CO_2与环氧丙烷不对称环加成反应催化体系的设计与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了一系列以(R,R)-1,2-环己二胺为手性源衍生的手性Salen配体在CO_2与环氧丙烷不对称环加成反应中的应用。
     合成了一系列烷基、卤素和硝基取代的手性Salen配体,分别与Co(Ac)_2形成SalenCo(Ⅱ)配合物,再由不同的酸性基团氧化得到SalenCo(Ⅲ)配合物,原位用于CO_2和环氧丙烷的环加成反应。通过手性气相色谱柱测定了产物碳酸丙烯酯的e.e.值;环氧丙烷的e.e.值经SalenAlEt/n-Bu_4NI催化活化与CO_2环加成转化为碳酸丙烯酯后测定。
     在季铵盐(n-Bu_4NY)存在下,SalenCo(Ⅲ)X可以使得CO_2与环氧丙烷的环加成反应在常温下有效进行。n-Bu_4NY中的Y~-对反应速率和产品对映选择性影响较大。以n-Bu_4NCl为助催化剂时,反应速率较低,但对映选择性最好。SalenCo(Ⅲ)X中的轴向基团X—对催化剂的活性及产品的对映选择性也影响较大,空间位阻大的基团有利于不对称诱导。手性Salen配体中苯环上取代基对催化剂的性能也有影响。降低温度会使催化剂活性减弱,但可以促进不对称诱导。在Co、Cr、Mn等金属配合物中,Co配合物的催化效果最佳。
A series of chiral Salen ligands derived from (7)-l,2-diaminocyclohexane, were employed in asymmetric cycloaddition of propylene oxide with CO2.
    A series of alkyl-, halo- and nitro-substituted chiral Salen ligands were prepared. SalenCo( II) complexes derived from the reaction of chiral Salen ligands and Co(OAc)2 were oxidized by different acid groups to form SalenCo (III) complexes, which were employed in asymmetric cycloaddition of propylene oxide with CO2. The e.e. value of propylene carbonate was determined by GC with a chiral chromato-graphic column; and the e.e. value of unreacted propylene oxide was determined after it was transformed into propylene carbonate by reaction with CO2 using SalenAlEt/ n-Bu4NI as catalyst.
    It was found that the chiral SalenCo(III)X complexes could effectively catalyze the cycloaddation reaction of CO2 with epoxides only in the presence of quaternary ammonium halides(-Bu4NY) at room temperature. The anion Y of n-BuNY in the binary catalyst systems has a great effect on enantiomeric purity and reaction rate. It seems that the use of -Bu4NCl was more beneficial for improving enantiomeric purity of the products, but had a pronounced negative effect on the rate. The axial X-group of chiral SalenCo(III)X complexes also affect enantiomeric purity of the resulted propylene carbonate and propylene oxide. A sterically bulky axial X-group is more beneficial for high enantioselectivity in this reaction. The performance of catalyst is also affected by the substituent on the aromatic rings of chiral Salen ligands. The decrease of reaction temperature is effective for improving enantiomeric purity of the products, but resulting in significant decrease in catalytic activity. Among the synthesized chiral metal
    -Salen complexes(such as chromium, manganese and cobalt), SalenCo(III)X complexes are more effective in catalytic activity as well as enantioselectivity.
引文
[1] 陈长虹,鲍仙华.全球能源消费与CO_2排放量.上海环境科学,1999,18(2):62-64
    [2] 王绍武,龚道溢.对气候变暖问题争议的分析.地理研究,2001,20(2):153-160
    [3] 李昆瑜.CO_2的应用及产品开发.天然气化工(C1化学与化工),1996,21(3):40-43
    [4] 曲格平.关于我国参加联合国环境与发展大会的情况报告—迈向21世纪.北京:中国环境科学出版社.1992.
    [5] 周忠清.二氧化碳催化还原成碳的发展.精细石油化工,1994,(4):92-96
    [6] 顾蕊瑛,李颖华.CO_2资源的综合利用.湖北化工,1993,(2):33-35
    [7] 李虎田,李智超,李赫亮.CO_2气体保护焊镀铜焊丝缓蚀处理试验研究.表面技术,2001,30(2):3-5
    [8] 李淑芬,陈宝良,韩金玉.超.临界CO_2萃取天然产品的特性研究.化工进展,1997,(2):10-14
    [9] 谈士海,张文正.非混相CO_2驱油在油田增产中的应用.石油钻探技术,2001,29(2):58-59
    [10] Aresta M.. Perspectives of carbon dioxide utilisation in the synthesis of chemicals. Coupling chemistry with biotechnology. Stud. Surf. Sci. Catal., 1998, 114: 65-76
    [11] Dean C. W.. Cyclic carbonate functional polymers and their applications. Progr. Org. Coat., 2003, 47(1): 77-86
    [12] Alicja W., Lech C.. A coMParison of acid-base properties of substituted pyridines and their N-oxides in propylene carbonate. J. Chem. Thermodynamics, 1998, 30(6): 713-722
    [13] Wei T., Wang M., Wei W., Sun Y.H., Zhong B.. Effect of base strength and basicity on catalytic behavior of solid bases for synthesis of dimethyl carbonate from propylene carbonate and methanol. Fuel Process. Technol., 2003, 83(1-3): 175-182.
    [14] 钟明秀.碳酸丙烯酯复合溶剂研究.化学工程,1999,27(2):51-53
    [15] Le Q. H., Yan S., Tu J. L.. A new complex absorbent used for improving propylene carbonate absorbent for carbon dioxide removal. Sep. Purif. Technol., 1999, 16(2): 133-138
    [16] 陈卫祥,杨兰生,单志强,邹建梅,刘黎.全固态锂电池用聚合物电解质的研究.电源技术,1996,20(2):50-54
    [17] Wolfenstine J., Shictman M., Read J., Foster D., Behl W. The effect of the Mn-ion oxidation state on propylene carbonate decomposition. J. Power Sources, 2000, 91(2): 118-121
    
    
    [18] 朱宏,陈立班,江英彦.均相催化剂催化合成碳酸丙烯酯.天然气化工(C1化学与化工),1997,22(1):9-11
    [19] 陶洪连,黄敏.碳酸丙烯酯脱碳装置技术改造小结.化学工业与工程技术,2002,23(5):27-29
    [20] Hou X.-P., Kok S. S.. Ionic conductivity and electrochemical characterization of novel interpenetrating polymer network electrolytes. Solid State Ionics, 2002, 147(3-4): 391-395
    [21] Behr A.. Carbon dioxide Activation by Metal Complex. New York: VCH Publishers. 1988, 91-93
    [22] Rokicki A., Kuran W., Marcinick B.P.. Cyclic carbonates from carbon dioxide and oxiranes. Monatsch. Chem., 1984, 115(2): 205-214
    [23] 江琦,黄仲涛.CO_2与环氧丙烷环加成的催化剂及反应工艺研究.天然气化工(C1化学与化工),1996,21(6):2-24
    [24] Kihara N., Hara N., Endo T.. Catalytic Activity of Various Salts in the Reaction of 2, 3-Epoxypropyl Phenyl Ether and Carbon Dioxide under Atmospheric Pressure. J. Org. Chem., 1993, 58(23): 6198-6202
    [25] Krasimir K., Neli K., Kolio T.. Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide to oxiranes. J. Mol. Catal. A: Chem., 2003, 194: 29-37
    [26] Nishikubo T., Kameyama A., Yamashita J., Tomoi M., Fukuda W.. Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide. J. Polym. Sci., Part A: Polym. Chem., 1993, 31(4): 939-947
    [27] Matsuda H., Ninagawa A., Nomura R.. Reaction of carbon dioxide with epoxides in the presence of pentavalent organoantimony compounds. Chem. Lett., 1979, (2): 1261-1262
    [28] Nomura R., Ninagawa A., Matsuda H.. Synthesis of cyclic carbonates from carbon dioxide and epoxides in the presence oforganoantimony compounds as novel catalysts. J. Org. Chem., 1980, 45(19): 3735-3738
    [29] Nomura R., Kimura M., Teshima S., Ninagawa A., Matsuda H.. Direct synthesis of cyclic carbonates in the presence of organometallic compounds. Catalyses of systems from Group ⅣA, ⅤA, and ⅥA compounds and a Lewis base. Bull.Chem. Soc. Jpn., 1982, 55(10): 3200-3203
    
    
    [30] Baba A., Nozaki T., Matsuda H.. Carbonate Formation from Oxiranes and Carbon Dioxide Catalyzed by Organotin Halide-Tetraalkylphosphonium Halide Complexes. Bull. Chem. Soc. Jpn., 1987, 60(4): 1552-1554
    [31] Koinuma H., Hirai H.. Copolymerization of caron dioxide and some oxiranes by organoaluminum catalysts. Makromol. Chem., 1977, 178(5): 1283-1294
    [32] Aida T., Inoue S.. Activation of Carbon Dioxide with Aluminum Porphyrin and Reaction with Epoxide. Studies on (Tetraphenylporphinato) aluminum Alkoxide Having a long Oxyalkylene Chain as the Alkoxide Group. J. Am. Chem. Soc., 1983, 105(5): 1304-1309
    [33] Takeda N., Inoue S.. Activation of carbon Dioxide by Tetraphenylporphinato aluminum Mcthoxide. Reaction with Epoxide. Bull. Chem. Soc. Jpn., 1978, 51(2): 3564-3567
    [34] Kasuga K., Nagao S., Fukumoto T., Handa, M.. Cycloaddition of carbon dioxide to propylene oxide catalysed by tctra-t-butylphthalocyaninatoaluminium(Ⅲ) chloride. Polyhedron., 1996, 15(1): 69-72
    [35] Kasuga K., Moriwaki N., Handa, M.. Reaction of carbon dioxide with tetra-t-butylphthalocyaninato-aluminium(Ⅲ)-ethylate or-ethoxide. Inorg. Chim. Acta., 1996, 244(1): 137-139
    [36] Ji D.F., Lu X.B., He R.. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst. Appl. Catal. A: General, 2000, 203: 329-333
    [37] Lu X.B., Wang H., He R.. Aluminum phthalocyanine complex covalently bonded to MCM-41 silica as heterogeneous catalyst for the synthesis of cyclic carbonates. J. Mol. Catal. A: Chem., 2002, 186: 33-42
    [38] Allen S.D., Moore D.R., Lobkovsky E.B., Coates. G.W.. High-Activity, Single-Site Catalysts for the Alternating Copolymerization of CO_2 and Propylene Oxide. J. Am. Chem. Soc., 2002, 124, 14284-14285
    [39] Kim J.S., Re.e.M., Shin T. J., Han O. H., Cho S. J., Hwang Y.-T., Bae J. Y., Le.e.J.M., Ryoo R., Kim H.. X-ray absorption and NMR spectroscopic investigations of zinc glutarates prepared from various zinc sources and their catalytic activities in the copolymerization of carbon dioxide and propylcne oxide. J. Catal., 2003, 218: 209-219
    [40] Quan Z., Wang X.H., Zhao X.J., Wang F.S.. Copolymerization of CO_2 and propylene oxide under rare earth ternary catalyst: design of ligand in yttrium complex. Polymer, 2003,
    
    44(19): 5605-5610
    [41] Kisch H., Millini R., Wang I.. Bifunktionelle Katalysatoren zur Synthese cyclischer Carbonate aus Oxiranen und Kohlendioxid. Chem.Ber, , 1986, 119: 1090-1093
    [42] Dumlei W., Kisch H., Bifunktionelle Katalyse der Reaktion yon Kohlendioxid mit Oxiranen. Chem. Ber., 1990, 123: 277-283
    [43] Kim H. S., Kim J. J., Le.e.B.G., Jung O. S., Jang H. G., Kang S. O.. The First Isolation of Pyridinium Alkoxy Ion-bridged Dimeric Zinc Complex for the Coupling Reaction of CO_2 and Epoxides. Angew. Chem. Int. Ed. Engl., 2000, 39: 4096-4098
    [44] Hoon S. K., Jai J.K., Hyeck N. K., Moon J. C., Byung G. L., Ho G.J.. Well-Defined Highly Active Heterogeneous Catalyst System for the Coupling Reactions of Carbon Dioxide and Epoxides. J. Catal., 2002, 205: 226-229
    [45] Hoon S. K., Jai J. K., Honggon K, , and Ho G.J.. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO_2 and ethylene oxide or propylene oxide. J. Catal., 2003, 220: 44-46
    [46] Ralph J. D. P.. Unusual catalysis with nickel(0) complexes. J. C. S., Chem. Comm., 1973, (5): 157-158
    [47] Jan E.B., Ola K. Stig O. L.. Stereochemistry of copper- and nickel-catalyzed insertion of carbon dioxide into epoxides. A microwave study. Tetrahedron Lett., 1980, 21(51): 4985-4988
    [48] Fujinami T., Suzuki T., Kamiya M., Fuzawa S., Sakai S.. Palladium catalyzed reaction of butadiene monoxide with carbon dioxide. Chem. Lett., 1985, (2): 199-200
    [49] Trost B.M., Angle A.R.. Palladium-mediated vicinal cleavage of allyl epoxides with retention of stereochemistry: a cis hydroxylation equivalent. J. Am. Chem. Soc., 1985, 107(21): 6123-6124
    [50] Patricia T. Elisabet D.. Novel electrochemical reactivity of Ni(cyclam)Br_2: catalytic carbon dioxide incorporation into epoxides. J. Chem. Soc., Chem. Comm., 1995, (1): 43-44
    [51] Aye K.T. Gelmini L., Payne N.C., Vittal J.J., Puddephatt R.J.. Stereochemistry of the oxidative addition of an epoxide to platinum(Ⅱ): relevance to catalytic reactions of epoxides. J. Am. Chem. Soc., 1990, 112(6): 2464-2465
    [52] Aresta M., Quaranta E., Ciccarese A.. Direct synthesis of 1, 3-benzodioxol-2-one from
    
    styrene, dioxygen and carbon dioxide promoted by Rh(Ⅰ). J. Mol. Catal., 1987, 41(3): 355-359
    [53] Hattori H.. Heterogenous Basic Catalysis. Chem. Rev. 1995, 95(3): 537-538
    [54] Molander G. A., Application of Lanthanide Reagents in Organic Synthesis. Chem. Rev., 1992, 92: 29-68
    [55] Hiroyuki Y., H. L.-N., Toshiyasu S.. Cyclic Carbonate Synthesis from Supercritical Carbon Dioxide and Epoxide over Lanthanide Oxychloride. J. Catal., 2002, 209: 547-550
    [56] Welton T.. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev., 1999, 99(8): 2071-2084
    [57] Zhao D., Wu M.. Kou Y., Min E.. Ionic liquids: applications in catalysis. Catal. Today., 2002, 74(1-2): 157-189
    [58] 彭家建,邓友全.室温离子液体催化合成碳酸丙烯酯.催化学报,2001,22(6):598-600
    [59] Nomura R., Kimura M., Teshima S., Ninagawa A. Matsuda H.. Direct synthesis of cyclic carbonates in the presence of organometallic compounds. Catalyses of systems from Group ⅣA, ⅤA, and ⅥA compounds and a Lewis base. Bull. Chem. Soc. Jpn., 1982, 55(10): 3200-3203
    [60] Hajime A., Akiyoshi A., Keitaro A., Yutaka K.. A rapid and effective synthesis of propylene carbonate using a supercritical CO_2 onic liquid system. Chem. Commun., 2003 (7): 896-897
    [61] Alessandro B., Raimondo M., Alessandro M., Giovanni M., Giovanni S., Raffaella S.. Cycloaddition of CO_2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett., 2003, 44(14): 2931-2934
    [62] Michele A., Angela D., Libero G., Carlo P.. Nb(V) compounds as epoxides carboxylation catalysts: the role of the solvent. J. Mol. Catal. A: Chem., 2003, 204-205: 245-252
    [63] Takashi Y., Hideo M., Takahiro K., Hiroyasu I., Hisashi F., Masakuni Y. Toshihisa M.. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide withretention of stereochemistry. Chem. Commun., 1997, 12: 1129-1130
    [64] Yamaguchi K., Ebitani K., Yoshida T., Yoshida H., Kaneda K.. Mg-Al Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides. J. Am. Chem. Soc., 1999, 121(18): 4526-4527
    [65] Sorana L., Katherine W., Mandelin P., Benny A. Rick W.. Geometric requirements for the
    
    photolysis of aryloxiranes and cyclic carbonate esters. Tetrahedron Lett., 2002, 43(7): 1169-1170
    [66] Hiroyuki U., Motomu K. Masakatsu S.. Studies toward the total synthesis of garsubellin A: synthesis of 8-deprenyl-garsubellin A. Tetrahedron Lett., 2002, 43(20): 3621-3624
    [67] Jegham S., Nedelec A., Bumier P., Guminski Y., Puech F., Koenig J.J., George P.. Use of Chiral Glycerol 2, 3-Carbonate in the Synthesis of 3-Aryl-2- oxazolidinones. Tetrahedron Lett., 1998, 39(25): 4453-4454
    [68] Kolb H.C., VanNieuwenhze M.S. Sharpless K.B.. Catalytic Asymmetric Dihydroxylation. Chem. Rev., 1994, 94(8): 2483-2547
    [69] Scott E. S., Bridget D. B., Jay F. L., Makoto T., Karl B. H., Alexandra E.G., Michael E. F., and Eric N. J.. Highly Selective Hydrolytic Kinetic Resolution of Terminal Epoxides Catalyzed by Chiral (salee)CoⅢ Complexes. Practical Synthesis of Enantioenriched Terminal Epoxides and 1, 2-Diols. J. Am. Chem. Soc., 2002, 124(7): 1307-1315
    [70] Patrick B. Michael I. P.. The resolution of racemic 1, 2-diols by the esterase catalysed hydrolysis of the corresponding cyclic carbonate. Tetrahedron, 1992, 48(36): 7731-7734
    [71] Alexander J., Bindra D. S., Glass J. D., Holahan M. A., Renyer M. L., Rork G. S., Stiko G., Matsumoto K., Fuwa S., Kitajima H.. Tetrahedron Lett., 1995, 36(36): 6499-6502
    [72] Sun C. Q., Peter T.W.C., Jay S., Tamara D., Baerbel B., Tammy C. W., Jeffrey A. R. and Michael A.P.. A general synthesis of dioxolenone prodrug moieties. Tetrahedron Lett., 2002, 43(7): 1161-1164
    [73] Kazutsugu M., Youichi S., Megumi S. Minoru H.. Highly enantioselective preparation of C_2-symmetrical diols: microbial hydrolysis of cyclic carbonates. Tetrahedron: Asymmetry, 2000, 11(9): 1965-1973
    [74] Kazutsugu M., Yasuhide N., Megumi S. Minoru H.. Enzyme-mediated enantioselective hydrolysis of cyclic carbonates bearing an unsaturated substituent. Tetrahedron Lett., 2002, 43(39): 6933-6936
    [75] Megumi S., Kazutsugu M. Minoru H.. Enzyme-Mediated Preparation of Optically Active 1, 2-Diols Bearing a Long Chain: Enantioselective Hydrolysis of Cyclic Carbonates. Tetrahedron, 2000, 56(47): 9281-9288
    [76] 吕小兵,张华,何仁.超临界条件下碳酸乙烯酯的均相催化合成.高等学校化学学报,
    
    2002,23(12):2309-2312
    [77] Lu X.B., Feng X.J., He R.. Catalytic formation of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture with tetradentate Schiff-base complexes as catalyst. Appl. Catal. A: General, 2002, 234: 25-33
    [78] Lu X.B., He R., Bai C.X.. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst. J. Mol. Catal. A: Chem., 2002, 186: 1-11
    [79] 吕小兵,张英菊,梁斌,王辉.温和条件下合成环状碳酸酯的高活性催化剂.CN 1416952A
    [80] Lu X.B., Zhang Y.J., Liang B., Wang H. He R.. Chemical Fixation of CO_2 to Cyclic Carbonates under Mild Conditions with a Novel Binary Catalysts.催化学报, 2003, 24(5): 317-318
    [81] Lu X.B., Zhang Y.J., Liang B., Li X., Wang H.. Chemical fixation of carbon dioxide to cyclic carbonates under extremely mild conditions with highly active bifunctional catalysts. J. Mol. Catal. A: Chem., 2004, 210: 31-34
    [82] Brandes B.D., Jacobsen E.N.. Enantioselective Catalytic Epoxidation of Tetrasubstituted Olefins. Tetrahedron Lett., 1995, 36(29): 5123-5126
    [83] Lebel H., Jacobsen E.N.. Chromium catalyzed kinetic resolution of 2, 2-disubstituted epoxides. Tetrahedron Lett., 1999, 40(41): 7303-7306
    [84] Yao X.Q., Chen H.l., Lu W.r., Pan G.z., Hu X.q., Zheng Z.. Enantioselective epoxidation of olefins catalyzed by two novel chiral poly-salen-Mn(Ⅲ) complexes. Tetrahedron Lett., 2000, 41: 10267-10271
    [85] Yuri N.B., Susana C.-C., Brendan G., Nicolai S.I., Viktor N.K., Vladimir S.L., Margarita A.M., Michael N., Charles O., Vitali I.T., Michela T., Galina I.T., Lidia V.Y.. The Asymmetric Addition of Trimethylsilyl Cyanide to Aldehydes Catalyzed by Chiral (Salen)Titanium Complexes. J. Am. Chem. Soc., 1999, 121(16): 3968-3973
    [86] Schaus S.E., Brnalt J., Jacobsen E. N.. Asymmetric Hetero-Diels-Alder Reactions Catalyzed by Chiral (Salen)Chromium(lⅢ)Complexes. J. Org. Chem., 1998, 63: 403-405
    [87] White D. E., Jacobsen E. N.. New oligomeric catalyst for the hydrolytic kinetic resolution of terminal epoxides under solvent-fre.e, conditions. Tetrahedron: Asymmetry, 2003(14):

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700