二级吸收式热变换器比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前在工业生产、尤其是石化行业生产中,存在大量的低温余热,而其中的大部分还可以被回收利用。实际中通常的做法是将这些废热直接排向自然环境。这不仅将污染我们所赖以生存的环境,对其造成热污染,而且还是能源的极大浪费,尤其是对我们这样一个能源紧缺的国家来说。
     针对如上所述的实际用能情况,本文对三种循环方式的二级吸收式热变换器进行了研究,以分析用其回收这些余热的可行性。文中建立了这三种循环方式的二级吸收式热变换器的数学模型,并将一种新的制冷工质TFE/TEGDME用于这些系统。文章中分析了热源温度、热源在系统中的温降、对外供热温度、冷却水温度、循环放气范围等的变化对系统热回收量和回收品质的影响。
     计算结果显示,在所计算的三种方式的循环中、在所研究的参数变化范围内,高低型循环的COP大体维持在0.32~0.34的范围内、COE大体维持在0.53~0.6的范围内,并联型循环的COP大体维持在0.29~0.32的范围内、COE大体维持在0.48~0.53的范围内,而低高型循环的COP与温升是一对很尖锐的矛盾:温升在60℃左右时,COP只有0.1左右,而要达到较高的COP时,温升只能达到很低的30~40℃。
     由此可以得出结论,在回收废热方面,从热力学角度来看,高低型二级热变换器具有很好的应用价值,并联型相对一般,而低高型根本不具有实际应用价值。
There is a great amount of waste heat in industry, especially in petrol industry, most of which could be used again. In practice, it is output into the environment directly. This not only does harm to the environment by heat pollution, but also waste the heat. So to recover the heat is very important, especially for China, a country lack of energy.
    According to the fact as described above, three cycles of two-staged AHT are studied. The mathematic models of them are founded and computed with the new working pairs TFE/TEGDME. The effects of heat source temperature, temperature drop of heat source in systems, output temperature, temperature of cooling water, concentration range of cycle on the quantity and quality of recovered heat are analyzed in the paper.
    The results show that in the three cycles, in the concerned range of parameters, COP of the high-low cycle ranges between 0.32 and 0.34, COE ranges between 0. 53 and 0. 6. And COP of the parallel cycle ranges between 0. 29 and 0. 32, COE ranges between 0. 48 and 0. 53. As to the low-high cycle, its COP and temperature lift conflict with each other sharply. When temperature lift reaches 60癈, its COP is as low as 0. 1. And when COP reaches 0.3, temperature life is as low as 30 or 40.
    From the view of thermodynamics, conclusions can be drawn that the high-low cycle is good to be used to recover waste heat, the parallel cycle is not relatively, and the low-high cycle is not at all.
引文
[1] 赖盛刚.低温余热技术调查与分析.炼油设计,1989(4);
    [2] 唐肇熙,刘克福,党洁修.热泵的开发和应用.成都大学学报(自然科学版),1995,14(2):33-42
    [3] Keay D A. Heat pump research and development in USA. J Heat Recover System, 1983, 3(3):165-172
    [4] Uddholm H, Setterwall F. Model for dimensioning a falling film absorber in an absorption heatpump. Int. J. of Refrig., 1988, 11(1):41~45
    [5] 田宫靖功.吸收式热泵节能技术.国外油田工程,1998,6:34~35
    [6] Narodoslawsky M, Otter G, Moser F. Thermodynamic criteria for optimal absorption heat pump media. Heat Recovery Systems & CHP, 1988, 8(4): 221~233
    [7] G Aly, K Abrahasson. Application of absorption heat transformers for energy conservation in the chemical industry. J. of Energy Research, 1993,17:571~582
    [8] Huntiey W R. Performance test results of an absorption heat pump. Report ORNL/TM-9072
    [9] Oasraw A M S, Treece R J, Blakeley R E. The design and development of an absorption cycle heat pump optimized for achievement of maximal coefficient of performance. Applied Heat Energy, 1994, 56(4):34~42
    [10] 郭开华等,高效吸收系统的基础研究.动力工程,1993,23(2):12~18
    [11] 黄华民,李诚昆,高效吸收式热泵模拟装置研制和试验.制冷技术,1990,1:34~39
    [12] 郭开华,梅建斌.双温升溴化锂吸收式热变换器的计算机模拟研究.制冷,1991,4:5~11
    [13] 钟理等.第二类二级吸收式热泵循环及性能分析.流体工程,1992,12:23~27
    [14] 钟理等.水/乙二醇高温吸收式热泵系统的模拟分析,制冷,1990,3:11~15
    
    
    [15] 钱明等.高温吸收式热泵研究动态.制冷技术,1989,1:32~36
    [16] 毛本平等.小型无泵循环溴化锂吸收式空调机开发和研究.制冷,1993,3:5~9
    [17] Phillips B A. Development of a high-efficiency gas-fired absorption heat pump for residential and small commercial applications, Phase Ⅰ final report. Analysis of advanced cycles and selection of the preferred cycle. ORNL/Sub/86-24610, Oak Ridge National Laboratory, Oak Ridge, TN., 1990
    [18] Engler M et al. Comparative Simulation and Investigation of Ammonia-water Absorption Cycles for Heat Pump Applications. Proceedings of the International Absorption Heat Pump Conference, Canada, 1996:209~219
    [19] Erickson D C. Branched GAX Absorption Vapor Compressor. U. S. Patent. No. 5024063, 1991
    [20] Erickson D C. Vapor Exchange Duplex GAX Absorption Cycle, U. S. Patent, No. 5097676,1992
    [21] Erickson D C et al. VX GAX Cycle Development. Proceedings of the International Absorption Heat Pump Conference, Canada, 1996:805~815
    [22] Erickson D C et al. Evaluation of Double-Lift Cycles for Waste Heat Powered Refrigeration. Proceedings of the International Absorption Heat Pump Conference, Canada, 1996:161~168
    [23] Staicovici M D. Polybranched Regenerative GAX Cooling Cycles. International Journal of Refrigeration, 1995, 18(5): 318~329
    [24] 周锦生,陆震,曹卫华.高效吸收式热泵的GAX技术及市场展望.流体机械,1998,27(7):57~61
    [25] J.W.J.Bouma(耿惠彬译).热泵技术的国际发展趋势,制冷技术,1998,3
    [26] Peres-Blanco H. Conceptual design of a high-efficiency absorption cooling cycle. Int. J. Reffif, 1993, 16(6), 429~433
    [27] DeVault R C, Marsala J. Ammonia-water triple-effect absorption cycle. ASHRAE Trans, 1990, 96(Part Ⅰ), 676~682
    [28] 陆震.吸收式制冷(热泵)循环的发展和环境保护.制冷技术,1996,1
    [29] 齐凤森.溴化锂吸收式制冷机应用及经济分析.制冷,1995,2:8~13
    [30] Wardono. B., Nelson. R.. Simulation of a double-effect LiBr/H20 absorption cooling system. Fuel and Energy, 1997, 38(4):262~267
    [31] Jeong Siyoung, Garimella Srinivas. Falling-film and drop mode heat and mass transfer in a horizontal tube LiBr/water absorber. Int. J. of Heat and Mass Transfer,2002,45(7):1445~1458
    
    
    [32] Jeong. Siyoung, Lee. Sang-Kyun, Kee-Kahb. Pumping characteristics of a thermosyphon applied for absorption refrigerators with working pair of LiBr/water. Applied Thermal Engineering, 1998, 18(12):1309~1323
    [33] Tufano, Vincenzo. Simplified criteria for the development of new absorptionworking pairs. Applied Thermal Engineering, 1998, 18(3-4) :171~177
    [34] Jiangzhou. S, Wang. R.Z. Experimental research on characteristics of corrosion-resisting nickel alloy tube used in triple-effect LiBr/H20 absorption chiller. Applied Thermal Engineering, 2001, 21(11):1161~1173
    [35] 金晶,冯明志.强化传热技术在溴化锂吸收式制冷机上的应用.北京节能,1994,5:9~13
    [36] 杨勇,陈秉倪等.钼酸锂的制备及缓蚀试验.无机盐工业,1997,5:33~35
    [37] 刘存芳,赵新明.蒸汽双效溴化锂吸收式制冷剂的新流程.节能,2000,2:24~27
    [38] 宁勇飞,李贵阳.双效溴化锂流程计算及分析.南华大学学报(理工版),2001,15(1):35~38
    [39] 寥骥.氨/水吸收式制冷机中精馏问题的探讨.福州大学学报(自然科学版),1994,1:33~37
    [40] Ziegler F, Alefeld G. Coefficient of performance of multistage absorption cycles. Int. J. Refrig., 1987, 10: 285~295
    [41] Alberto Coronas, Manel Valles et al., Absorption heat pump with the TFE-TEGDME and TFE-H_2O-TEGDME systems, Applied Thermal Engineenng, 1996, 16(4)
    [42] Yin. Juan, Shi Lin, Zhu Ming-Shan. Performance analysis of an absorption heat transformer with different working fluid combinations, Applied Energy, 2000, 67(3):281~293
    [43] Ziegler F et al. Multi-effect absorption chillers. Int. Refrig., 1993, 16(5): 301-311
    [44] 马一太,陶建军.HFC类混合物替代R22的热力学研究.制冷学报,1995,2:14~17
    [45] 吴孟余,周高峰,庞立东.制冷工质R22替代R12的试验研究.工程热物理学报,1995,16(4):397~400
    [46] 尹娟,史琳,朱明善.不同工质对对吸收式变热器热力性能的影响.制冷学报,2000,3:19~24
    
    
    [47] C.Z.Zhuo, C.H.M.Machielsen. Thermophysical Propertles of the Trifluorothanol-Pyrrolidone System for Absorption Heat Transformers.Rev. Int.Froid.,1993,16(5):357~363
    [48] 徐士鸣,任国红,陈石.TFE-TEGDME吸收式制冷/热泵工质物性参数表达式.大连理工大学学报.2002,42(1):60~64

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700