配筋超高韧性水泥基复合材料受弯构件计算理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
南水北调工程重要输水建筑物如长距离输水隧洞、大型输水渡槽的安全性对整个输水工程的安全运行至关重要。从结构设计选材方面应做到确保满足南水北调重大工程结构抗裂防震要求,最大限度降低甚至免去维护和加固费用,从根本上保证重大基础设施的安全运行。结合国家自然科学基金重点项目(50438010)和南水北调工程重大关键技术研究及应用项目(JGZXJJ2006-13),本论文以超高韧性水泥基复合材料(UHTCC)这一新型绿色结构材料为基础,开展了向新材料结构方向迈进的探索性工作,旨在建立配筋超高韧性水泥基复合材料受弯构件计算新理论,提出一种具有防裂抗震和优异耐久性能的新材料复合结构。为实现此目的,主要开展了如下研究工作:
     1.针对水工混凝土大跨薄壳结构的开裂问题、腐蚀环境下的钢筋混凝土结构维修和加固问题,结合纤维编织网与UHTCC二者的优势,开展了非金属筋(碳纤维编织网)增强超高韧性水泥基复合材料的力学性能试验研究。通过11组碳纤维编织网增强UHTCC(CTRUHTCC)薄板四点弯曲试验(试件尺寸400 mm×100 mm×10 mm)和拔出试验(试件尺寸140mm×60mm×10mm)研究,分析了基体水胶比、纤维编织网表面处理方法、基体PVA纤维掺量对CTRUHTCC裂缝开展形态、承载能力和粘结性能的影响,发现采用环氧树脂浸渍碳纤维编织网之后进行表面粘砂是改善碳纤维编织网与基体之间粘结性能的实用方法。
     2.利用UHTCC材料显著的非线性变形能力、出色的力学特性和与钢筋的变形协调性以及优异的裂缝控制能力,针对UHTCC在抗震限裂要求严格的大跨度结构或结构变形关键部位使用时遇到的构件设计问题,开展了钢筋增强超高韧性水泥基复合材料受弯构件即RUHTCC长梁的弯曲性能研究。基于材料的力学本构模型和平截面假定,建立了配筋UHTCC受弯构件的计算模型,对加载至最终破坏各阶段内力变化进行了详细的分析,给出了加载至破坏整个过程的弯矩-曲率关系的确定方法,以及延性指标和跨中挠度的计算公式。提出了相关配筋计算公式以供工程使用参考。
     3.进行了3组共12根不同配筋率的无腹筋大跨度RUHTCC梁(试件尺寸2450 mm×120 mm×80 mm)四点弯曲试验研究,验证了本文所提出的配筋UHTCC受弯构件计算模型的合理性。通过与3根普通钢筋混凝土梁的对比发现,RUHTCC梁破坏模式更具韧性特征,UHTCC材料能够明显的延缓钢筋的屈服,提高结构或构件的承载力,降低构件对截面尺寸和配筋率的要求,从而减轻结构自重,降低工程造价。使用电阻应变片法和裂缝观测仪观察了梁的起裂和裂缝扩展,发现RUHTCC梁具有卓越的裂缝控制能力,在正常使用状态下,裂缝宽度可以保持在0.05mm以内。
     4.提出了RUHTCC的简化计算方法以便于实际工程设计使用;确定了RUHTCC的界限配筋率和最小配筋率的取值以及变形和截面曲率延性系数的计算方法,发现当UHTCC拉伸应变能力较高时无需最小配筋率的限定;分析了截面几何尺寸、材料性能参数和纵筋配筋率对RUHTCC受弯梁的承载力、变形和延性的影响。
     5.根据功能梯度这一概念,利用UHTCC优秀的裂缝控制能力,使用UHTCC材料代替部分混凝土作为钢筋保护层制备了控裂功能梯度复合梁(UHTCC-FGC),以提高钢筋混凝土结构的耐久性。对整个加载过程中复合梁的内力变化和裂缝开展进行了探讨,给出了加载至破坏整个过程的弯矩-曲率关系的确定方法,以及跨中挠度、截面延性指标的计算公式。
     6.通过4组共16根不同厚度UHTCC保护层的UHTCC-FGC梁(试件尺寸2450mm×120 mm×80 mm)四点弯曲试验结果验证了理论计算公式的正确性。对UHTCC-FGC梁的承载力-变形关系曲线和裂缝开展形态进行了分析讨论,并与3根钢筋混凝土对比梁进行了比较。应用应力叠加的方法以及耐久性方面考虑,得到了UHTCC-FGC梁中UHTCC保护层的最佳厚度确定方法。
Security of critical conveyance structures,such as long-distance water conveyance tunnels and large-scale aqueduct structures is vital to the normal operation of South-to-North Water Transfer project.Structural design and material selection are so important that the requirements of crack resistance and earthquake protection should be satisfied from these two aspects,to reduce or even eliminate maintenance and repair expense,and guarantee the safe operation of foundational establishment.On the basis of ultra high toughness cementitious composite(UHTCC),a new kind of green structural material,exploratory research work on new material structures is carried out in the present research,to establish calculation theory of reinforced UHTCC flexural members and propose an aseismatic,crack-reesistant and durable new material composite structures.And this research is part of the Key Program of the National Natural Science Foundation of China(No.50438010) and the Research and Application Programs of Key Technologies for Major Constructions in the South-North Water Transfer Project Construction in China(JGZXJJ2006-13).In orter to perform the aim mentioned above,the details are as follows:
     1.Combining both advantages of carbon textile and UHTCC,research on thin UHTCC components reinforced with carbon textile(CTRUHTCC) is carried out.It takes a fire-new choice of structural materials for crack-resistance of large-span shell structures in hydraulic engineering and can be used in maintenance and strengthening of reinforced concrete structures under exposed environment.Compared with textile reinforced mortar,influences of the surface treatment of carbon textile,water-binder ratio,volume content of polyvinyl alcohol(PVA) fiber on crack resistance,load bearing capacity and bond property of the tested composite have been investigated through four-point bending experiments and pull-out tests. Eleven series of specimens are used for the both experiments.The specimen dimensions are 400 mm×100 mm×10 mm for four-point bending test,and 140mm×60mm×10mm for pull-out test.The proposed approach for surface treatment of carbon textile by spreading sands on the surface of carbon roving impregnated with an epoxy resin is found to be a practical method that obviously improves bond properties between textile and UHTCC matrix.
     2.By making use of prominent non-linear deformation capacity,excellent mechanical performances,compatible deformation ability with steel reinforcement and outstanding crack-resistance of UHTCC,investigations on flexural behavior of reinforced UHTCC (RUHTCC) long flexural members are carried out.Based on mechanical constitutive models of materials and plane section assumption,theoretical calculation model of RUHTCC flexural members is established and detailed analysis on development of internal forces during the whole bending process is also presented.Moreover,determination of moment-curvature relation and theoretical formulae of deflection and curvature are given in the present research.
     3.Three series of RUHTCC long beams without web reinforcement are tested through a four-point bending experiment to verify theoretical formulae of RUHTCC flexural members proposed in the present research.It is discovered that for RUHTCC beams,plane-section assumption is tenable.Totally,there are twelve RUHTCC beams with three different reinforcement ratios and three ordinary reinforced concrete beams as reference specimens in the test,and the dimensions of them are 2450 mm×120 mm×80 mm.Compared with reference specimens,yielding of reinforcement can be delayed in RUHTCC beams,and the failure pattern of RUHTCC specimens represents a ductile response,ensuring the safety and reliability of structures in seismic protection.UHTCC can continue undertaking tension load after cracking due to the strain-hardening feature,therefore,load bearing capacity and ductility of structures or components can be improved and steel products can be saved. Electric resistance strain gauges and a crack width measurement instrument with a 40×lens are used to monitor the propagation of crack and development of crack width.It is found that crack width in RUHTCC beams is limited to 0.05mm under service load conditions and can be considered without negative influence on durability.
     4.Simplified calculation method of RUHTCC flexural member is proposed for convenience.The critical reinforcement ratio,the minimum reinforcement ratio,deflection and curvature ductility index are also deduced.It is found that there is no need to limit the minimum reinforcement ratio when the tension strain capacity of UHTCC is high enough. Influence factors of flexural capacity and ductility,including geometric dimensions,material parameters and reinforcement ratio,have been investigated in the present research on the basis of theoretical equations.
     5.Investigations on bending behavior of functionally-graded composite beam crack controlled by UHTCC(UHTCC-FGC) are carried out to improve durability of reinforced concrete structures.Based on the concept of functionally graded concrete,UHTCC with excellent crack-controlling ability is strategically substituted for part of the concrete,which surrounds the main longitudinal reinforcement in a reinforced concrete member.The thesis discusses the development of internal force and crack propagation during loading process,and presents analysis of moment-curvature relationship from loading to damage and calculation of mid-span deflection and ductility index.
     6.Theoretical formulae are validated through experimental results of sixteen UHTCC-FGC beams with four different thicknesses of UHTCC layer.The dimensions of specimens are 2450 mm×120 mm×80 mm.Moment-curvature relation and crack pattern of UHTCC-FGC beams are discussed in comparison with three ordinary reinforced concrete beams.In addition to improving bearing capacity,the results indicate that UHTCC-FGC beams have been found to be very effective in preventing corrosion-induced damage,At last, the optimal thickness of UHTCC layer in UHTCC-FGC beams has been confirmed through stress superposition and in consideration of durability.
引文
[1]陈厚群.南水北调工程抗震安全性问题[J].中国水利水电科学研究院学报,2003,1(1):17-22.
    [2]Li V C.高延性纤维增强水泥基复合材料的研究进展及应用[J].硅酸盐学报,2007,35(4):531-536.
    [3]陈肇元,徐有邻,钱稼茹整理.土建结构工程的安全性与耐久性[M].建筑技术,2002,(4):248-253.
    [4]唐纯喜.长距离输水工程的关键结构体系可靠度研究[D]:(博士学位论文).杭州:浙江大学,2007.
    [5]Romualdi J P,Mandel J A.Tensile strength of concrete affected by uniformly distributed closely spaced short length of wire reinforcement[J].ACI Journal,June 1964.
    [6]Romualdi J P.Two phase concrete and steel materials:U S,3 439 094[P],Feb 25,1969.
    [7]Majumdar A J,Ryder A F.Glass fiber reinforcement of cement products[J].Glass Technology,1968,9(3):78-84.
    [8]De Vekey R C,Majumdar A J.Determining bond strength in fiber reinforced composites[J].Magazine of Concrete Research,1968,20:229-234.
    [9]Kelly A,Davis G J.The principles of fiber reinforcement of metals[J].Metallurgical Review,1965,10(37).
    [10]Naaman A E.A statistical theory of strength for fiber reinforced concrete[D]:(Ph.D Thesis).Massachusetts Institute of Technology,1972.
    [11]Naaman A E,Argon A,Moavenzadeh F.A fracture model for fiber reinforced cementitious materials[J].Cement and Concrete Research,1973,3(4):397-411.
    [12]Naaman A E,Moavenzadeh F,McGarry F J.Probabilistic analysis of fiber reinforced concrete[J].Journal of the Engineering Mechanic's Devision,ASCE,1974,100(EM2):397-413.
    [13]Hannant D J.Fiber Cements and Fiber Concretes[M].Chichester:John Wiley & Sons,Ltd.,1978.
    [14]Kelly A.Reinforcement of structural materials by long strong fibers[J].Metallurgical and Materials Transactions B,1972,3(9):2313-2325.
    [15]Neville A.Proceedings of the RILEM International Symposium on Fiber Reinforced Cement and Concrete[C].London:Construction Press,England,1975.
    [16]Shah S P,Ranjan R V.Fiber reinforcement concrete properties[J].ACI Journal,1971,68(2):126-135.
    [17]Swamy R N.Testing and Test Methods of Fiber Cement Composites[C].RILEM Symposium Proceedings, Sheffield: The Construction Press, England, 1978.
    [18]Naaraan A E. Tensile strain - hardening FRC composites: Historical evolution since the 1960[C]//Advances in Construction Materials 2007, Stuttgart: Springer-Verlag, 2007: 181-202.
    [19]Lankard D R. Slurry infiltrated fiber concrete (SIFCON): properties and applications[C]//Proceedings of Symposium on Very High Strength Based Materials, Pittsburgh: Materials Research Society, Vol. 42, 1985.
    [20]Lankard D R, Newell J K. Preparation of highly reinforced steel fiber reinforced concrete composites[C]// Fiber Reinforced Concrete - International Symposium, Detroit: American Concrete Institute, SP-81, 1984: 277-306.
    [21]Homrich J R, Naaman A E. Stress-strain properties of SIFCON in compression [J]. Fiber Reinforced Concrete: Properties and Applications, Detroit: American Concrete Institute, SP-105, 1987: 283-304.
    [22]Naaman A E. High performance fiber reinforced cement composites[C]//Proceedings of the IABSE Symposium on Concrete Structures for the Future, Paris, France, 1987: 371-376.
    [23]Naaman A E. Advances in high performance fiber reinforced cement based composites[C]//Proceedings of the International Symposium on Fiber Reinforced Concrete, New Delhi: Oxford IBH Publishing Ltd., India, December 1987: 7.87-7.98.
    [24]Naaman A E, Homrich J R. Tensile stress-strain properties of SIFCON[J]. ACI Materials Journal, 1989, 86(3): 244-251.
    [25]Chanvillard G, Rigaud S. Complete characterization of tesile properties of Ductal UHPFRC according to the French recommendations[C]//High Performance Fiber Reinforced Cement Composites (HPFRCC-4), RILEM Publications SARL, Pro. 30, June 2003: 95-113.
    [23]P Rossi P, Chanvillard G. Proceedings of Fifth RILEM Symposium on Fiber Reinforced Conretes (FRC)[C]. BEFIB 2000, RILEM Publications SARL, Cachan, France, September 2000.
    [27]Li V C. Performance driven design of fiber reinforced cementitious composites[C]// Proceedings of 4th RILEM International Symposium on Fiber Reinforced Concrete. London: Chapman and Hall, 1992: 12-30.
    [28]Li V C, Leung C K Y. Theory of steady state and multiple cracking of random discontinuous fiber reinforced brittle matrix composites[J]. ASCE Journal of Engineering Mechanics, 1992, 118(11):2246-2264.
    [29]Li V C. From micromechanics to structural engineering-The design of cementitious composites for civil engineering applications[J]. JSCE Journal of Structural Mechanics and Earthquake Engineering, 1993, 10(2): 37-48.
    [30]Marshall D B,Cox B N.A J-integral method for calculating steady-state matrix cracking stresses in composites[J].Mechanics of Materials,1988,(7):127-133.
    [31]Li V C.Engineered Cementitious Composites-Tailored composites through micromechanical modeling[C]//Banthia N,Bentur A,and Mufti A.Fiber Reinforced Concrete:Present and the Future.Montreal:Canadian Society for Civil Engineering,1998:64-97.
    [32]Li V C,Mishra D K,Naaman A E et al.On the shear behavior of Engineered Cementitious Composites[J].Journal of Advanced Cement Based Materials,1994,I(3):142-149.
    [33]徐世娘.超高韧性绿色ECC新型材料研究及应用[R].大连:大连理工大学,2007.
    [34]Ahmed S F U,Maalej M.Tensile strain hardening behaviour of hybrid steel-polyethylene fibre reinforced cementitious composites[J].Construction and Building Materials,2009,23:96-106.
    [35]Li V C,Wang S,Wu H C.Tensile strain-hardening behavior of PVA-ECC[J].ACI Materials Journal,2001,98(6):483-492.
    [36]Li V C,Wu H C.Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites[J].Applied Mechanics Reviews,1992,45(8):390-398.
    [37]高淑玲.PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究[D]:(博士学位论文).大连:大连理工大学,2006.
    [38]李贺东.超高韧性水泥基复合材料试验研究[D]:(博士学位论文).大连:大连理工大学,2008.
    [39]Kamal A,Kunieda M,Ueda N et al.Evaluation of crack opening performance of a repair material with strain hardening behavior[J].Cement and Concrete Composites,2008,30(10):863-871.
    [40]Kunieda M,Denarie E,Br(u|¨)hwiler E et al.Challenges for strain hardening cementitious composites-deformability versus matrix density[C]//Proceedings of the fifth international RILEM workshop on HPFRCC,Mainz,2007:31-88.
    [41]Li V C.A simplified micromechanical model of compressive strength of fiber-reinforced cementitious composites[J].Cement and Concrete Composites,1992,14(2):131-141.
    [42]Fisher G,Li V C.Effect of matrix ductility on deformation behavior of steel-reinforced ECC flexural members under reversed cyclic loading conditions[J].AGI Structural Journal,2002,99(6):781-790.
    [43]Fischer G.Deformation behavior of reinforced ECC flexural members under reversed cyclic loading conditions[D]:(Ph.D.Dissertation).Ann Arbor:University of Michigan,2002.
    [44]Maalej M,Li V C.Flexural strength of fiber cementitious composites[J].Journal of Materials in Civil Engineering,ASCE,1994,6(3):390-406
    [45]Lepech M,Li V C.Preliminary findings on size effect in ECC structural members in flexure[C]//Proceedings of the Seventh International Symposium on Brittle Matrix Composites.Warsaw,Poland:ZTUREK RSI and Woodheas Publication,2003:57-66.
    [46]Naaman A E,Reinhardt H W.Characterization of high performance fiber reinforced cement composites-HPFRCC[C]//Naaman A E,Reinhardt H W.High Performance Fiber Reinforced Cement Composites 2(HPFRCC 2),Proceedings of the Second International RILEM Workshop,London:E&FN Spon,1996:1-24.
    [47]Kanda T,Watanabe S,Li V C.Application of pseudo strain hardening cementitious composites to shear resistant structural elements[C]//Proceedings FRAMCOS-3,AEDIFICATIO,1998:1477-1490.
    [48]Vasillaq Xoxia.Investigating the shear characteristics of high performance fiber reinforced concrete[D]:(M.A.Sc.Dissertation).Toronto:University of Toronto,2003.
    [49]Zhang J,Maalej M,Quek S T.Performance of hybrid-fiber ECC blast-shelter panels subjected to drop weight impact[J].Journal of Materials in Civil Engineering,2007,19(10):855-863.
    [50]Kabele P,Li V C.Fracture energy of strain-hardening cementitious composites [C]//Fracture Mechanics of Concrete Structures.Proceedings FRAMCOS-3,Freiburg,Germany:Aedificatio Publishers,1998,487-498.
    [51]Wang X G,Wittmann F H,Zhao T J.Comparative study of test methods to determine fracture energy of strain hardening cement-based composites(SHCC)[J].International Journal for Restoration of Buildings and Monuments,2006,12(2):169-178.
    [52]Spagnoli A.A micromechanical lattice model to describe the fracture behaviour of engineered cementitious composites.Computational Materials Science,2009,(46):7-14.
    [53]王巍.超高韧性水泥基复合材料热膨胀性能及导热性能的研究[D]:(硕士学位论文).大连:大连理工大学,2009.
    [54]刘志凤.超高韧性水泥基复合材料干燥收缩及约束收缩下抗裂性能研究[D]:(硕士学位论文).大连:大连理工大学,2009.
    [55]Weimann M B,Li V C.Hygral behavior of Engineered Cementitious Composite(ECC)[J].International Journal for Restoration of Buildings and Monuments,2003,9(5):513-534.
    [56]Li M,Li V C.Behavior of ECC/concrete layer repair system under drying shrinkage conditions[J].International Journal for Restoration of Buildings and Monuments,2006,12(2):143-160.
    [57]Lim Y M,Wu H C,Li V C.Development of flexural composite properties and drying shrinkage behavior of high performance fiber reinforced cementitious composites at early ages[J].ACI Materials Journal, 1999, 96(1): 20-26.
    [58]Li V C. High performance fiber reinforced cementitious composites as durable material for concrete structure repair[J]. International Journal for Restoration of Buildings and Momuments, 2004, 10(2): 163-180.
    [59]Weimann M B, Li V C. Drying shrinkage and crack width of engineering cementitious composites (ECC) [C]//Proceedings of the Seventh International Symposium on Brittle Matrix Composites (BMC-7), Poland, 2003: 37-46.
    [60]Boshoff W P, Van Zijl G P A G. Numerical creep modelling of ECC[C]// Proceedings 5th Fracture Mechanics of Concrete and Concrete Structures (FRAMCOS-V), Vail, Colorado, USA, 2004: 1037-1043.
    [61]Boshoff W P, Van Zijl G P A G. Time-dependent response of ECC: Characterisation of creep and rate dependence[J]. Cement and Concrete Research, 2007, 37: 725-734.
    [62]Billington S L, Rouse J M, Time-dependant response of highly ductile fiber-reinforced cement-based composites[C]// Proceedings of the Seventh International Symposium on Brittle Matrix Composites, Warsaw, Poland: ZTUREK RSI and Woodheas Publication, 2003: 47-56.
    [63]Li V C, Lepech M. Crack resistant concrete naterial for transportation construction[C]//Transportation Research Board 83rd Annual Meeting, Washington, D. C., Compendium of Papers CD ROM, Paper 04-4680, 2004. Cited in Concrete Products, Feb 1, 2004.
    [64]Li V C, Stang H. Elevation FRC material ductility to infrastructure durability[C]//6th RILEM Symposium on Fiber-Reinforced Concretes (FRC)-BEFIB, Varenna, Italy, 2004: 171-186.
    [65]Kanda T, Saito T, Sakata N, Hiraishi M. Tensile and anti-spalling properties of direct sprayed ECC[J]. Journal of Advanced Concrete Technology, 2003, 1(3): 269-282.
    [66]Suthiwarapirak P, Matsumoto T, Kanda T. Flexural fatigue failure characteristics of an engineered cementitious composite and polymer cement mortars [J]. Proceedings of JSCE, 2002, 718: 121-134.
    [67]Yang E H. Designing added functions in engineering cementitious composites[D]: (Ph.D. Dissertation). Ann Arbor: The University of Michigan, 2008.
    [68]Yang Y Z, Lepech M D, Yang E H et al. Autogenous healing of engineered cementitious composites under wet-dry cycles[J]. Cement and Concrete Research, 2009, 39: 382-390.
    [69]Lepech M, Li V C. Water permeability of cracked cementitious composites[C]//CD-Rom, Proceedings of ICF11, Torino, 2005, Paper 4539.
    [70]Wang K, Jansen D, Shah S et al. Permeability study of cracked concrete[J]. Cement and Concrete Research, 1997, 27 (3): 381 - 393.
    [71]Maalej M, Ahmed S F U, Paramasivam P. Corrosion durability and structural response of functionally-graded concrete beams[J]. Journal of Advanced Concrete Technology, 2002, 1(3):307 - 316.
    [72]Miyazato S, Hiraishi Y. Transport properties and steel corrosion in ductile fibre reinforced cement composites[C]//Proceedings of ICF11, Torino, 2005.
    [73]Ahmed S F U, Mihashi H. A review on durability properties of strain hardening fiber reinforced cementitious composites (SHFRCC)[J]. Cement and Concrete Composites, 2007, 29(5): 365-376.
    [74]Sahmaran M, Li V C. De-icing salt scaling resistance of mechanically loaded engineered cementitious composites[J]. Cement and Concrete Research, 2007, 37: 1035-1046.
    [75]Sahmaran M, Li V C, Andrade C. Corrosion resistance performance of steel-reinforced engineered cementitious composite beams[J]. ACI Materials Journal, 2008, 105(3): 243-250.
    [76]Sahmaran M, Li V C. Durability of mechanically loaded engineered cementitious composites under highly alkaline environments [J]. Cement and Concrete Composites, 2008, 30(2): 72-81.
    [77]Li V C, Horikoshi T, Ogawa A, Torigoe S, Saito T. Micromechanicsbased durability study of polyvinyl alcohol-engineered cementitious composite[J]. ACI Materials Journal 2004, 101(3): 242-248.
    [78]Horikoshi T, Ogawa A, Saito T, Hoshiro H. Properties of PVA fibre as reinforcing materials for cementitious composites[C]//Proceedings of International workshop on HPFRCC in structural applications, Published by RILEM SARL. Honolulu, Hawaii, USA, 2005: 145-53.
    [79]Kanda T, Saito T, Sakata N et al. Fundamental properties of deirect sprayed ECC[C]//Proceedings of the JCI International Workshop on DFRCC, Takayam, Japan, 2002:133-142.
    [80]Kim Y Y, Kong H J, Li V C. Design of engineered cementitious composite suitable for wet-mixture shotcreting[J]. ACI Materials Journal, 2003,100 (6): 511-518.
    [81]Kim Y Y, Fischer G, Lim Y M et al. Mechanical performance of sprayed engineered cementitious composite using wet-mix shotcreting process for repair applications[J]. ACI Materials Journal, 2004, 101(1): 42-49.
    [82]Kim Y Y, Kong H J, Li V C. Development of sprayable engineering cementitious composites[C]//Proceedings of the HPFRCC-4, Ann Arbor, MI, USA, 2003: 233-243.
    [83]Kong H J, Bike S G, Li V C. Development of a self-consolidating engineered cementitious composite employing electrosteric dispersion/stabilization[J]. Cement and Concrete Composites,2003,25(3):301-309.
    [84]Kong H J,Bike S G,Li V C.Constitutive rheological control to develop a self-consolidating engineered cementitious composite reinforced with hydrophilic poly(vinyl alcohol) fibers[J].Cement and Concrete Composites,2003,25(3):333-341.
    [85]Kong H J,Bike S G,Li V C.Effects of a strong polyelectrolyte on the rheological properties of concentrated cementitious suspensions[J].Cement and Concrete Research,2006,36:851-857.
    [86]Kong H J,Bike S G,Li V C.Electrosteric stabilization of concentrated cement suspensions imparted by a strong anionic polyelectrolyte and a non-ionic polymer[J]Cement and Concrete Research,2006,36:842-850.
    [87]Li V C,Kong H J,Chan Y W.Development of self-compacting engineered cementitious composites[C]//Proceedings of the International Workshop on Self-Compacting Composites,Kochi,Japan,1998:46-59.
    [88]田艳华.自密实超高韧性水泥基复合材料试验研究[D]:(硕士学位论文).大连:大连理工大学,2008.
    [89]Stang H,Li V C.Extrusion of ECC-material[C]//Proceedings of High Performance Fiber Reinforced Cement Composites 3(HPFRCC-3),New York:Chapman &Hull,1999:203-212.
    [90]Takashima H,Miyagai K,Hashida T,Li V C.A design approach for the mechanical properties of polypropylene discontinuous fiber reinforced cementitious composites by extrusion molding[J].Engineering Fracture Mechanics,2003,70:853-870.
    [91]Takashima H,Miyagai K,Hashida T.Fracture properties of discontinuous fiber reinforced cementitious composites manufactured by extrusion molding[C]//Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites(DFRCC)-Application and Evaluation.2002:75-83.
    [92]De Koker D,Van Zijl G P A G.Extrusion of engineering cement-based composite material[C]//6th RILEM Symposium on Fiber-Reinforced Concretes(FRC)-BEFIB 2004,Varenna,Italy,2004:1301-1310.
    [93]Li V C.Advances in ECC research[J].ACI Special Publication on Concrete:Material Science to Applications,2002,SP 206-23:373-400.
    [94]De Koker D,van Zijl GPAD.Presentaion:Manufacturing processes for engineered cement-based composite Material(ECC)[C]//Corresponding paper in proceedings of BEFIB,2004:1301-1310.
    [95]Wang S,Li V C.Lightweight ECC[C]//HPFRCC-4.Michigan:University of Michgan,2003:379-390.
    [96] Li V C, Lepech M, Wang S X et al. Development of green engineering cementitious composites for sustainable infrastructures systems[C]//Proceedings of International Workshop on Sustainable Development and Concrete Technology. Iowa: Iowa State University, 2004:181- 192.
    [97] Wang S X, Li V C. Engineered cementitious composites with high-volume fly ash[J]. ACI Materials Journal, 2007, 104(3): 233-241.
    [98] Lepech M D, Li V C, Robertson R E et al. Design of green engineered cementitious composites for improved sustainability[J]. ACI Materials Journal, 2008, 105(6): 567-575.
    [99] Yang E H, Yang Y Z, Li V C. Use of high volumes of fly ash to improve ECC mechanical properties and material greenness[J]. ACI Materials Journal, 2007, 104(6): 303-311.
    [100]Martinola G, Bauml M F, Wittmann F H. Modified ECC by means of internal impregnation[J]. Journal of Advanced Concrete Technology, 2004, 2(2): 207-212.
    [101]Sahmaran M, Li V C. Influence of microcracking on water absorption and sorptivity of ECC[J]. Materials and Structures, 2009, 42: 593-603.
    [102]Wang S X, Li V C. High-early-strength Engineered Cementitious Composites[J]. ACI Materials Journal, 2006, 103(2): 97-105.
    [103]Li V C, Lim Y M, Chan Y W. Feasibility study of a passive smart self-healing cementitious composite[J]. Composites Part B, 1998, 29B: 819-827.
    [104]Kabele P, Horii H. Analytical model for fracture behaviors of pseudo strain-hardening cementitious composites[J]. Journal of Materials, Concrete Structures and Pavements (Proc. of JSCE), 1996, 532(30): 209-219.
    [105]Kabele P. New developments in analytical modeling of mechanical behavior of ECC[J]. Journal of Advanced Concrete Technology, JSCE. 2003, 1 (3): 253-264.
    [106]Kanda T, Lin Z, Li V C. Tensile sress-strain modeling od pseudostrain hardening cementitious compositest[J]. ASCE Journal of Materials in Civil Engineering, 2000, 12(2): 147-156.
    [107]Yang E H, Li V C. Numerical study on steady-state cracking of composites[J]. Composites Science and Technology, 2007, 67(2):151 - 156.
    [108]Kabele P. Multiscale framework for modeling of fracture in high performance fiber reinforced cementitious composites[J]. Engineering Fracture Mechanics, 2007, 74(26): 194-209.
    [109]Yang E H, Wang S X, Yang Y Z et al. Fiber-bridging constitutive law of Engineered Cementitious Compositest[J]. Journal of Advanced Concrete Technology, JSCE. 2008, 6(1): 181-193.
    [110]Boshoff W P, Van Zijl G P A G. Creep modelling of ductile fiber reinforced composites[C]//Proceedings of Fracture Mechanics of Conrete Structures(Framcos),Vale,USA,2004.
    [111]Suwada H,Fukuyama H.Nonlinear finite element analysis on shear failure of structural elements using high performance fiber reinforced cement composite[J].JCI Journal of Advanced Concrete Technology,2006,4(1):45-57.
    [112]公成旭.高韧性低收缩纤维增强水泥基复合材料研发[D]:(硕士学位论文).北京:清华大学,2008.
    [113]Zhang J,Leng B.Transition from multiple macro-cracking to multiple micro-cracking in cementitious composites[J].Tsinghua Science and Technology,2008,13(5):669-673.
    [114]Zhang J,Gong C X,Guo Z L et al.Engineered cementitious composite with characteristic of low drying shrinkage[J].Cement and Concrete Research,2009,39:303-312.
    [115]梁坚凝,曹倩.高延性永久模板在建造耐久混凝土结构中的应用[J].东南大学学报(自然科学版),2006,36(Sup Ⅱ):110-115.
    [116]姜国庆,孙伟,刘小泉.生态型工程水泥基复合材料的制备与性能研究[J].西安建筑科技大学学报(自然科学版),2008,40(1):93-100.
    [117]赵铁军,毛新奇,张鹏.应变硬化水泥基复合材料的干燥收缩与开裂[J].东南大学学报(自然科学版),2006,36(Sup Ⅱ):269-273.
    [118]田砾,范宏,孙雪飞等.应变硬化水泥基复合材料(SHCC)本构关系逆向分析研究[J].固体力学学报.2006,27(S):14-17.
    [119]王晓刚,Witt mann F H,赵铁军.优化设计水泥基复合材料应变硬化性能研究[J].混凝土与水泥制品,2660,(3):46-49.
    [120]任昭君,孙志伟,苏卿.水分含量对PVA-SHCC断裂能及应变硬化的影响[J].工程建设,2008,40(4):9-12.
    [121]陈婷,詹炳根.设计PVA纤维水泥基复合材料的研究进展[J].混凝土,2003,(11):3-10.
    [122]Maalej M,Hashida T,Li V C.Effect of fiber volume fraction on the off-crack-plane fracture energy in strain-hardening engineered cementitious composites[J].Journal of American Ceramic Society,1995,78(12):3369-3375.
    [123]Li Y C,Hashida T.Engineering ductile fracture in brittle matrix composites[J].Journal of Materials Science Letters,1993,12(12):898-901.
    [124]王洪昌.超高韧性水泥基复合材料与钢筋粘结性能的试验研究[D]:(硕士学位论文).大连:大连理工大学,2008.
    [125]Mihashi H,Otsuka K,Akita H et al.Bond behavior of a deformed bar in high-performance fiber-reinforced cement composites(HPFRCC)[C]//ICF 11,Turin,Italy,2005,Compendium of Papers CD ROM,Paper 5801.
    [126]Otsuka K,Mihashi H,Kiyota M et al.Observation of multiple cracking in hybrid FRCC at micro and meso levels[J]. Journal of Advanced Concrete Technology, JCI, 2003, 1(3), 291-298.
    [127]Fischer G, Li V C. Influence of matrix ductility on the tension-stiffening behavior of steel reinforced Engineered Cementitious Composites (ECC)[J]. ACI Structural Journal, 2002, 99(1):104-111.
    [128]Fischer G, Li V C. Effect of fiber reinforcement on the response of structural members[J]. Engineering Fracture Mechanics, 2007, 74 (1-2): 258-272.
    [129]Kong F K, Evans R H. Reinforced and Prestressed Concrete[M]. London, Great Britain: Spon Press, 1987.
    [130]Qian S, Zhou J, De Rooij M R et al. Self-healing behavior of strain hardening cementitious composites incorporating local waste materials[J]. Cement and Concrete Composites, 2009, 31(9):613-621.
    [131]Pigeon M, Pleau R. Durability of Concrete in Cold Climates[M]. London: Chapman & Hall, 1995.
    
    [132]金伟良,赵羽习. 混凝土结构耐久性[M]. 北京:科学出版社,2002.
    [133]Keoleian G, Kendall A, Chandler R et al. Life-cycle cost model for evaluating the sustainability of bridge decks [C]//Workshop on Life-Cycle Cost Analysis and Design of Civil Infrastructure Systems, Florida, US, 2005.
    [134]Advanced Civil Engineering- Materials Research Lab. Lightweight ECC Technology[EB/OL]. http://ace-mrl. engin. umich. edu/NewFiles/projects/light_ECC. html
    [135]Maalej M, Li V C. Introduction of strain hardening engineered cementitious composites in design of reinforced concrete flexural members for improved durability[J]. ACI Structural Journal, 1995, 92 (2):167-176.
    [136]Maalej M, Ahmed S F U, Paramasivam P. Corrosion durability and structural response of functionally-graded concrete beams[C]//JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC)-Application and Evaluation. Takayama, Japan, October 2002.
    [137]Zhang J, Li V C, Nowak A et al. Introducing ductile strip for durability enhancement of concrete slabs[J]. ASCE Journal of Materials in Civil Engineering, 2002, 14 (3): 253-261.
    [138]Gilani A, Juntunen D. Link slabs for simply supported bridges: incorporating engineering cementitious composites[R]. Report No. MDOT SPR-54181, Michigan: Michigan Department of Transportation, Construction and Technology Division, July, 2001.
    [139]Kim Y Y, Fischer G, Li V C. Performance of bridge deck link slabs designed with ductile engineered cementitious composite[J]. ACI Structural Journal, 2004, 101(6): 792-801.
    [140]Qian S Z, Lepech M D, Kim Y Y et al. Introduction of transition zone design for bridge deck[J]. ACI Structural Journal, 2009, 106(1): 96-105.
    [141]Keoleian G A, Kendall A, Dettling J E et al. Life cycle modeling of concrete bridge design: comparison of engineered cementitious composite link slabs and conventional steel expansion jointst[J]. Journal of Infrastructure Systems, 2005, 11(1): 51-60.
    [142]Fukuyama H, Sato Y, Li V C et al. Ductile engineering cementitious composite elements for seismic structural application[C]//12th World Conference on Earthquake Engineering, Auckland, New Zealand, 2000.
    [143]Fischer G, Fukuyama H, Li V C. Effect of matrix ductility on the performance of reinforced ECC column members under reversed cyclic loading conditions[C]// Proc., DFRCC Int'l Workshop, Takayama, Japan, 2002:269-278.
    [144]Parra-Montesinos G, Wight J K. Seismic response of exterior RC column-to-steel beam connections[J]. ASCE Journal of Structural Engineering, 2000, 126 (10): 1113-1121.
    [145]Kesner K E, Billington S L. Investigation of infill panels made from ECC for seismic strengthening and retrofit[J]. ASCE Journal of Structural Engineering, 131(11): 1712-1720.
    [146]Kesner K E, Billington S L, Douglas K S. Cyclic response of highly ductile fiber-reinforced cement-based composites[J]. ACI Materials Journal, 2003, 100(5), 381 - 309.
    [147]Billington S L. Damage-tolerant cement-based materials for performance based earthquake engineering design: research needs[C]//Fracture Mechanics of Concrete Structures, Ia-FraMCos, 2004: 53-60.
    [148]Fischer G, Li V C. Intrinsic response control of moment resisting frames utilizing advanced composite materials & structural elements[J]. ACI Structural Journal, 2003, 100(2): 166-176.
    [149]Billington S L, Yoon J K. Cyclic response of precast bridge columns with ductile fiber-reinforced concrete[J]. ASCE Journal of Bridge Engineering, 2004, 9(4): 353-363.
    [150]Fukuyama H, Suada H. Experimental response of HPFRCC dampers for structural control[J]. Journal of Advanced Concrete Technology, 2003, 1(3): 317-326.
    [151]Mitamura H, Sakata N, Shakushiro K et al. Application of overlay reinforcement method on steel deck utilizing engineering cementitious composites - Mihara Bridge[J]. Bridge and Foundation Engineering, 2005, 39(8); 88-91.
    [152]Kunieda M, Rokugo K. Recent progress on HPFRCC in Japan: required performance and applications[J]. JCI Journal of Advanced Concrete Technology, 2006, 4(1): 19-33.
    [153]Canbolat B A, Parra-Montesinos G J, Wight J K. Experimental study on the seismic behavior of high-performance fiber reinforced cement composite coupling beams [J]. ACI Structural Journal, 2005, 102(1): 159-166.
    [154]Li V C. Bendable composites-ductile concrete for structures[J]. Structure magazine, 2006, July: 45-48.
    [155]Li V C, Wang S X. Flexural behaviors of glass fiber-reinforced polymer (GFRP) reinforced engineered cementitious composite beams[J]. ACI Materials Journal, 2002, 99(1): 11-21.
    [156]Fischer G, Li V C. Deformation behavior of fiber-reinforced polymer reinforced engineered cementitious composite (ECC) flexural members under reversed cyclic loading conditions[J]. ACI Structural Journal, 2003, 100(1):25-35.
    [157]Rokugo K, Kunieda M, Kamada T et al. Structural applicationa of strain hardening type DFRCC as tesion carrying material[C]//Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC) - Application and Evaluation (DRFCC-2002), Takayama, Japan, 2002: 249-258.
    [158]Fukuda I, Mitamura H, Imano H et al. Effect of ECC overlay reinforcement method on steel plate deck attached with FRP dowels [J]. Proceedings of the Japan Concrete Institute, 2004, 26(20:1693-1698.
    [159]ECC Technology Network. Repair of Mitaka Dam [EB/OL]. Information on http://www. engineeredcomposites. com/ Applications/ mihara_bridge. html
    [160]Rokogo K, Kanda T. Presentation: Recent HPFRCC R&D Progress in Japan[C]// Proceedings of Int' l workshop on HPFRCC in structural applications, Honolulu, Hawaii, USA, 2005.
    [161]Li V C. High performance fiber reinforced cementitious composites as durable material for concrete structure repair [J]. International Journal for Restoration of Buildings and Monuments, 2004, 10(2): 163-180.
    [162]Li V C. Durable overlay systems with Engineered Cementitious Composites (ECC) [J]. International Journal for Restoration of Buildings and Monuments, 2003, 9(2): 215-234.
    [163]Wittmann F H, Martinola G. Decisive properties of durable cement-based coatings for reinforced concrete structures [J]. International Journal for Restoration of Buildings and Monuments, 2003, 9(3): 235-264.
    [164]Lim Y M, Li V C. Durable repair of aged infrastructures using trapping mechanism of Engineered Cementitious Composites[J]. Cement and Concrete Composites, 1997, 19: 373-385.
    [165]Kamada T, Li V C. The effects of surface preparation on the fracture behavior of ECC/concrete repair system.Cement and Concrete Composites,2000,22(6):423-431.
    [166]Kunieda M,Kamada T,Rokugo K et al.Localized fracture of repaired material in patch repair systems[C]//International Conference on Fracture Mechanics of Concrete Structures,Colorado,2004:765-772.
    [167]代平.超高韧性水泥基复合材料修复的带缺口复合梁的试验研究[D]:(硕士学位论文).大连:大连理工大学,2009.
    [168]Kabele P.Assessment of structural performance of Engineered Cementitious Composites by computer simulation[R].CTU Reports 5(4),Czech:Czech Technical University in Prague,2001.
    [169]Li M,Li Y C.Behavior of ECC/concrete layered repair system under drying shrinkage conditions[J].Restoration of Buildings and Monuments,2006,12(2):143-160.
    [170]Zhou J,Ye G,Schlangen E et al.Modelling of stresses and strains in bonded concrete overlays subjected to differential volume changes[J].Theoretical Applied Fracture.Mechanics,2008.49(2):199-205.
    [171]Zhou J,Li M,Ye G et al.Modeling the performance of ECC repair systems under differential volume changes[C]//Proc.2nd Int'1 Conf.on Concrete Repair (ICCRRR),RehabiIitation and Retrofitting,Cape Town,S.Africa,Leiden:CRC Press/Balkema,2008:1005-1009.
    [172]Zhang J,Li V C.Monotonic and fatigue performance in bending of fiber-reinforced engineered cementitious composite in overlay system[J].Cement and Concrete Research,2002,32(3):415-423.
    [173]Qian S,Li V C,Zhang net al.Durable and sustainable overlay with ECC[C]//Proceedings of the 9th International Conference on Concrete Pavements,San Fransisco,California,2008.
    [174]Zhang J,Leung C K Y,Cheung Y N.Flexural performance of layered ECC-concrete composite beam.Composites Science and Technology,2006,66:1501-1512.
    [175]Shin S K,Kim J J H,Lim Y M.Investigation of the strengthening effect of DFRCC applied to plain concrete beams[J].Cement and Concrete Composites,2007,29(6):465-473.
    [176]Leung C K Y,Cheung Y N,Zhang J.Fatigue enhancement of concrete beam with ECC layer[J].Cement and Concrete Research,2007,3?(5):743-750.
    [177]Li V C,Horii H,Kabele P et al.Repair and retrofit with Engineered Cementitious Composites[J].Engineering Fracture Mechanics,2000,65(2-3):317-334.
    [178]Kojima,Sakata N,Kanda T et al.Application of direct sprayed ECC for retrofitting dam structure surface application for Mitaka-Dam[J].Concrete Journal,Japan Concrete Institute(JCI 464),2004,42(5):135-139.(in Japanese)
    [179]Inaguma H,Seki M,Suda K et al.Experimental study on crack-bridging ability of ECC for repair under train loading[C]//Proceedings of International Workshop on High Performance Fiber Reinforced Cementitious Composites in Structural Applications, Honolulu, Hawaii, USA, 2005.
    [180]Li V C, Fischer G, Lepech M. Shotcreting with ECC[C]// W. Kusterle. Proc. CD, Spritzbeton-Tagung, Austria, 2009.
    [181]Uchida Y, Fischer G, Hishiki Y et al. Review of Japanese recommendations on design and construction of different classes of fiber reinforced concrete and application examples[C]//Proceedings of the 8th International Symposium on Utilization of High-Strength and High-Performance Concrete, Tokyo, Japan, 2008.
    [182]Rokugo K, Kunieda M, Lim S C. Patching repair with ECC on cracked concrete surface[C]// Proc. of ConMat05, Vancouver, Canada [CD-ROM], 2005.
    [183]Japan Society of Civil Engineers. Recommendations for design and construction of high performance fiber reinforced cement composite with multiple fine cracks (HPFRCC) [S]. Japan: JSCE, 2007. (in Japanese)
    [184]Curbach M, Jesse F. Verstarken von Stahlbetonbauteilen mit textilbewehrtem Beton - Kurzer Bericht zu aktuellen Entwicklungen[J]. Beton- und Stahlbetonbau, 2005, 100(S1) :78 -81.
    [185]Naaman A E, Shah S P, Throne J L. Some developments of polypropylene fibers for concrete[C]//Fiber-Reinforced Concrete - International Symposium, ACI, 1984, SP-81, Farmington Hills, Michigan.
    [186]Triantafillou T C, Papanicolaou C G. Textile reinforced mortars (TRM) versus fiber reinforced polymers (FRP) as strengthening materials of concrete structures[C]//7th International Symposium on Fiber-Reinforced Polymer (FRP) Reinforcement for Concrete Structures. ACI, 2005, SP-230. Kansas City, MI (US).
    [187]Peled A, Bentur A, Yankelevsky D. Effects of woven fabrics geometry on the bonding performance of cementitious composites Mechanical performance[J]. Journal of Advanced Cement Based Materials, 1998(7): 20-27.
    [188]Hegger J, Voss S. Investigations on the bearing behaviour and application potential of textile reinforced concrete[J]. Engineering Structures, 2008, 30: 2050-2056.
    [189]Jesse F, Will N, Curbach M et al. Loading bearing behavior of textile-reinforced concrete[J]. Textile-Reinforced Concrete, ACI 2008, SP-250: 59-68.
    [190]Atcheson M, Alexander D. Development of fibrous ferrocement[J]. Ferrocement: Material and Applications, (Detroit. USA), ACI, 1978, SP-61: 81-101.
    [191]EI Debs M K, Naaman A E. Bending behavior of mortar reinforced with steel meshes and polymeric fibers[J]. Cement and Concrete Composites, 1995, 17(4):327-338.
    [192]Swamy R N, Spanos A. Deflection and cracking behavior of ferrocement with grouped reinforcement and fiber reinforced matrix[J]. ACI Journal, 1985, 82(1): 79-91.
    [193]Wang S,Naaman A E,Li V C.Bending response of hybrid ferrocemnt plates with meshes and fibers[C]//Proceeding of the 7th International Symposium on Ferrocement and Thin Reinforced Cement Composites(Singapore),2001:247-260.
    [194]Reinhardt H W,Kr(u|¨)ger M.Vorgespannte d(u|¨)nne platten aus textilbeton[C]// Proc.,Textilheton-1.Fac-kolloquium der Sonderforschungsbereiche 528 und 532,2001:165-174.
    [195]Dilthey U,Schleser M.Improvement of textile reinforced concrete by use of polymers[C]//E-MRS Fall Meeting 2005-Symposium G,Adhesion on macro-,micro-and nano-scale,5th-9th September,2005,Warsaw University of Technology.
    [196]Raupach M,Orlowsky J,B(u|¨)ttner T et al.Recent developments of the usage of polymers in textile reinforced concrete[C]//Proceedings of the 5th Asian Symposium on Polymers in Concrete,Taramani,India,September 11-12,2006:53-60.
    [197]Raupach M,Keil A.Improvement of the load-bearing capacity of textile reinforced concrete by the use of polymers[C]//12th international Congress on Polymers in Concrete,Chuncheon,Korea,27-28 September,2007.
    [198]Konrad M,Chudoba R,Meskouris K et al.Numerical simulation of yarn and bond behavior at micro-and meso-level[C]//Proceedings of the 2nd Colloquium on Textile Reinforced Structures.Dresden.Germany:Technische Universit(a|¨)t Dresden,Sonderforschungsbereich 528,Manfred Curbach,2003:399-410.
    [199]Xu S L,Kr(u|¨)ger M,Reinhardt H W et al.Bond characteristics of carbon,alkali-resistant glass and aramid textiles in mortar[J].ASCE Journal of Matererials in Civil Engineering,2004,16(4):356-364.
    [200]Kr(u|¨)ger M,Reinhardt H W,Fichtlscherer M.Bond behavior of textile reinforcement in reinforced and prestressed concrete[C]//4th International Ph.D.Symposium in Civil Engineering.M(u|¨)nchen.Germany:Springer-Verlag,2002:373-381.
    [201]Xu S L,Reinhardt H W,Kr(u|¨)ger M等.高性能精细混凝土与碳纤维织物粘接性能研究[C]//第十一届全国结构工程学术会议大会特邀报告.长沙,2002.工程力学,2002,增刊:95-111.
    [202]Reinhardt H W,Kr(u|¨)ger M,Groβe C U.Concrete prestressed with textile fabric[J].Journal of Advanced Concrete Technology,2003,1(3):231-239.
    [203]Jens Hartig,Ulrich H(a|¨)uβler-Combe,Kai Schicktanz.Influence of bond properties on the tensile behaviour of Textile Reinforced Concrete[J].Cement and Concrete Composites,2008,30:898-906.
    [204]Peled A,Bentur A,Yankelevsky D.Flexural performance of cementitious composites reinforced with woven fabrics[J].Journal of Materials in Civil Engineering,1999,(11):325-330.
    [205]过镇海.钢筋混凝土原理(第一版)[M].北京:清华大学出版社,1999.
    [206]李赫.纤维编织网增强混凝土结构力学性能的试验研究和理论分析[D]:(博士学位论文). 大连:大连理工大学,2006.
    [207]Keitetsu Rokugo,Minoru Kunieda,Toshiro Kamada et al.Structural applications of strain hardening type DFRCC as tension carrying material[C]//Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites,Takayama,October 2002:249-258.
    [208]程文演,康谷贻,颜德妲.混凝土结构设计原理[M].北京:中国建筑工业出版社,2002.
    [209]Wu Cynthia,Micromechanical Tailoring of PVA-ECC for Structural Applications[D]:(Ph.D Thesis).Ann Arbor:University of Michigan,January 2001.
    [210]GB 50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [211]Lepech M,Li V C.Durability and long term performance of engineered cementitious composites[C]//International RILEM workshop on HPFRCC in structural applications,Honolulu,Hawaii,USA,May 23-26,2005.
    [212]CCES 01-2004.《混凝土结构耐久性设计与施工指南》(2005年修订版)[S].北京:中国建筑工业出版社,2005.
    [213]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997.
    [214]Bischoff P H.Deflection calculation of FRP reinforced concrete beams based on modifications to the existing branson equation[J].Journal of composites for construction,ASCE,2007,11(1):4-14.
    [215]沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料[M].北京:中国建材工业出版社,2004
    [216]黄海涛,郎建峰,付占达.水泥基梯度功能材料的研究进展[J].山西建筑,2007,33(7):168-169.
    [217]Brichall J D,Howord A J,Kendall K.Flexural strength and porosity of cements[J].Nature,1981(289):388-390.
    [218]Young J F,Berg M.A novel organo-ceramic composite[J].Mater Res Soc,1992,271(1):609-619.
    [219]Young J F.Advanced cement based materials[C]//Proc 5th Int Symp Cement Concrete.Shanghai:Tongji University Press,2002.
    [220]Yoshio K.Physical properties of polymer-modified mortar[C]//Proc 3rd Int Congress Polymer Concrete.Fukushima:American Con-crete Institute,1981.
    [221]Swamy R N.Polymer reinforcement of cement systems.Journal of Materials Science,1979,14(7):1521-1553.
    [222]新野正之,平津敏雄,渡边龙三.倾斜机能材料-宇航机用超耐热材料的研究[J].日本复合材料学会志,1978,13(6):257-264.
    [223]杨久俊,董延玲.纤维梯度分布对混凝土力学性能的影响[J].河南科学,2002,20(6):645-648.
    [224]朱信华,孟中岩.梯度功能材料的研究现状与展望[J].功能材料,1998,29(2):121-127.
    [225]Shon I J,Munir Z A.Synthesis of TiC,TiC-Cu composite,and TiC-Cu functionally graded materials by electro thermal combustin[J].Journal of the American Ceramic Society,1998,81(12):3243-3248.
    [226]Capus J M.Advanced in powder metallurgy processing[J].Advanced Materials &Processes,1999,156(3):33-37.
    [227]杨久俊,贾晓林,谭伟等.水泥基梯度复合功能材料物理力学性能的初步研究[J].新型建筑材料,2001,(11):1-7.
    [228]李著璟.初等钢筋混凝土结构[M].北京:清华大学出版社,2005.
    [229]Li V C.On engineered cementitious composites(ECC)—a review of the material and its applications.Journal of Advanced Concrete Technology,2003,1(3):215-230.
    [230]杨富巍,张秉坚,潘昌初等.糯米灰浆—中国古代的重大发明之一[J].中国科学E辑:技术科学,2008,37(9):1391-1397.
    [231]Gergely P,Lutz L A.Maximum crack width in reinforced concrete flexural members[C]//ACI-SP-20:Causes,Mechanism,and Control of Cracking in Concrete.Detroit:American Concrete Institute,1968.87-117.
    [232]GBJ50010-2002.混凝土结构设计规范[S].北京:中国建筑工业出版社,2002.
    [233]Takewaka K,Yamaguchi T,Maeda S.Simulation model for deterioration of concrete structures due to chloride attack[J].Journal of Advanced Concrete Technology,2003,1(2):139-146.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700