线安排的物流配送中心选址双层规划模型及求解算法[J].中国公路学报,2003,(02).
    [129]张山山.面向对象的城市交通规划时空数据模型[J].计算机应用,2003,(06):56-59.
    [130]张山山,边馥苓.面向对象的3级结构时空数据模型[J].计算机应用,2003,(11):29-31.
    [131]张成,袁冰,王杰.基于ERP与条码技术的立体仓库管理系统[J].现代制造工程,2003,(09):7-9.
    [132]张志田.基于MCGS组态软件的立体仓库控制系统研究[J].湖南工业职业技术学院学报,2008,(02):8-9.
    [133]张桂英.物流时空网络分析模型的构建与应用研究[D].南京:南京师范大学2009.
    [134]张海藩.软件工程导论(第四版)[M].北京:清华大学出版社,2003.
    [135]张海军,朱杰,岳溥庥.不规则立体仓库布置图的一种实现方法[J].系统工程,2007,(02):41-45.
    [136]张务达,庞美景.宏观物流与微观物流之比较研究[J].粮食流通技术,1996,(01).
    [137]张欢欢.自动化立体仓库的若干关键技术与仿真[D].浙江大学2008.
    [138]张汉江,肖伟,罗端红.辅助自动化立体仓库设计的可视化物流仿真[J].系统工程,2006,(03):15-19.
    [139]杨翠蓉,尹平林,王明哲.ERP环境下的仓库管理信息系统设计[J].计算机与现代化,2001,(05):87-90.
    [140]纪红任,王铁宁,魏波.自动化立体仓库的规划论证[J].物流科技,2004,(04).
    [141]蒋捷,陈军.基于事件的土地划拨时空数据库若干思考[J].测绘学报,2000,(01).
    [142]赵炯,张树京,熊肖磊.自动化立体仓库中载人联机可视化拣选方案及其性能分析[J].制造业自动化,2001,(12):37-41.
    [143]赵铮,马燕宁,魏敏敏.RFID技术在自动立体仓库系统中的应用[J].可编程控制器与工厂自动化,2010,(10):101-103+107.
    [144]边远达.基于B/S模式的仓库管理信息系统的设计和实现[J].软件导刊,2008,(03):5-7.
    [145]邬星根,李莅.仓储与配送管理[M].上海:复旦大学出版社,2005.
    [146]邹生,何新华.物流信息化与物联网建设[M].北京:电子工业出版社,2010.
    [147]郑扣根,余青怡,潘云鹤.基于事件对象的时空数据模型的扩展与实现[J].计算机工程与应用,2001,(03):45-47.
    [148]郑克俊.仓储与配送管理[M].北京:科学出版社,2010.
    [149]陈惠群,李华雄.RFID技术在自动化立体仓库中的应用设计[J].河南科技大学学报(自然科学版),2010,(03):37-40.
    [150]陈曦,傅明.GIS环境下的物流配送中心选址模型与算法研究[J].计算技术与自动化,2001,(04):6-9.
    [151]陈军,陈尚超,唐治锋.用非第一范式关系表达GIS时态属性数据[J].武汉测绘科技大学学报,1995,(01):12-17.
    [152]陈静,吴迅舟.WinCC在自动化立体仓库监控系统中的应用[J].起重运输机械,2010,(10):79-80.
    [153]韦恒,熊健.物流学[M].北京:清华大学出版社,2007.
    [154]顾绍元,李华庆.仓库管理信息系统的设计与实现[J].上海铁道大学学报,1996,(04).
    [155]马金平,陈伟.基于网络运动控制器的立体仓库控制系统的设计[J].自动化博览,2006,(02):82-84.
    [156]马涛.基于RFID的自动化立体仓库作业调度与监控系统研究[D].沈阳工业大学2008.
    [157]鲁晓春,詹荷生.关于配送中心重心法选址的研究[J].北方交通大学学报,2000,(06):108-110.
    [158]黄杏元.地理信息系统概论[M].北京:高等教育出版社,2001:136-139.
    [159]黄明智,张祖勋.NINF时态数据库及其更新操作[J].武汉测绘科技大学学报,1996,(02):139-144.
    [160]黄明智,张祖勋.时空数据模型的N1NF关系基础[J].测绘学报,1997,(01).
    [161]黄学飞,梁艺忠,曹玉华.PLC和触摸屏在自动化立体仓库系统地面控制台上应用[J].工业控制计算机,2007,(06):79-80.
    [162]龚健雅.GIS中面向对象时空数据模型[J].测绘学报,1997,(04).
    [163]龚健雅.当代GIS的若干理论与技术[M].武汉:武汉测绘科技大学出版社,1999.
    [164]龚雄文.基于RFID的立体仓库实训装置[J].科技信息,2010,(21):102-105.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700