超高韧性水泥基复合材料耐久性能试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超高韧性水泥基复合材料(Ultra High Toughness Cementitious Composites,简称UHTCC)具有拉伸荷载作用下的应变硬化特性和优异的裂缝控制能力,在拉伸荷载作用下极限拉应变可稳定地达到3%以上,可形成多缝开裂形式且达到极限拉应变时对应的裂缝宽度小于0.1mm。这种新型的高性能纤维增强水泥基复合材料在提高钢筋混凝土结构耐久性、提高结构抗震性能、对旧结构进行维修和翻新等方面具有广阔的应用前景,近十几年来一直是国内外的研究热点。而目前对UHTCC材料的基本力学性能、与钢筋及混凝土复合构件等方面的研究较多,对于其耐久特性的报道却较少。因此,本文在课题组对UHTCC基本力学性能及UHTCC与钢筋混凝土复合构件研究的前期大量工作基础上,对其抗冻性、抗碳化性能、渗透性能等基本耐久特性进行了试验研究和分析,并对UHTCC和锈蚀钢筋的粘结性能,UHTCC取代保护层混凝土梁抵抗钢筋锈蚀性能等进行了试验和分析。论文主要研究内容如下:
     (1)通过试验室快速冻融试验方法,研究了不同冻融循环次数下UHTCC的质量损失、动弹性模量变化、UHTCC小梁弯曲性能、UHTCC薄板弯曲性能,并与相同试验条件下普通混凝土、钢纤维混凝土和引气混凝土的试验结果进行了对比。结果显示,UHTCC在不掺加引气剂的条件下具有良好的抗冻性能,经过300次冻融循环仍能保持较高的弯曲抗拉强度和弯曲韧性。依据试验结果给出UHTCC在寒冷地区使用时的建议。
     (2)通过试验室快速碳化试验方法,对UHTCC的抗碳化性能进行了试验研究。包括无裂缝状态下UHTCC的碳化性能、UHTCC小梁预裂后带裂缝状态下的碳化性能以及UHTCC薄板碳化后的弯曲性能,并与同条件下的普通混凝土试验结果进行对比。结果显示,UHTCC抗碳化性能随龄期的增长逐渐增强,且在承受荷载后具有多条细密裂缝的开裂模式,在裂缝状态下的抗碳化性能明显优于普通混凝土试件;碳化作用能小幅提高UHTCC薄板的抗压强度和初裂弯曲应力,对其弯曲韧性基本没有影响,并依据试验结果和分析对如何评价UHTCC抗碳化性能给出了参考建议。
     (3)通过试验室抗渗性试验、快速氯离子渗透试验以及自由氯离子含量测定试验,研究了UHTCC的渗透性能,并与同条件下普通混凝土进行对比。结果显示,UHTCC具有明显优于普通混凝土的抗渗性能、较低的氯离子扩散系数,并随着龄期的逐步增加,UHTCC抗渗性能提高幅度较普通混凝土明显,氯离子扩散系数也随龄期增长而逐步降低。
     (4)通过电化学加速锈蚀方法和直接拉拔试验对UHTCC和不同锈蚀率下锈蚀钢筋的粘结性能进行了试验研究和分析,并与普通混凝土试件进行了对比。得到不同锈蚀率下UHTCC与钢筋的平均粘结应力-滑移曲线,采用粘结-滑移连续曲线模型描述了UHTCC与钢筋的平均粘结应力-滑移关系;分析了UHTCC与钢筋之间平均粘结强度随锈蚀率变化的规律,发现UHTCC能够延缓由于钢筋锈蚀而导致的UHTCC与钢筋之间粘结力的减小,起到类箍筋的作用。
     (5)采用UHTCC取代钢筋混凝土梁中保护层混凝土的思路,制作了4种不同类型的梁,包括UHTCC层厚度为15mm和50mm,以及钢筋增强混凝土梁和钢筋增强UHTCC梁,通过加速锈蚀试验方法使主筋锈蚀,研究了各梁在经历不同锈蚀时间后的破坏形态、弯曲承载力、弯曲裂缝特征等性能。结果显示,UHTCC具有优越的抵抗保护层锈胀开裂的功能,在较低的锈蚀率水平下UHTCC厚度层为50mm的梁和钢筋增强UHTCC梁极限承载力降低幅度较小,且弯曲裂缝宽度在梁荷载接近屈服时仍然维持在100μm以下,仍然发挥了其优异的裂缝控制能力。
     (6)采用弹塑性力学和圆孔扩张分析方法,考虑了UHTCC极限拉应变的影响,得出了UHTCC作为钢筋保护层时发生锈蚀开裂失效时钢筋临界锈蚀率的计算公式,并通过算例说明了UHTCC在抵抗钢筋锈胀力作用方面的有效性,并通过参数分析讨论了UHTCC保护层锈蚀开裂失效时钢筋临界锈蚀率的影响因素。
Ultra High Toughness Cementitious Composites (UHTCC) is featured with its tensile strain-hardening characteristic and outstanding crack controlling capacity. Its tensile strain capacity can be steadily up to 3% and form multiple cracking with tight crack with below 0.1mm. This unique high performance fiber reinforced cementitious composite can be applied into improving the durability of concrete structures, enhancing the seismic resistance of structures, repairing or retrofitting old structures. Design and application of UHTCC have been developed throughout the world among these decades. Many researches on the mechanical properties and structural applications of UHTCC have been carried out, but few investigations on its durability. So this thesis investigates the durable properties of UHTCC based on its design and structural properties excuted by my group. The basic durable properties of UHTCC, including the frost resistance, the carbonation properties and the permeability, are experimental studied firstly. Then the bond characteristic between UHTCC and corroded rebar is investigated. At last the corrosion resistance of RC beams with UHTCC cover has been experimentally studied and theoretically analyzed. The detailed content of this thesis are as follows:
     (1) Accelerated freezing thawing test on UHTCC has been conducted, and the mass loss, the dynamic elasticity modulus changes and the bend properties of UHTCC are gained. The test results are compared with the ones of ordinary concrete, steel fiber reinforced concrete and air-entrained concrete. The results show that UHTCC behaved good frost resistance without any air-entrained agent. UHTCC can retain high flexural strength and flexural toughness after 300 freezing-thawing cycles. The suggestions on the application of UHTCC in cold area are given.
     (2) Accelerated carbonation test on UHTCC with and without bending cracks have been carried out. The bending cracks are gained by preloading tests before carbonation test. The test results are compared with the ones of ordinary concrete. The results show that the carbonation rate of UHTCC decreases with age increasing. The carbonation depth of UHTCC at cracks is evidently lower than the one of ordinary concrete at the cracks. Carbonation can slightly enhance the compressive strength and first cracking flexural strength of UHTCC, and have no effect on the its toughness. Suggestions of evaluating the carbonation properties of UHTCC have been given based on the test results and analyses.
     (3) The permeability of UHTCC and ordinary concrete has been investigated through permeability test, rapid chloride ions penetration test and free chloride ions measurement after ponding test. The results show that UHTCC behaves much better impermeability, lower chloride ions diffusion coefficient than ordinary concrete. Furthermore, the impermeability of UHTCC increased with age goes.
     (4) The bond behaviors of UHTCC and rebar with different corrosion ratios have been investigated through accelerated corrosion test and pull out test, and compared with the ones of ordinary concrete. The average bond stress to slip curves have been gained with different rebar corrosion ratios. A continuous curve model of bond-slip has been applied for illustrating average bond stress-slip relation. The relationship between average bond strength and rebar corrosion has been analyzed. The results show that UHTCC could delay the occurrence of the bond strength decreasing due to rebar corrosion.
     (5) 4 kinds of beams, RC beam, reinforced UHTCC beam, RC beam with the concrete cover replaced by 15mm and 50mm UHTCC respectively, are manufactured. The beams are undertaken accelerated corrosion for different period of time. Bending tests are conducted when these beams finished corrosion tests, and the failure mode, flexural bearing capacity, flexural crack pattern have been studied. The results show that UHTCC can effectively restrain cover cracking due to rebar corrosion, retain the bending capacity of members, and control the flexural crack width when subjected to rebar corrosion.
     (6) Considering the tensile strain capacity of UHTCC, a formula for calculating the critical rebar corrosion ratio when the UHTCC cover cracking due to rebar corrosion through the theory of plasticity and cylindrical cavity expansion theory. The effectiveness of UHTCC for restraining the cover cracking due to rebar corrosion has been proved by a calculated example. The influences on critical rebar corrosion when the UHTCC cover cracking due to rebar corrosion have been analyzed.
引文
[1]Metha P K. Durability of concrete-fifty years of progress:durability of concrete. Proceeding of 2nd International Conference on Concrete Durability, ACI SP,1991,126(1):1-31.
    [2]吴中伟.纤维增强—水泥基材料的未来.混凝土与水泥制品.1999,1:5-6.
    [3]沈荣熹,崔琦,李清海.新型纤维增强水泥基复合材料.北京:中国建材工业出版社,2004.
    [4]Li V C, Leung C K Y. Steady state and multiple cracking of short random fiber composites. ASCE Journal of Engineering Mechanics,1992,188(11):2246-2264.
    [5]Leung C K Y, Li V C. Effect of fiber inclination on crack bridging stress in brittle fiber reinforced brittle matrix composites. Journal of Mechanics and Physics of Solids,1992,40(6):1333-1362.
    [6]Kanda T, Li V C. Practical design criteria for saturated pseudo strain hardening behavior in ECC. Journal of Advanced Concrete Technology,2006,4(1):59-72.
    [7]Wu C. Micromechanical tailoring of PVA-ECC for structural applications:(Doctoral Thesis). University of Michigan,2001.
    [8]Kanda T, Li V C. New micromechanics design theory for pseudo strain hardening cementitious composite. ASCE Journal of Engineering Mechanics,1999,125(4):373-381.
    [9]Fisher G. Deformation behavior of reinforced ECC flexural members under reversed cyclic loading conditions:(Doctoral Thesis). University of Michigan,2002.
    [10]Li V C, Wang S, Wu H C. Tensile strain-hardening behavior of PVA-ECC. ACI Materials Journal, 2001,98(6):483-492.
    [11]Li V C, Obla K H. Effect of fiber length variation on tensile properties of carbon fiber cement composites. Composite Engineering,1994,4(9):947-964.
    [12]Li V C, Wang S. On high performance fiber reinforced cementitious composites. Proceedings of the JCI International Workshop on Ductile Fiber Reinforced Cementitious Composites (DFRCC). Tokyo:Japan Concrete Institute,2003:12-23.
    [13]Fisher G, Li V C. Influence of matrix ductility on the tension-stiffening behavior of steel reinforced ECC. ACI Structural Journal,2002,99(1):104-111.
    [14]Ahmed S F U, Maalej M, Paramasivam P. Analytical model for tensile strain hardening and multiple cracking behavior of hybrid fiber-engineered cementitious composites. ASCE Journal of Materials in Civil Engineering,2007,19(7):527-539.
    [15]Sahmaran M, Lachemi M, Li V C Assessing the durability of Engineered Cementitious Composites under freezing and thawing cycles. Journal of ASTM International,2009,6(7):1-13,
    [16]Lepech M, Li V C. Durability and long term performance of engineered cementitious composites. Proceedings of Int'l workshop on HPFRCC in structural applications, Honolulu, Hawaii, USA, 2005:23-26.
    [17]Weimann M B, Li V C. Drying shrinkage and crack width of Engineered Cementitious Composites (ECC).7th International Symposium Brittle Matrix Composites, Warsaw,2003: 37-46.
    [18]Zhang J, Gong C, Guo Z et al. Engineered cementitious composite with characteristic of low drying shrinkage. Cement and Concrete Research,2009,39:303-312.
    [19]Lepech M, Li V C. Water permeability of cracked cementitious composites. ICF 11, Turin, Italy, 2005:4539-4544.
    [20]Sahmaran M, Li V C. Durability properties of micro-cracked ECC containing high volumes fly ash. Cement and Concrete Research,2009 (available online)
    [21]Kanakubo T. Tensile characteristics evaluation method for ductile fiber-reinforced cementitious composites. Journal of Advanced Concrete Technology,2006,4(1):3-17.
    [22]Kim J K, Kim J S, Ha G J et al. Tensile and fiber dispersion performance of ECC (engineered cementitious composites) produced with ground granulated blast furnace slag. Cement and Concrete Research,2007,37:1096-1105.
    [23]张君,公成旭.高韧性纤维增强水泥基复合材料单轴抗拉性能研究.第十一届全国纤维混凝土学术会议论文集,大连,2006:27-32.
    [24]公成旭,张君.高韧性纤维增强水泥基复合材料抗拉性能.水利学报,2008,39(3):361-366.
    [25]高淑玲,PVA纤维增强水泥基复合材料假应变硬化及断裂特性研究:(博士学位论文).大连:大连理工大学,2006.
    [26]高淑玲,徐世娘.PVA纤维增强水泥基复合材料拉伸特性试验研究.大连理工大学学报,2007,47(2):233-239.
    [27]高淑玲,徐世娘.利用水平外力总功研究PVA纤维增强水泥基复合材料韧性.东南大学学报,2007,37(2):324-329.
    [28]李贺东.超高韧性水泥基复合材料试验研究:(博十学位论文).大连:大连理工大学,2008.
    [29]Li H D, Xu S L, Leung C K Y. Tensile and flexural properties of Ultra High Toughness Cemontious Composite. Journal of Wuhan University of Technology(Materials Science Edition), 2009,24(4):677-683.
    [30]Li H D, Leung C K Y, Xu S L et al. Potential use of strain hardening ECC in permanent formwork with small scale flexural beams. Journal of Wuhan University of Technology(Materials Science Edition),2009,24(3):482-487.
    [31]徐世娘,蔡向荣.超高韧性纤维增强水泥基复合材料基本力学性能.水利学报,2009,40(9):1055-1063.
    [32]徐世娘,蔡向荣,张英华.超高韧性水泥基复合材料单轴受压应力一应变全曲线试验测定与分析.土木工程学报,2009,42(11):79-85.
    [33]Maalej M, Li V C. Flexural/tensile-strength ratio in engineered cementitious composites. ASCE Journal of Materials in Civil Engineering,1994,6(4):513-528.
    [34]赵铁军,毛新奇,田砾.PVA-ECC的弯曲韧性.第十一届全国纤维混凝土学术会议论文集,大连,2006:21-26.
    [35]饶芳芬.粉煤灰对超高韧性水泥基复合材料弯曲性能的影响试验研究:(硕士学位论文).大连:大连理工大学,2008.
    [36]田艳华.自密实超高韧性水泥基复合材料试验研究:(硕士学位论文).大连:大连理工大学2008.
    [37]Li V C, Mishra D K, Naaman A E et al. On the shear behavior of engineered cementitious composites. Advanced Cement Based Materials,1994,1:142-149.
    [38]Fantilli A P, Mihashi H, Vallini P. Strain compatibility between HPFRCC and steel reinforcement. Materials and Structures,2005,38:495-503.
    [39]王洪昌.超高韧性水泥基复合材料与钢筋粘结性能的试验研究:(硕士学位论文)大连:大连理工大学,2007.
    [40]徐世娘,王洪昌.超高韧性水泥基复合材料与钢筋粘结本构关系的试验研究.工程力学,2008,25(11):53-63
    [41]Boshoff W P, Van Zijl G P A G. Creep and creep fracture of Engineered Cement-based Composites. Restoration of Buildings and Monuments,2006,12(2):133-142.
    [42]Ahmed S F U, Mihashi. A review on durability properties of strain hardening fibre reinforced cementitious composites (SHFRCC). Cement and Concrete Composites,2007,29:365-376.
    [43]徐世娘,李贺东.超高韧性水泥基复合材料研究进展及其工程应用,土木工程学报,2008,41(6):45-60
    [44]Li M, Li V C. Behavior of ECC/concrete layered repair system under drying shrinkage conditions. Restoration of Buildings and Monuments,2006,12(2):143-160.
    [45]Li V C, Horii H, Kabele P et al. Repair and retrofit with engineered cementitious composites. Engineering Fracture Mechanics,2000,65:317-334.
    [46]Lim Y M, Wu H C, Li V C. Development of flexural composite properties and dry shrinkage behavior of high-performance fiber reinforced cementitious composites at early ages. ACI Materials Journal,1999,96(1):20-26.
    [47]田砾,荆斌,赵铁军等.应变硬化水泥基复合材料收缩性能的试验研究.建筑科学,2007,23(6):76-83.
    [48]朱桂红,田砾,郭平功等.工程复合材料(ECC)的耐久性能试验研究进展.工程建设,2006,38(5):7-14.
    [49]刘志凤.超高韧性水泥基复合材料干燥收缩及约束收缩下抗裂性能研究:(硕士学位论文).大连:大连理工大学,2009.
    [50]王巍.超高韧性水泥基复合材料热膨胀性能及导热性能的研究:(硕士学位论文).大连:大连理工大学,2009.
    [51]Zhang J, Li V C. Monotonic and fatigue performance in bending of fiber-reinforced engineered cementitious composite in overlay system. Cement and Concrete Research,2002,32:415-423.
    [52]Suthiwarapirak P, Matsumoto T, Kanda T. Multiple cracking and fiber bridging characteristics of engineered cementitious composites under fatigue flexure. ASCE Journal of Materials in Civil Engineering,2004,16(5):433-443.
    [53]Maalej M, Quek S T, Zhang J. Behavior of hybrid-fiber engineered cementitious composites subjected to dynamic tensile loading and project impact. ASCE Journal of Materials in Civil Engineering,2005,17(2):143-152.
    [54]Kanda T, Saito T, Sakata N et al. Tensile and anti-spalling properties of direct sprayed ECC. Journal of Advanced Concrete Technology,2003,1(3):269-282.
    [55]徐世娘.超高韧性绿色ECC新型材料研究及应用.大连:大连理工大学,2007.
    [56]Maalej M., Ahmed S. F. U., Paramasivam P.. Corrosion durability and structural response of functionally-graded concrete beams. Journal of Advanced Concrete Technology,2003,1(3): 307-316.
    [57]Sahmaran M, Li V C, Andrade C. Corrosion resistance performance of steel-reinforced engineered cementitious composite beams. ACI Materials Journal,2008,105(3):243-250.
    [58]Rokugo K, Kanda T, Yokota H et al. Applications and recommendations of high performance fiber reinforced cement composites with multiple fine cracking (HPFRCC) in Japan. Materials and Structures,2009,42:1197-1208.
    [59]Shi C J, Mo Y L. High-Performance Construction Materials-Science and Applications. Singapore: World Scientific Publishing Co. Pte. Ltd,2008.
    [60]Tsukamoto M. Tightness of fiber concrete. Darmstadt Concrete, Annual Journal on Concrete and Concrete Structures,1990,5:215-225.
    [61]Aldea C M, Shah S P, Karr A. Effect of cracking on water and chloride permeability of concrete. Journal of Materials in Civil Engineering,1999,11(3):181-187.
    [62]Maalej M, Li V C. Introduction of strain-hardening engineered cementitious composites in design of reinforced concrete flexural members for improved durability. ACI Structural Journal,1995, 92(2):167-176.
    [63]张秀芳,徐世娘.采用超高韧性水泥基复合材料提高钢筋混凝土梁弯曲抗裂性能研究(I):基本理论.土木工程学报,2008,41(12):48-54.
    [64]徐世娘,张秀芳.钢筋增强超高韧性水泥基复合材料RUHTCC受弯梁的计算理论与试验研究.中国科学E辑:技术科学,2009,39(5):878-896.
    [65]Zhang Xiufang, Xu Shilang. Theoretical analysis and experimental investigation on flexural performance of steel reinforced ultrahigh toughness cementitious composite (RUHTCC) beams. Science in China Series E:Technological Sciences,2009,52(4):1068-1089.
    [66]徐世娘,李庆华.超高韧性水泥基复合材料控裂功能梯度复合梁弯曲性能理论研究.中国科学E辑:技术科学,2009,39(6):1081-1094.
    [67]Xu S L, Li Q H. Theoretical analysis on bending behavior of functionally graded composite beam crack-controlled by ultra high toughness cementitious composites. Science in China Series E: Technological Sciences,2009,52(2):363-378.
    [68]李庆华,徐世娘.超高韧性水泥基复合材料控裂功能梯度复合梁弯曲性能试验研究.中国科学E辑:技术科学,2009,39(8):1391-1406.
    [69]Li Q H, Xu S L. Experimental investigation and analysis on flexural performance of functionally graded composite beam crack-controlled by ultra high toughness cementitious composites. Science in China Series E:Technology Sciences,2009,52(6):1648-1664.
    [70]ECC Technology Network. Patch repair of retaining wall [EB/OL]. http://www.engineeredcomposites.com/Applications/retaining_wall.html
    [71]ECC Technology Network. Patch repair of bridge deck [EB/OL]. http://www.engineeredcomposites.com/Applications/bridge_deck.html
    [72]ECC Technology Network. Patch repair of Mitaka Dam [EB/OL]. http://www.engineeredcomposites.com/Applications/mitaka_dam.html
    [73]Parra-Montesinos G. High performance fiber reinforced cement composites:an alternative for seismic design of structures. ACI Structural Journal,2005,102(5):668-675.
    [74]ECC Technology Network. Patch repair of Coupling Beam [EB/OL]. http://www.engineeredcomposites.com/Applications/coupling_beam.html
    [75]ECC Technology Network. Patch repair of Mihara Bridge [EB/OL]. http://www.engineeredcomposites.com/Applications/mihara_bridge.html
    [76]Li V C, Lepech M. Crack resistant concrete material for transportation construction. Michigan: University of Michigan,2004.
    [77]金伟良,赵羽习.混凝土结构耐久性.北京:科学出版社,2002.
    [78]Tepfers R. Cracking of concrete cover along anchored deformed reinforcing bars. Magazine of Concrete Research,1979,31(106):3-12.
    [79]Tuutti K.. Corrosion of steel in concrete. Swedish Cement and Concrete Research Institute, Stochkolm,1982.
    [80]Andrade. Cover cracking as a function of bar corrosion:part Ⅰ-experimental model. Materials and Structures,1993,26:453-464.
    [81]Molina. Cover cracking as a function of rebar corrosion:part Ⅱ-numerical model. Materials and Structures,1993,26:532-548.
    [82]Liu Y P. Modeling the time-to-corrosion cracking of the cover concrete in chloride contaminated reinforced concrete structures:(Doctoral Thesis). Virginia:Virginia Polytechnic Institute and State University,1996.
    [83]Bazant Z P. Physical model for steel corrosion in concrete sea structures-applications. Journal of Structural Division,1979,7:1155-1165.
    [84]Morinaga S. Prediction of service lives of reinforced concrete buildings based on the rate of corrosion of reinforcing steel. Special Report of the Institute of Technology, Shinizu Corporation, Japan,1989.
    [85]Maaddawy T E, Soudki K. A model for prediction of time from corrosion initiation to corrosion cracking. Cement and Concrete Composite,2007,29:168-175.
    [86]Pantazopoulou S J, Papoulia K D. Modeling cover-cracking due to reinforcement corrosion in RC structures. Journal of Engineering Mechanics,2001,127(4):342-351.
    [87]刘西拉.重大土木与水利工程安全性及耐久性的基础研究.土木工程学报,2001,6:1-7.
    [88]牛荻涛,王庆霖,王林科.锈蚀开裂前混凝土中钢筋锈蚀量的预测模型.工业建筑,1996,26(4):8-10.
    [89]牛荻涛,王庆霖,王林科.锈蚀开裂后混凝土中钢筋锈蚀量的预测.工业建筑,1996,26(4):11-13.
    [90]徐善华.混凝土结构退化模型与耐久性评估:(博士学位论文).西安:西安建筑科技大学,2003.
    [91]袁迎曙,姬永生,牟艳君.混凝土内钢筋锈蚀层发展和锈蚀量分布模型研究.2007,40(7):5-10.
    [92]袁迎曙,余索.锈蚀钢筋混凝土结构的性能退化.建筑结构学报,1997,18(4):51-57.
    [93]邸小坛,高小旺,徐有邻.我国混凝土结构的耐久性与安全问题.工程科技论坛-土建结构工程的安全性与耐久性.北京,2001.
    [94]李海波,鄢飞,赵羽习等.钢筋混凝土结构开裂时刻的钢筋锈胀力模型.浙江大学学报(工学版),2000,34(3):415-422.
    [95]金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀钢筋锈胀力及其影响因素.工业建筑,2001,31(5):6-8.
    [96]金伟良,赵羽习,鄢飞.钢筋混凝土构件的均匀钢筋锈胀力的机理研究.水利学报,2001,7:57-62.
    [97]赵羽习,金伟良.钢筋锈蚀导致混凝土构件保护层胀裂的全过程分析.水利学报,2005,36(8):939-945.
    [98]张伟平.混凝土结构的钢筋锈蚀损伤预测及其耐久性评估:(博士学位论文).上海:同济大学,1999.
    [99]Li C. Q., Zheng J. J., Lawanwisut W., Melchers R. E.. Concrete delamination caused by steel reinforcement corrosion. Journal of Materials in Civil Engineering,2007,19(7):591-600.
    [100]Li C Q. Life cycle modeling of corrosion affected concrete structures-initiation. Journal of Materials in Civil Engineering,2003,15(6):594-601.
    [101]Li C Q. Life cycle modeling of corrosion affected concrete structures-propagation. Journal of Structural Engineering,2003,129(6):753-761.
    [102]Melchers R E, Li C Q. Reinforcement corrosion initiation and activation times in concrete structures exposed to severe marine environments. Cement and Concrete Research,2009, available online, (10.1016/j.cemconres.2009.07.003).
    [103]郑建军,周欣竹,Li Chun-qing.钢筋混凝土结构锈蚀损伤的解析解.水利学报,2004,12:62-68.
    [104]陈月顺.钢筋混凝土锈胀裂缝的演化过程研究:(博士学位论文).武汉:华中科技大学,2006.
    [105]周锡武,卫军,徐港.钢筋混凝土保护层锈胀开裂的临界锈蚀量模型.武汉理工大学学报,2009,31(12):99-102.
    [106]王显利.氯离子侵蚀的钢筋混凝土结构锈蚀损伤:(博士学位论文).大连:大连理工大学,2008.
    [107]王巧平.钢筋混凝士锈裂损伤规律试验研究及理论分析:(博士学位论文).南京:河海大学,2004.
    [108]屈文俊.现有混凝土桥梁的耐久性评估及寿命预测:(博士学位论文).成都:西南交通大学,1995.
    [109]何世钦.氯离子环境下钢筋混凝土构件耐久性能试验研究:(博士学位论文).大连:大连理工大学,2004.
    [110]吴瑾.海洋环境下钢筋混凝土结构锈裂损伤评估研究:(博士学位论文).南京:河海大学,2003.
    [111]吴瑾.钢筋混凝士结构锈蚀损伤检测与评估.北京:科学出版社,2005.
    [112]金立兵.多重环境时间相似理论及其在沿海混凝土结构耐久性中的应用:(博士学位论文).杭州:浙江大学,2008.
    [113]田冠飞.氯离子环境中钢筋混凝土结构耐久性与可靠性研究:(博士学位论文).北京:清华大学,2006.
    [114]洪定海.混凝土中钢筋的腐蚀与保护.北京:中国铁道出版社,1998.
    [115]张誉,蒋利学,张伟平等.混凝土结构耐久性概论.上海:上海科学技术出版社,2003.
    [116]施惠生,郭晓潞,张贺.保护层厚度对混凝土中钢筋锈蚀的影响.水泥工程,2009,2:79-84.
    [117]蒋利学,陆伟杰.混凝土结构中钢筋保护层厚度的控制.工业建筑,2005,35(增刊):179-183.
    [118]张宝胜,干伟忠,陈涛.杭州湾跨海大桥混凝土结构耐久性解决方案.土木工程学报,2006,39(6):72-77.
    [119]吕忠达.杭州湾跨海大桥关键技术研究与实施.土木工程学报,2006,39(6):78-87.
    [120]史志华,陶学康.行业标准《环氧树脂涂层钢筋》介绍.特种结构,1998,15(2):60-63.
    [121]薛伟辰.环氧涂层钢筋混凝土结构的试验研究.同济大学学报,2001,29(7):769-773.
    [122]刘玉军.混凝土保护涂层性能和测试方法的研究:(硕士学位论文).北京:中国建筑材料科学研究院,2004.
    [123]黄君哲,范志宏,王胜年等.海洋环境中混凝土涂层防腐蚀效果分析.水运工程,2006,2:16-19.
    [124]刘芳.混凝土中氯离子浓度确定及耐蚀剂的作用:(硕士学位论文).杭州:浙江大学,2006.
    [125]刘志勇,缪昌文,周伟玲等.迁移性阻锈剂对混凝土结构耐久性的保持和提升作用.硅酸盐学报,2008,36(10):1494-1499.
    [126]洪定海,王定选,黄俊友.电迁移型阻锈剂.东南大学学报(自然科学版).2006,36(增刊):154-159.
    [127]刘秉京.混凝土结构耐久性设计.北京:人民交通出版社,2007.
    [128]竺慧珠,陈德亮,管枫年.渡槽.北京:中国水利水电出版社,2005.
    [129]黄士元,蒋家奋,杨南如等.近代混凝土技术.西安:陕西科学技术出版社,1998.
    [130]冯乃谦.高性能混凝土结构.北京:机械工业出版社,2004.
    [131]Schiepl P, Hardtle R. Relationship between durability and pore structure properties of concretes containing fly ash. Symposium on durability of concrete.1994:99-118.
    [132]中华人民共和国国家标准.GBJ82-85普通混凝土长期性能和耐久性能试验方法标准.北京:中国建筑工业出版社.
    [133]中华人民共和国国家标准.GB/T 50081-2002普通混凝土力学性能试验方法标准.北京:中国建筑工业出版社,2003.
    [134]中华人民共和国国家标准.GB/T 50476-2008混凝土结构耐久性设计规范.北京:中国建筑工业出版社,2008.
    [135]吴建华.高强高性能大掺量粉煤灰混凝土研究:(博士学位论文).重庆:重庆大学,2004.
    [136]孙家瑛.混杂聚丙烯纤维混凝土性能研究.混凝土,2003,12:16-20.
    [137]涂永明,吕志涛.应力状态下混凝土的碳化试验研究.东南大学学报(自然科学版),2003,33(5):573-576.
    [138]袁承斌,张德峰,刘桂荣等.裂缝对预应力混凝土结构耐久性影响的试验研究.工业建筑,2003,33(3):18-20.
    [139]张誉,蒋利学.基于碳化机理的混凝土碳化深度实用数学模型,工业建筑,1998,28(1):16-20.
    [140]张海燕,把多铎,王正中.混凝土碳化深度的预测模型,武汉大学学报(工学版),2006,39(5):42-45.
    [141]赵铁军.高性能混凝土的渗透性研究:(博士学位论文).北京:清华大学土木工程系,1997.
    [142]赵铁军.混凝土渗透性.北京:科学出版社,2006.
    [143]中华人民共和国交通部.JTJ270-1998.水运工程混凝土试验规程[S].北京:人民交通出版社,1998.
    [144]混凝土结构耐久性设计与施工指南(CCES 01-2004).中国土木工程学会标准.北京,2005.
    [145]刘丽芳,王培铭,杨晓杰.纤维类型及纤维参数对砂浆抗渗性能的影响.同济大学学报(自然科学版),2005,33(10):1347-1350.
    [146]王栋民,左彦峰,欧阳世翕.氯离子在掺不同矿物质掺和料高性能混凝土中的扩散性能.硅酸盐学报,2004,32(7):858-861.
    [147]冈田浩司,堤知明,横关康佑等.氯离子向混凝士中渗透速度的定量化试验研究.日本土木学会年度学术报告会,1995:286-290.
    [148]Auyueng Yubun, Balaguru P, Chung Lan. Bond behavior of corroded reinforcement bars. ACI Materials Journal,2000,97(2):214-220.
    [149]何世钦.氯离子环境下钢筋混凝土构件耐久性能试验研究:(博士学位论文).大连:大连理工大学,2004.
    [150]Lee H S, Noguchi T, Tomosawa F. Evaluation of the bond properties between concrete and reinforcement as a function of the degree of the reinforcement corrosion. Cement and Concrete Research,2002,32:1313-1318.
    [151]高丹盈,朱海堂,谢晶晶.纤维增强塑料筋混凝土粘结滑移本构模型.工业建筑,2003,33(7):41-44.
    [152]仲伟秋,贡金鑫.钢筋电化学快速锈蚀试验控制方法.建筑技术开发,2002,29(4):28-29.
    [153]Bhargava K, Ghosh A K, Mori Y et al. Analytical model for time to cover cracking in RC structures due to rebar corrosion. Nuclear Engineering and Design,2006,236:1123-1139.
    [154]赵新.锈蚀钢筋混凝土梁工作性能的试验研究:(博士学位论文).长沙:湖南大学,2006.
    [155]徐秉业,刘信声.应用弹塑性力学.北京:清华大学出版社,1995.
    [156]陈晓斌.混凝土锈胀开裂寿命预测模型及其应用研究.塑性工程学报,2009,16(4):177-182.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700