迟缓爱德华氏菌弱毒疫苗的研制和免疫效果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
迟缓爱德华氏菌(Edwardsiella tarda)可引起鱼类的爱德华氏菌病(Edwardsiellosis),导致出血性败血症。疫苗免疫是预防鱼类病害的重要手段。弱毒疫苗可有效刺激机体系统免疫应答,通过浸泡、口服途径提供有效的免疫保护,实用而高效。以弱毒疫苗为载体可研制鱼类多价疫苗。本研究构建了迟缓爱德华氏菌LSE40的多株基因缺失株,筛选了11株弱毒株并检测它们对鱼的免疫保护效果。初步鉴定了LSE40III型分泌系统(T3SS)效应蛋白EseG的分泌信号肽,为进一步以迟缓爱德华氏菌T3SS为异源抗原呈递途径构建弱毒迟缓爱德华氏菌疫苗载体,进而研制鱼类多价疫苗奠定基础。
     一、迟缓爱德华氏菌LSE40ΔaroA突变株的特征及免疫效果
     LSE40ΔaroA突变株缺失了编码5-烯醇丙酮莽草酸-3-磷酸合成酶基因aroA。该突变株的细菌形态变长、分裂延迟,在TSB培养基的生长变慢、运动力和菌膜形成能力减弱,在DMEM培养基中不能自凝、3个T3SS输送器蛋白(EseB,EseC, EseD)的表达和分泌减弱,在鱼体内的存活能力下降,对鱼的毒力减弱。将LSE40ΔaroA以注射和浸泡途径免疫大菱鲆,可检测到免疫鱼的血清产生特异抗体,但免疫鱼不能抵抗致病性迟缓爱德华氏菌的感染。
     二、迟缓爱德华氏菌LSE40基因缺失株的构建及其毒力检测
     以迟缓爱德华氏菌LSE40的7个与毒力或营养相关基因(腺苷酸基琥珀酸合成酶编码基因purA,天冬氨酸-β-半醛脱氢酶编码基因asd,5-烯醇丙酮莽草酸-3-磷酸合成酶aroA,T3SS调节蛋白编码基因esrB和装置蛋白编码基因esaC,T6SS装置蛋白编码基因evpH,RNA聚合酶sigma S调节蛋白编码基因rpoS)为靶基因,构建了2株单基因缺失株: LSE40ΔpurA,LSE40Δasd;7株双基因缺失株:LSE40ΔaroAΔesrB、LSE40ΔpurAΔesrB、LSE40ΔpurAΔaroA、LSE40ΔaroAΔesaC、LSE40ΔaroAΔrpoS、LSE40ΔaroAΔevpH、LSE40ΔesrBΔevpH;2株三基因缺失株: LSE40ΔaroAΔesrBΔevpH和LSE40ΔaroAΔesaCΔevpH。以蓝蔓龙检测LSE40ΔaroA和11株突变株的LD50,结果显示毒力下降了130-1000倍以上。
     三、迟缓爱德华氏菌弱毒株的免疫保护效果
     首先,以LSE40ΔaroA和11株弱毒株注射免疫蓝蔓龙鱼,发现LSE40ΔaroA、LSE40ΔaroAΔesaCΔevpH和LSE40ΔaroAΔesrBΔevpH三株弱毒株没有提供免疫保护;其他9株弱毒株提供21.7%-82.6%免疫保护率(RPS)。然后,取LSE40ΔaroA和有较高RPS的3株弱毒株LSE40ΔaroAΔesrB、 LSE40ΔaroAΔesaC和LSE40ΔaroAΔevpH浸泡免疫牙鲆,在免疫牙鲆的血清检测到特异性抗体效价,注射攻毒的RPS分别为0、45%、25%和20%,浸泡攻毒的RPS为0、100%、66.7%和66.7%。结果显示,LSE40ΔaroAΔesrB、LSE40ΔaroAΔesaC、LSE40ΔaroAΔevpH对牙鲆提供较好的免疫保护。最后,用LSE40ΔaroAΔesrB注射免疫大菱鲆,108和107cfu/ml免疫组的注射攻毒时免疫保护率分别为20%和10%,106cfu/ml免疫组不能提供免疫保护效果;以浸泡和口服途径免疫大菱鲆,均未能提供免疫保护。综合上述结果,弱毒疫苗对蓝蔓龙和牙鲆提供良好的免疫保护,对大菱鲆未提供免疫保护。
     四、迟缓爱德华氏菌T3SS效应蛋白分泌性信号肽的鉴定
     利用细菌的T3SS呈递异源抗原,可构建多价疫苗载体。本实验利用生物信息学方法预测分析LSE40T3SS效应蛋白EseG和输送器蛋白EseC的分泌性信号肽区域,构建待定分泌信号肽与内酰胺酶β-lactamase的融合表达载体,在迟缓爱德华氏菌表达,以westernblot检测融合蛋白的表达和分泌情况。结果显示,EseG的1-88aa具有分泌型信号肽的功能,为进一步研究以迟缓爱德华氏菌T3SS为异源抗原呈递途径打下基础。
Edwardsiella tarda can infect farmed fish and develop edwardsiellosis, anenterohaemorrhagic septicaemic disease which result in huge economic losses inaquaculture. Vaccine immunization is an effective approach to prevent E. tardainfection. Attenuated vaccine could stimulate systemic immune response in hostadministrated by the route of immersion or oral, which is use-easy and efficacy in fishaquaculture. Attenuated vaccine is also be used as a vaccine carrier for thedevelopment of the polyvalent vaccine. In this research, I constructed11E. tardamutants by in frame deletion method, and tested their virulence and immuneprotection in fish. For development of attenuated E. tarda as vaccine carrier, weidentified the secretion signal region of EseG, an effector of E. tarda type threesecretion system (T3SS).
     1Characterization and immune protection of E. tarda LSE40ΔaroA mutant
     aroA gene encodes5-enolpyruvylshikimate-3-phosphate synthase, which isessential in aromatic amino acid synthesis. We constructed the aroA mutant of E.tarda LSE40and characterized its several phenotypes. Results showed that cellmorphology of the LSE40ΔaroA mutant was elongated and its cell division wasdelayed. This mutant showed lower growth rate in DMEM, less biofilm formation andsmaller swarming diameter. The mutant failed to aggregate as well as to secret threeT3SS translocator proteins (EseB, EseC and EseD) when cultured in DMEM medium.The virulence of LSE40ΔaroA was attenuated in turbot (Scophthalmus maximus) fishaffected by intramuscular injection (i.m.) or immersion. Growth of the mutant wasalso attenuated in turbot. The vaccinated fish administrated by i.m. or immersionshowed high agglutination titres against E. tarda in sera, however, no immuneprotection was observed for both vaccinated groups of fish.
     2Construction and virulence determination of E. tarda gene deletion mutants
     Eleven E. tarda LSE40gene deletion mutant were constructed by in framedeletion, including two single-gene-knockout mutants: LSE40ΔpurA and LSE40Δasd, seven double-genes-knockout mutants: LSE40ΔaroAΔesrB, LSE40ΔpurAΔesrB,LSE40ΔpurAΔaroA, LSE40ΔaroAΔesaC, LSE40ΔaroAΔrpoS, LSE40ΔaroAΔevpHand LSE40ΔesrBΔevpH, and two triple-genes-knockout mutants:LSE40ΔaroAΔesrBΔevpH and LSE40ΔaroAΔesaCΔevpH. Gene aroA encodes5-enolpyruvylshikimate-3-phosphate synthase, purA, adenylosuccinate synthase, asd,aspartate-semialdehyde dehydrogenase, rpoS, RNA polymerase sigma factor S, evpH,T6SS apparatus, esrB, T3SS regulator and esaC, T3SS apparatus. Blue gourami(Trichogaster trichopterus) were used to determine the50%lethal dose (LD50) ofthese mutants. Results showed that, these mutants have LD50which was444-1000times higher than the wild type E. tarda LSE40, indicating that all mutants wereattenuated.
     3Vaccination and immune protection of E. tarda mutants
     Firstly, the immune protection of11mutants was evaluated in blue gourami bythe i.m. injection route. Results showed that two mutants, LSE40ΔaroAΔesaCΔevpHand LSE40ΔaroAΔesrBΔevpH did not showed detectable protection for fish; theremaining9mutants could protect blue gourami against wild type E. tarda infection,showing the relative percent of survival (RPS) ranging from21.7%to82.6%. Then,four mutants, LSE40ΔaroA, LSE40ΔaroAΔesrB, LSE40ΔaroAΔesaC, andLSE40ΔaroAΔevpH were evaluated for their immune protection in Japanese flounder(Paralichthys olivaceus) vaccinated by immersion route. Results showed that thespecific antibodies titres against E. tarda could be detected in the sera of vaccinatedfish. The RPS of the four mutants were0,45%,25%and20%against i.m. injectionchallenge of wild-type strain, and0,100%,66.7%and66.7%against immersionchallenge. The results showed that the LSE40ΔaroAΔesrB, LSE40ΔaroAΔesaC andLSE40ΔaroAΔevpH can provide good protection in flounder against wild-type E.tarda LSE40infection. Finally, the immune protection of LSE40ΔaroAΔesrB wasevaluated in turbot vaccinated by the route of immersion or i.m injection or oral.Results showed that immune protection could not be observed in the immersion andoral-vaccinated fish when challenged with wild-type E. tarda. The immune protectioncould be observed in the injection-vaccinated fish with doses of108and107cfu/ml,with RPS in20%and10%, respectively.
     4Identification the secretion signal of E. tarda T3SS effector
     The attenuated bacterial strains can be used as vaccine vectors for developmentof polyvalent vaccines. T3SS is a potential protein presenting system by delivering the foreign antigens into the host cell. In this study, the secretion signal peptide of T3SSeffector EseG and translocator EseC were predicted by bioinformatics analysis. Thepredicted regions for signal peptide were fused with reporter protein β-lactamase. Thefusion proteins were expressed in E. tarda and their secretion were detected bywesternblot. Result slowed that the N-terminal of1-88amino acid of EseG containedthe secretion signal peptide which could guide the secretion of fusion protein. Next,we will evaluate the potential of E. tarda T3SS as a foreign antigens delivery systemby the EseG signal peptide.
引文
白东清,陈成勋,朱国霞等.抗生素对迟钝爱德华氏菌的体外抑菌试验.安徽农业科学2010(3):1300-1302.
    蔡完其,孙佩芳,刘至治等.中华鳖爱德华氏菌病病原和组织病理研究.水产学报1997(2):428-433.
    陈翠珍.爱德华氏菌及鱼类爱德华氏菌病.河北科技师范学院学报.2004(8):70-76.
    陈言峰,邹记兴.20种中草药对迟缓爱德华氏菌的体外抑菌试验.水生态学杂志2011(32):110-113.
    邓显文,谢芝勋,刘加波等.罗非鱼迟缓爱德华氏菌的分离与鉴定.水生态学杂志2009(1):114-117.
    李杰,莫照兰,茅云翔等.两株养殖大菱鲆体表出血病原菌的分离鉴定.海洋科学2008(12):1-5.
    贺扬,张晓华.迟缓爱德华氏菌致病相关因子的研究进展.中国海洋大学学报自然科学版2009(5):979-987.
    李瑞,白东清,郭永军等.9种中草药及17种组方对迟钝爱德华氏菌的体外抑菌试验.水利渔业2008(28):114-116.
    李正花. III型分泌系统的研究进展.医学信息2008(2):2119-2122.
    欧阳志明,陈怀青,陆承平等.迟缓爱德华氏菌的粘附特性.南京农业大学学报1997(10):87-91.
    王波,莫照兰.迟缓爱德华氏菌及其致病机理.海洋科学集刊2007(5):133-139.
    汪莉,王玉民,岳俊杰等. III型分泌系统分子伴侣研究进展.微生物学报2004(4):840-844.
    王妍妍,李贵阳,李杰,肖鹏,莫照兰.迟缓爱德华氏菌OppA蛋白的免疫原性及免疫保护分析.海洋科学,2011(35):19-23.
    王印庚,秦蕾,张正等.养殖大菱鲆的爱德华氏菌病.水产学报2007(3):487-495.
    许龙,周晓巍,黄培堂等.致病岛及其分泌系统.生物技术通讯2006(1):614-617.
    薛淑霞,冯守明,孙金生等.海水工厂化养殖大菱鲆(Scophthalmus maximus)和褐牙鲆(Paralichthys olivaceus)腹水病病原菌的分离与鉴定.海洋与湖沼2006(3):548-554.
    杨佳银,莫照兰,茅云翔等.从迟缓爱德华氏菌基因组fosmid文库克隆编码寡肽透过酶的opp基因簇.海洋科学2008(12):13-19.
    杨茂成主编,兽医统计学.中国展望出版社,1990,232-234
    叶旭红,林先贵,王一明.养殖澳洲宝石鱼迟缓爱德华氏菌的分离鉴定及致病基因的检测.淡水渔业2010(1):50-54.
    张晓君,战文斌,陈翠珍等.牙鲆迟钝爱德华氏菌感染症及其病原的研究.水生生物学报2005(1):31-37.
    郑浚源,许黎黎,王启要等.鱼类致病性迟钝爱德华氏菌中多药抗性质粒pEIB202的消除.安徽农业科学2011(39):17944-17948.
    周常义,陈晓凤,何仲京等.牛蛙迟缓爱德华氏菌变异株K的分离与鉴定.集美大学学报2004(9):26-31.
    Anderson D M&Schneewind O. A mRNA signal for the type III secretion of Yopproteins by Yersinia enterocolitica. Science1997(278):1140-1143.
    Aoki T&Kitao T. Drug resistance and transferable R plasmids in Edwardsiella tardafrom fish culture ponds. Fish Pathol1981(15):277-281.
    Bartlett K H&Trust T J. Isolation of Salmonellae and other potential pathogens fromthe freshwater aquarium snail Ampullaria. Appl Environ Microbiol1976(3)635-639.
    Castro N, Toranzo A E, Nunez S, et al. Development of an effective Edwardsiellatarda vaccine for cultured turbot (Scophthalmus maximus). Fish Shellfish Immun2008(2):208-212.
    Chakraborty S, Sivaraman J, Leung K Y, et al. Two-component PhoB-PhoRregulatory system and ferric uptake regulator sense phosphate and iron to controlvirulence genes in type III and VI secretion systems of Edwardsiella tarda. J BiolChem2011(286):39417-39430.
    Charpentier X&Oswald E. Identification of the secretion and translocation domain ofthe enteropathogenic and enterohemorrhagic Escherichia coli effector Cif, usingTEM-1-β-lactamase as a new fluorescence-based reporter. J bacteriol2004(186):5486–5495.
    Chen J D&Huang S L. Hemolysin from Edwardsiella tarda strain ET16isolatedfrom eel Anguilla japonica identified as a hole-forming toxin. Fish Science1996(6):638-542.
    Chen S C, Tung M C, Lu C F, et al. Sensitivity in vitro of various chemotherapeuticagents to Edwardsiella tarda of pond cultured eels, COA Fisheries Series1984(1):100-106.
    Cheng S, Hu Y H, Zhang M, et al. Analysis of the vaccine potential of a naturalavirulent Edwardsiella tarda isolate. Vaccine2010(28):2716–2721.
    Choi S H&Kim K H. Generation of two auxotrophic genes knock-out Edwardsiellatarda and assessment of its potential as a combined vaccine in olive flounder(Paralichthys olivaceus). Fish Shellfish Immun2011(31):58–65.
    Choi S H, Nam Y K&Kim K H. Novel expression system for combined vaccineproduction in Edwardsiella tarda ghost and cadaver cells. Mol Biotechnol2010(46):127–133.
    Dang W, Zhang M&Sun L. Edwardsiella tarda DnaJ is a virulence-associatedmolecular chaperone with immunoprotective potential. Fish Shellfish Immun2011(31):182-188.
    Deng W, Hoog C L De, Hong B Y, et al. A Comprehensive Proteomic Analysis of theType III Secretome of Citrobacter rodentium. J Biol Chem2010(285):6790–6800.
    Du M, Chen J, Zhang X, et al. Retention of virulence in a viable but nonculturableEdwardsiella tarda isolate. Appl Environ Microbiol2007(7):1349-1354.
    Earlix D J. Host pathogen and environmental interactions of enteric septicaemia ofcatfish. PhD desertation, Auburn University, Auburn University, Auburn, Alabama1995.102.
    Edwards R A, Keller L H&Schifferli D M. Improved allelic exchange vectors andtheir use to analyze987P fimbria gene expression. Gene1998(7):149-157.
    Eko F O, Szostak M P, Wanner G, et al. Production of Vibrio cholerae ghosts (VCG)by expression of a cloned phage lysis gene: potential for vaccine development.Vaccine1994(12):1231-1237.
    Ellis T N&Kuehn M J. Virulence and immunomodulatory roles of bacterial outermembrane vesicles. Microbiol Mol Biol Rev2010(74):81–94.
    Enninga J, Mounier J, Sansonetti P, et al. Secretion of type III effectors into host cellsin real time. Nat Methods2005(18):959-965.
    Ewing W H&McWhorter A C. Edwardsiella, a genus of Enterobacteriaceae basedon a new species, E. tarda. Int Bul Bact Nomencl Toxon1965(15):33-38.
    Fletcher M. The effects of culture concentration and age, time, and temperature onbacterial attachment to polystyrene. Can J Microbiol1977(23):1–6.
    Grefory V P, James B D&Franco F. Type III export: new uses for an old pathway.Mol Microbiol2001(4):284-293.
    Grimont P A D. Edwardsiella hoshinae, a new species of Enterobacteriaceae. CurrMicrobiol1980(4):345-351.
    He Y, Xu T, Han Y, et al. Phenotypic diversity of Edwardsiella tarda isolated fromdifferent origins. Lett Appl Microbiol2011(53):294–299.
    Heckels J E, Fletcher J N&Virji M. The potential protective effect of immunizationwith outer membrane protein from Neisseria gonorhoeae. J Gen Microbiol1989(3):2269-2276.
    Hertz R&Tana J B. Anaerobic electron transport in anaerobic flagellum formation inEscherichia coli. J Bacteriol1977(132):1034-1035.
    Hirono I, Tange N&Aoki T. Iron-regulated haemolysin gene from Edwardsiella tarda.Mol Microbiol1997(24):851-856.
    Hoiseth S K&Stocker B A. Aromatic-dependent Salmonella typhimurium arenon-virulent and effective as live vaccines. Nature1981(291):238–239.
    Hoshina T. On a new bacterium Paracolobactrum anguillimortiferum n.sp. Bulletin ofthe Japanese Society of Scientific Fisheries1962(2):162-164.
    Hu Y H, Cheng S, Zhang M, et al. Construction and evaluation of a live vaccineagainst Edwardsiella tarda and Vibrio harveyi: Laboratory vs. mock field trial.Vaccine2011(29):4081–4085.
    Hu Y H, Liu C S, Hou J H, et al. Identification, characterization, and molecularapplication of a virulence-associated autotransporter from a pathogenic Pseudomonasfluorescens strain. Appl Environ Microbiol.2009(75):4333-4340.
    Igarashi A, Iida T&Crosa J H. Iron-acquisition ability of Edwardsiella tarda withinvolvement in its virulence. Fish Pathol2002(3):53-57.
    Iida T&Wakabayashi H. Preliminary trial of vaccination against edwardsieliosis ofhirame (Japanese flounder), Paralichthys olivaceus. Disease In Asian Aquaculture.Proceedings Of The First Symposium On Diseases In Asian Aquaculture,26-29November1990, Ball, Indonesia, Fish Heaalth Sectioin, Asian Fisheries Siciety,Manila, Philippines,1992,407-412.
    Ishibe K, Osatomi K, Hara K, et al. Comparison of the responses of peritonealmacrophages from Japanese flounder (Paralichthys olivaceus) against high virulentand low virulent strains of Edwardsiella tarda. Fish Shellfish Immun2008(24):243-251.
    Jacobi C A, Roggenkamp A, Rakin A, et al. In vitro and in vivo expression studies ofyopE from Yersinia enterocolitica using the gfp reporter gene. Mol Microbiol1998(30):865–882.
    Janda J M&Abbott S L. Pathogenic properties of Edwardsiella tarda. J ClinMicrobiol1991(2):1998-2001.
    Jiao X D, Dang W, Hu Y H, et al. Identification and immunoprotective analysis of anin vivo-induced Edwardsiella tarda antigen. Fish Shellfish Immun2009(27):633–638.
    Jiao X D, Zhang M, Hu Y H, et al. Construction and evaluation of DNA vaccinesencoding Edwardsiella tarda antigens. Vaccine2009(27):195–202.
    Jobichen C, Chakraborty S, Li M, et al. Structural basis for the secretion of EvpC: Akey type VI secretion system protein from Edwardsiella tarda. PLoS ONE2010(5):e12910.
    Joh S J, Kim M J, Kwon H M, et al. Characterization of Edwardsiella tarda isolatedfrom farm-cultured eels, Anguilla japonica, in the Republic of Korea. J Vet Med Sci2011(73):7-11.
    Kashiwaga S, Sugimoto N&Matsuda T. Chemotherapeutical studies on furazolidoneagainst edwardsiellosis in cultured eel. Fish Pathol1980(15):31-36.
    Katinger A, Lubitz W, Szostak M P, et al. Pigs aerogenously immunized withgenetically inactivated (ghosts) or irradiated Actinobacillus pleuropneumoniae areprotected against a homologous aerosol challenge despite differing in pulmonarycellular and antibody responses. J Biotechnol1999(3):251-260.
    Kawai K, Liu Y, Ohnishi K, et al. A conserved37kDa outer membrane protein ofEdwardsiella tarda is an effective vaccine candidate. Vaccine2004(22):3411–3418.
    Kim J&Marshall D L. Effect of lactic acid on Listeria monocytogenes andEdwardsiella tarda attached to catfish skin. Food Microbiol2001(18):589-596.
    Kim J&Marshall D L. Influence of catfish skin mucus on trisodium phosphateinactivation of attached Salmonella Typhimurium, Edwardsiella tarda, and Listeriamonocytogenes. J Food Prot2002(5):1146-1151.
    Kokubo T, Iida T&Wakabayashi H. Production of siderophore by Edwardsiella tarda.Fish Pathol1990(5):237-241.
    Kuehn M J&Kesty N C. Bacterial outer membrane vesicles and the hostpathogeninteraction. Gene Dev2005(19):2645–2655.
    Kwon S R, Nam Y K, Kim S K, et al. Generation of Edwardsiella tarda ghosts bybacteriophage PhiX174lysis gene E. Aquaculture2005(2):16-21.
    Kwon S R, Nam Y K, Kim S K, et al. Protection of tilapia (Oreochromis mosambicus)from edwardsiellosis by vaccination with Edwardsiella tarda ghosts. Fish ShellfishImmun2006(2):621-626.
    Lan J, Zhang X H, Wang Y, et al. Isolation of an unusual strain of Edwardsiella tardafrom turbot and establish a PCR detection technique with the gyrB gene. ApplMicrobiol2008(105):644–651.
    Lawrence M L, Cooper R K,&Thune R L. Attenuation, persistence, and vaccinepotential of an Edwardsiella ictaluri purA mutant. Infect Immun1997(65):4642-4651.
    Lee S H&Galán J E. Salmonella type III secretion-associated chaperones confersecretion-pathway specificity. Mol Microbiol2004(51):483-495.
    Li G Y, Li J, Xiao P, et al. Detection of type III secretion gene as an indicator forpathogenic Edwardsiella tarda. Lett Appl Microbiol,2011(52):213–219.
    Ling S M H, Wang X H, Xie L, et al. Use of green fluorescent protein (GFP) to studythe invasion pathways of Edwardsiella tarda in in vivo and in vitro fish models.Microbiology2000(4):7-19.
    Liu Y, Oshima S, Kurohara K, et al. Vaccine efficacy of recombinant GAPDH ofEdwardsiella tarda against Edwardsiellosis. Microbiol Immunol2005(9):605-612.
    Lotter H, Rüssmann H, Heesemann J, et al. Oral vaccination with recombinantYersinia enterocolitica expressing hybrid type III proteins protects gerbils fromamebic liver abscess. Infect Immun2004(72):7318–7321.
    Low C, Wadsworth S, Burrells C, et al. Expression of immune genes in turbot(Scophthalmus maximus) fed a nucleotide-supplemented diet. Aquaculture2003(221):23–40.
    Malcova M, Karasova D&Rychlik I. aroA and aroD mutations influence biofilmformation in Salmonella enteritidis. FEMS Microbiol Lett2009(291):44–49.
    Marchart J, Dropmann G, Lechleitner S, et al. Pasteurella multocida-and Pasteurellahaemolytica-ghosts: new vaccine candidates. Vaccine2003(21):3988-3997.
    Marques L R M, Toledo M R F, Neusa P S, et al. Invasion of HeLa cells byEdwardsiella tarda. Curr Microbiol1984(10):129-132.
    Mathew J A, Tan Y P, Srinivasa R P S, et al. Edwardsiella tarda mutants defective insiderophore production, motility, serum resistance and catalase activity. Microbiol2001(14):449-457.
    Mathew J A, Tan Y P, Srinivasa R P S, et al. Edwardsiella tarda mutants defective insiderophore production, motility, serum resistance and catalase activity. Microbiol2001(14):449-457.
    Meyer F P&Bullock G L. Edwardsiella tarda, a new pathogen of channel catfish(Ictalurus punctatus). Appl Microbiol1973(5):155-156.
    Mietzner T A&Morse S A. The role of iron-binding proteins in the survival ofpathogenic bacteria. Annu Rev Nutr1994(14):471-493.
    Miller M B&Bassler B L. Quorum sensing in bacteria. Annu Rev Microbiol2001(5):165-199.
    Mo Z L, Xiao P, Mao Y X, et al. Construction and characterization of a live,attenuated esrB mutant of Edwardsiella tarda and its potential as a vaccine against thehaemorrhagic septicaemia in turbot, Scophthamus maximus (L.). Fish Shellfish Immun2007(23):521-530.
    Moral C H, Castillo E F del, Fierro P L, et al. Molecular characterization of theAeromonas hydrophila aroA gene and potential use of an auxotrophic aroA nutant as alive qttenuated vaccine. Infect Immun1998(66):1813–1821.
    Moreno M, Kramer M G, Yim L, et al. Salmonella as live trojan horse for vaccinedevelopment and cancer gene therapy. Current Gene Ther2010(10):56-76.
    Mougous J D, Cuff M E, Raunser S, et al. A virulence locus of Pseudomonasaeruginosa encodes a protein secretion apparatus. Science2006(12):1526-1530.
    Mu W, Guan L Y, Yan Y J, et al. A novel in vivo inducible expression system inEdwardsiella tarda for potential application in bacterial polyvalence vaccine. FishShellfish Immun2011(31):1097-105.
    Nakatsugawa, T. Edwardsiella tarda isolated from cultured young flounder. FishPathol1983(18):99-101.
    O’Toole R, Milton D M&Wolf-Watz H. Chemotactic motility is required forinvasion of the host by the fish pathogen Vibrio anguillarum. Mol Microbiol1996(19):625-637.
    Okuda J, Arikawa Y, Takeuchi Y, et al. Intracellular replication of Edwardsiella tardain murine macrophage is dependent on the type III secretion system and induces anup-regulation of anti-apoptotic NF-κB target genes protecting the macrophage fromstaurosporine-induced apoptosis. Microb Pathog2006(4):226-240.
    Okuda J, Kiriyama M, Yamanoi E, et al. The type III secretion system-dependentrepression of NF-κB activation to the intracellular growth of Edwardsiella tarda inhuman epithelial cells. FEMS Microbiol Lett2008(8):9-14.
    Ottemann K M&Miller J F. Roles for motility in bacterial-host interactions. MolMicrobiol1997(24):1109-1117.
    Oyston P C F, Russell P, Williamson E D, et al. An aroA mutant of Yersinia pestis isattenuated in guinea-pigs, but virulent in mice. Microbiol1996(142):1847-1853.
    Padros F, Zarza C, Dopazo L, et al. Pathology of Edwardsiella tarda infection inturbot, Scophthalmus maximus (L.). J Fish Dis2006(9):87-94.
    Page A L&Parsot C. Chaperones of the type III secretion pathway: jacks of all trades.Mol Microbiol2002(46):1–11.
    Park L, Wakabayashi H&Watanabe Y. Serotype and virulence of Edwardsiella tardaisolated from eel and their environment. Fish Pathol1983(18):85-89.
    Park S B, Jang H B, Nho S W, et al. Outer membrane vesicles as a candidate vaccineagainst Edwardsiellosis. PLoS ONE2011(6): e17629.
    Paramá A, Castro R, Arranz JA, et al. Scuticociliate cysteine proteinases modulateturbot leucocyte functions. Fish Shellfish Immun2007(23):945-956.
    Pirarat N, Kobayashi T, Katagiri T, et al. Protective effects and mechanisms of aprobiotic bacterium Lactobacillus rhamnosus against experimental Edwardsiellatarda infection in tilapia (Oreochromis niloticus). Vet Immunol Immunopathol2006(11):339-347.
    Pirarat N, Maita M, Endo M, et al. Lymphoid apoptosis in Edwardsiella tardasepticemia in tilapia, Oreochromis niloticus. Fish Shellfish Immun2007(22):608-616.
    Plumb J A Edwardsiella septicemias. Fish diseases and disorders1999(3):479-521.
    Pukatzki S, Ma A T, Sturtevant D, et al. Identification of a conserved bacterial proteinsecretion system in Vibrio cholerae using the Dictyostelium host model system. ProcNatl Acad Sci U S A2006(13):1528-1533.
    Pukatzki S, Ma A T, Sturtevant D, et al. Identification of a conserved bacterial proteinsecretion system in Vibrio cholerae using the Dictyostelium host model system. ProcNatl Acad Sci U S A2006(13):1528-1533.
    Ramamurthi K S&Schneewind O. A synonymous mutation in Yersinia enterocoliticayopE affects the function of the YopE type III secretion signal. J Bacteriol2005(187):707-715.
    Rao P S, Yamada Y, Tan Y P, et al. Use of proteomics to identify novel virulencedeterminants that are required for Edwardsiella tarda pathogenesis. Mol Microbiol2004(5):573-586.
    Roberts V&Roberts B N. Bacterial diseases of fish. Cambridge: The University press.1999.61-79.
    Rshid M, Nakai T Miroga K, et al. Pathogenesis of experimental Edwardsiellosis inJapanese flounder Paralichthys olivaceus. Fish Science1997(6):384-387.
    Rubires X, Saigi F, Pique N, et al. A gene (wbbL) from Serratia marcescens N28b (O4)complements the rfb-50mutation of Escherichia coli K-12derivatives. J Bacteriol1997(17):7581-7586.
    Rüssmann H, Shams H, Poblete F, et al. Delivery of epitopes by the Salmonella typeIII secretion system for vaccine development. Science1998(281):565-568.
    Sae-Oui D, Muroga K&Nakai T. A case of Edwardsiella tarda infection in culturedcolored carp Cyprinus carpio. Fish Pathol1984(19):197-199.
    Salati F&Kusuda R. Vaccine preparations used for immunization of eel Anguillajaponica against Edwardsiella tarda infection. Bulletin of the Japanese Society ofScientific Fisheries1985(51):1233-1237.
    Salati F, Kawai K&Kusuda R. Immunoresponse of eel against Edwardsiella tardaantigens. Fish Pathol1983(18):135-141.
    Sasaki T&Aita A. A study of fish diseases. Part I. Edwardsiella isolated from SeaUrchin. Jap J Microbiol1975(3):368.
    Sebkova A, Karasova D, Crhanova M, et al. aro mutations in Salmonella entericacause defects in cell wall and outer membrane integrity. J Bacteriol2008(190):3155–3160.
    Sigwart D F, Stocker B A&Clements J D. Effect of a purA mutation on efficacy ofSalmonella live-vaccine vectors. Infect Immun1989(57):1858–1861.
    Sory M P&Cornelis G R. Translocation of a hybrid YopE-adenylate cyclase fromYersinia enterocolitica into HeLa cells. Mol Microbiol1994(14):583–594.
    Srinivasa R P S, Yamada Y&Leung K Y. A major catalase (KatB) that is required forresistance to H2O2and phagocyte-mediated killing in Edwardsiella tarda. Microbiol2003(1):2635-2644.
    Strauss E J, Ghori N&Falkow S. An Edwardsiella tarda strain containing a mutationin a gene with homology to shlB and hpmB is defective for entry into epithelial cellsin culture. Infect Immun1997(5):3924-3932.
    Suareza G, Sierraa J C, Shaa J, et al. Molecular characterization of a functional typeVI secretion system from a clinical isolate of Aeromonas hydrophila. Microb Pathog2008(44):344-361.
    Sun Y, Liu C S&Sun L. A multivalent killed whole-cell vaccine induces effectiveprotection against Edwardsiella tarda and Vibrio anguillarum. Fish Shellfish Immun2011(31):595–599.
    Sun Y, Liu C S&Sun L. Comparative study of the immune effect of an Edwardsiellatarda antigen in two forms: Subunit vaccine vs DNA vaccine. Vaccine2011(29):2051–2057.
    Sun Y, Liu C S&Sun L. Identification of an Edwardsiella tarda surface antigen andanalysis of its immunoprotective potential as a purified recombinant subunit vaccineand a surface-anchored subunit vaccine expressed by a fish commensal strain.Vaccine,2010(28):6603–6608.
    Sun Y, Liu C S&Sun L. Isolation and analysis of the vaccine potential of anattenuated Edwardsiella tarda strain. Vaccine2010(28):6344–6350.
    Suprapto H, Hara T, Nakai T, et al. Purification of a lethal toxin of Edwardsiella tarda.Fish Pathol1996(3):203-207.
    Szostak M P, Hensel A, Eko F O, et al. Bacterial ghosts: non-living candidatevaccines. J Biotechnol1996(4):161-170.
    Takano T, Matsuyama T, Oseko N, et al. The efficacy of five avirulent Edwardsiellatarda strains in a live vaccine against Edwardsiellosis in Japanese flounder,Paralichthys olivaceus. Fish Shellfish Immun2010(29):687-693.
    Tamura K, Sakazaki R, McWhorter A C, et al. Edwardsiella tarda serotyping schemefor international use. J Clin Microbiol1988(2):2343-2346.
    Tan Y P, Zheng J, Tung S L, et al. Role of type III secretion in Edwardsiella tardavirulence. Microbiology2005(5):2301-2313.
    Tana J B, Howlett B J&Koshland D E Jr. Flagella formation in E. coli electrontransport mutants. J Bacteriol1977(130):787-792.
    Thune R L, Fernandez D H&Battista J R. An aroA mutant of Edwardsiella ictaluri Issafe and efficacious as a live, attenuated vaccine. J Aquat Anim Health1999(11):358-372.
    Towbin H, Staehelin T&Gordon J. Electrophoretic transfer of proteins frompolyacrylamide gels to nitrocellulose sheets: procedure and some applications. ProcNatl Acad Sci U S A1979(7):4350-4354.
    Ullah M A&Arai T. Pathological activities of the naturally ocurring strains ofEdwardsiella tarda. Fish Pathol1983(18):65~70.
    VanEngelenburg S B&Amy E P. Imaging type-III secretion reveals dynamics andspatial segregation of Salmonella effectors. Nat Methods2010(7):325-330.
    Verjan N, Hirono I&Aoki T. Genetic loci of major antigenic protein genes ofEdwardsiella tarda. Appl Environ Microbiol2005(7):5654-5658.
    Verstraeten N, Braeken K, Debkumari B, et al. Living on a surface: swarming andbiofilm formation. Trends Microbiol2008(16):496-506.
    Vinogradov, S. The second annual symposium on nanomedicine and drug delivery:exploring recent developments and assessing major advances.19-20August2004,Polytechnic University, Brooklyn, NY, USA. Expert Opin Drug Deliv2004.181-184.
    Vivas J, Ria o J, Carracedo B, et al. The auxotrophic aroA mutant of Aeromonashydrophila as a live attenuated vaccine against A. salmonicida infections in rainbowtrout (Oncorhynchus mykiss). Fish Shellfish Immun2004(16):193-206.
    Wakabayashi H&Egusa S. Edwardsiella tarda (Paracolobactrum anguillimortiferum)associated with pond-cultured eel disease. Bulletin of the Japanese Society ofScientific Fisheries1973(9):931-936.
    Waltman W D, Shotts E B&Hsu T C. Biochemical and enzymatic characterization ofEdwardsiella tarda from the United States and Taiwan. Fish Pathol1986(21):1-8.
    Wang B, Mo Z L, Mao Y X, et al. Investigation of EscA as a chaperone for theEdwardsiella tarda type III secretion system putative translocon component EseC.Microbiol2009(155):1260-1271.
    Wang B, Mo Z L, Xiao P, et al. EseD, a putative T3SS translocon component ofEdwardsiella tarda, contributes to virulence in fish and is a candidate for vaccinedevelopment. Mar Biotechnol,2010(12):678–685.
    Wang C, Zhang X H, Jia A, et al. Identification of immune-related genes from kidneyand spleen of turbot, Psetta maxima (L.), by suppression subtractive hybridizationfollowing challenge with Vibrio harveyi. J Fish Dis2008(31):505–514.
    Wang F, Cheng S, Sun K, et al. Molecular analysis of the fur (ferric uptake regulator)gene of a pathogenic Edwardsiella tarda strain. J Microbiol2008(6):350-355.
    Wang X, Wang Q, Xiao J, et al. Edwardsiella tarda T6SS component evpP isregulated by esrB and iron, and plays essential roles in the invasion of fish. FishShellfish Immun2009(27):469-477.
    Wang X.&Lu, C. Mice orally vaccinated with Edwardsiella tarda ghosts aresignificantly protected against infection. Vaccine2009(2):1571-1578.
    Watson J J&White F H. Hemolysins of Edwardsiella tarda. Can J Comp Med1979(3):78-83.
    Witte A, Wanner G, Sulzner M, et al. Dynamics of PhiX174protein E-mediated lysisof Escherichia coli. Arch Microbiol1992(7):381-388.
    Wong J D, Miller M A&Janda J M. Surface properties and ultrastructure ofEdwardsiella species. J Clin Microbiol1989(2):1797-1801.
    Woo P T K&Bruno D W. Viral, bacterial and fungal infections. Fish diseases anddisorders1999(3).
    Xiao J, Chen T, Wang Q, et al. Search for live attenuated vaccine candidate againstedwardsiellosis by mutating virulence-related genes of fish pathogen Edwardsiellatarda, Lett Appl Microbiol2011(53):430–437.
    Xiao J, Wang Q, Liu Q, et al. Characterization of Edwardsiella tarda rpoS: effect onserum resistance, chondroitinase activity, biofilm formation, and autoinducersynthetases expression. Appl Microbiol Biotechnol.2009(83):151-160.
    Xiao, J, Wang Q, Liu Q, et al. Characterization of Edwardsiella tarda rpoS: effect onserum resistance, chondroitinase activity, biofilm formation, and autoinducersynthetases expression. Appl Microbiol Biotechnol2009(83):151–160.
    Xie H X, Yu H B, Zheng J, et al. EseG, an effector of the type III secretion system ofEdwardsiella tarda, triggers microtubule destabilization. Infect Immun2010(78):5011–5021
    Zhang M, Jiao X D, Hu Y H, et al. Attenuation of Edwardsiella tarda virulence bysmall peptides that interfere with LuxS/Autoinducer Type2Quorum Sensing. ApplEnviron Microbiol2009(75):3882-3890.
    Zhang M, Sun K,&Sun L. Regulation of autoinducer2production and luxSexpression in a pathogenic Edwardsiella tarda strain. Microbiol2008(5):2060-2069.Zheng J&Leung K Y. Dissection of a type VI secretion system in Edwardsiella tarda.Mol Microbiol2007(12):1192-1206.
    Zheng J, Tung S L&Leung K Y. Regulation of a type III and a putative secretionsystem in Edwardsiella tarda by EsrC is under the control of a two-componentsystem, EsrA-EsrB. Infect Immun2005(73):4127-4137.
    Zhou L, Liu Q, Wang Q, et al. Secretory delivery of heterologous proteins inattenuated Vibrio anguillarum for potential use in vaccine design. Appl MicrobiolBiotechnol2008(79):1027-1034.
    Zurawski D V&Murry A S. The SPI2-encoded SseA chaperone has discrete domainsrequired for SseB stabilization and export, and binds within the C-terminus of SseBand SseD. Microbiol2004(150):2055-2068.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700