基于粘结裂缝模型的非均匀准脆性材料断裂模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为准脆性材料,混凝土的抗拉能力低、失效预警时间短,且在多级尺度上表现出非均匀性。对混凝土断裂过程的模拟研究,有助于掌握准脆性材料的裂缝起裂和开展机制。论文先对国内外非均匀准脆性材料的断裂模拟研究历史进行全面的文献回顾,重点研究各种裂缝模型的本构关系和非均匀场的模拟算法,并比较现有模拟方法的优缺点。在此基础上提出基于粘结裂缝模型的模拟方法。该方法采用具有自相关性的随机场间接表征材料属性的空间分布,在通用有限元软件Abaqus平台上,通过若干前后处理程序,进行非均匀准脆性材料的断裂模拟。
     采用该方法,先对二维平面内一个轴心受拉试块进行单元类型、网格依赖性,裂缝面特征及数值算法等方面的研究,再进行二维断裂的蒙特卡罗模拟。在论证蒙特卡罗模拟结果已收敛的前提下,分析随机场方差和特征长度对极限荷载的影响,并利用模拟结果进行初步的可靠度设计及材料强度评估。将二维模拟方法扩展至三维,对一系列静态和动态断裂过程进行三维模拟,将模拟结果与其它文献或实验数据进行比较,以验证算法的可行性。在三维空间内,对上述轴心受拉试块进行蒙特卡罗模拟,从多角度分析模拟结果,并与二维模拟结果进行比较。最后,在上述混凝土断裂模型基础上,提出基于纤维拉拔实验曲线的纤维混凝土模型,并对近年来受到广泛关注的纤维混凝土加固效果进行初步模拟和参数分析。
     研究表明,论文提出的模拟方法能够准确模拟混凝土破坏时,裂缝面形态粗糙、位置随机的特性;同样的平均强度下,混凝土的极限荷载随着抗拉强度随机场方差的增大而减小,随着骨料粒径的增大而减小;三维模拟方法考虑了厚度方向上材料的牵制作用,得到的极限荷载比二维模拟结果高;该方法适用于复杂多裂缝结构的静态或动态过程模拟,模拟所得荷载-位移曲线与实验方法所得曲线基本吻合,且网格敏感性较小。该方法依托于通用有限元软件,简单有效,可用于结构的可靠度设计及材料强度的评估。论文提出的纤维混凝土模型模拟结果与实验吻合,参数分析结果可为提高纤维混凝土性能提供理论参考。
As a typical kind of quasi-brittle material, the concrete has relatively low tensile strength and instant softening response as well as random strength distribution due to the multi-scaled heterogeneity. The research on its fracture modeling is necessary for understanding the mechanism of crack initiation and propagation in quasi-brittle materials. The fracture modeling in heterogeneous materials was thoroughly reviewed, focused on the constitution of crack model and the algorithm of random fields. After an overall comparison among the present numerical models, a new method based on the cohesive zone model was proposed. In the proposed method, an auto-correlated random field was adopted to represent the spatial distribution of mechanical properties with an in-house algorithm to insert the cohesive elements into the boundaries of solid elements and another one to map the samples of random properties, i.e. the tensile strength, to cohesive elements.
     A two-dimensional concrete specimen under uni-axial tensile was firstly modeled with attentions on the effects of element type, mesh-dependence, crack surface characteristics and solvers of nonlinear equation. A few series of Monte Carlo Simulations (MCSs) of two-dimensional fracture modeling were then conducted. After verification of the convergence of the MCSs'results, the effects of variance and characteristic length in the random field on the structure's carrying capacity were analyzed and the applications of the MCSs'results on reliability design and calculation of characteristic material strength were introduced. The method was then extended to three-dimension. Some static and dynamic fracture examples with deterministic material properties were carried on. Their numerical results were compared with experimental data or those from other numerical models. The same concrete specimen was modeled again in the context of three-dimensional methods and compared to the two-dimensional results. Finally, a Fiber Reinforced Concrete (FRC) model was introduced based on the proposed concrete model and adopted to simulate the fracture of FRC as well as some parametric study.
     The study shows that, the proposed method predicted the tortuous cracks with random spatial location in concrete; the carrying capacity decreases as the variance or characteristic length of random field of tensile strength increases; the three-dimensional model predicts higher carrying capacity than the two-dimensional model due to the interaction between the materials in thickness direction; the proposed method was proven to suit for static and dynamic modeling in complex structure as the numerical results agreed well with the experimental or numerical results in other references with little mesh-dependence; the proposed method, fulfilled in the context of a general-purposed finite element analysis package, provides a simple but effective tool for assessment of structural reliability and calculation of characteristic material strength; the proposed FRC model predicts good loading-displacement curves compared to experimental data, and the comprehensive parametric study provides theoretical guide for improvement on FRC performance.
引文
[1]中华人民共和国国家统计局.中国统计年鉴2010.北京:中国统计出版社.2010.
    [2]孙训方,方孝淑,关来泰.材料力学(Ⅰ).北京:高等教育出版社.2001.
    [3]http://www.zhfs.iqw.com/productShow-852446.htm
    [4]舒士霖,邵永治,陈鸣.钢筋混凝土结构设计原理.杭州:浙江大学出版社.2001.
    [5]Lopez, C.M., Carol, I., Aguado, A. Meso-structural study of concrete fracture using interface elements.1: numerical model and tensile behavior[J]. Materials and Structures,2008,41 (3):583-599.
    [6]Wang, C.H. Introduction to Fracture Mechanics. Melbourne:DSTO Aeronautical and Maritime Research Laboratory.1996.
    [7]Bazant, Z.P., Jaime, P. Fracture and Size Effect in Concrete and Other Quasibrittle Materials. Boca Raton, Florida:CRC Press.1998.
    [8]于骁中.岩土和混凝土断裂力学.中南工业大学出版社.1991.12.
    [9]Griffith, A.A. Phenomena of Rupture and Flow in Solids[J]. Asm Transactions Quarterly,1968,61(4):163-198.
    [10]Orowan, E., Dix, E.H., Busk, R.S., Mcreynolds, A.W. Plastic Deformation Waves in Aluminum-Discussion[J]. Transactions of the American Institute of Mining and Metallurgical Engineers,1949,185(11):876-877.
    [11]范天佑.断裂理论基础.北京:科学出版社.2003.
    [12]Irwin, G.R. Proceeding of the American Society of Testig Materials.1958.
    [13]Irwin, G.R. Analysis of stresses and strains near the end of a crack traversing a plate[J]. Journal of Applied Mechanics,1957,24(4):361-364.
    [14]Wells, M.J. Taste by Touch-Some Experiments with Octopus[J]. Journal of Experimental Biology, 1963,40(1):187-193.
    [15]Rice, J.R. A Path Independent Integral and Approximate Analysis of Strain Concentration by Notches and Cracks[J]. Journal of Applied Mechanics,1968,35(2):379-386.
    [16]Hutchinson, J.W. Singular behaviour at the end of a tensile crack in a hardening material[J]. Journal of the Mechanics and Physics of Solids,1968,16(1):13-31.
    [17]Kaplan, M.F. Crack Propagation and the Fracture of Concrete[J]. Journal of the. American Concrete Institute,
    1961,58(5):591-610.
    [18]Rashid, Y.R. Analysis of prestressed concrete pressure vessels[J]. Nuclear engineering and Design, 1968,7:334-344.
    [19]Bazant, Z.P., Oh, B.H. Crack band theory for fracture of concrete[J]. Material and Structure, 1983,16(93):155-166.
    [20]Bazant, Z.P., Lin, F.B. Nonlocal smeared crack model for concrete fracture[J]. Journal of Engineering Mechanics, ASCE,1988,114(11):2493-2510.
    [21]Ngo, D., Scordelis, A.C. Finite element analysis of reinforced concrete beams[J]. ACI Journal Proceedings, 1967,64(3):152-163.
    [22]Hillerborg, A., Modeer, M., Petersson, P.E. Analysis of crack formulation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research,1976,6:773-782.
    [23]Xu, X.P., Needleman, A. Numerical Simulations of Fast Crack-Growth in Brittle Solids[J]. Journal of the Mechanics and Physics of Solids,1994,42(9):1397-1434.
    [24]Camacho, G.T., Ortiz, M. Computational modelling of impact damage in brittle materials[J]. International Journal of Solids and Structures,1996,33(20-22):2899-2938.
    [25]Yang, Z.J., Proverbs, D. A comparative study of numerical solutions to non-linear discrete crack modelling of concrete beams involving sharp snap-back[J]. Engineering Fracture Mechanics.2004,71(1):81-105.
    [26]Jenq, Y.S., Shah, S.P. A Fracture-Toughness Criterion for Concrete[J]. Engineering Fracture Mechanics, 1985,21(5):1055-1069.
    [27]Karihaloo, B.L., Nallathambi, P. An Improved Effective Crack Model for the Determination of Fracture-Toughness of Concrete[J]. Cement and Concrete Research,1989,19(4):603-610.
    [28]Swartz, S.E., Go, C.G. Validity of Compliance Calibration to Cracked Concrete Beams in Bending[J]. Experimental Mechanics,1984,24(2):129-134.
    [29]徐世娘,赵国藩.混凝土结构裂缝扩展的双K断裂准则[J].土木工程学报.1992,25(2):32-38.
    [30]Courant, R. Variational methods for the solution of problems of equilibrium and vibration[J]. Bulletin of American Mathematical Society,1943,49:1-23.
    [31]Yang, Z.J., Su, X.T., Chen, J.F., Liu, G.H. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials[J]. International Journal of Solids and Structures,2009,46(17):3222-3234.
    [32]Jaswon, M.A. Integral Equation Methods in Potential Theory:I[J]. Proceedings of the Royal Society of London Series a-Mathematical and Physical Sciences,1963,275(Oct):23-32.
    [33]Nayroles, B., Touzot, G., Villon, P. Generalizing the FEM:Diffuse approximation and diffuseelements[J]. Computational Mechanics.1992,10:307-318.
    [34]石根华.块体系统不连续变形的数值分析新方法.北京:科学出版社.1993.
    [35]Wolf, J.P., Song, C.M. Finite-element modelling of unbounded media. Chichester:John Wiley and Sons.1996.
    [36]Song, C.M., Wolf, J.P. Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multi-materials with the scaled boundary finite-element method[J]. Computers & Structures, 2002,80(2):183-197.
    [37]Yang, Z.J. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method[J]. Engineering Fracture Mechanics,2006,73(12):1711-1731.
    [38]Moes, N., Dolbow, J., Belytschko, T. A finite element method for crack growth without remeshing[J]. International Journal for Numerical Methods in Engineering,1999,46(1):131-150.
    [39]Dolbow, J.E. An Extended Finite Element Method with Discontinuous Enrichment for Applied Mechanics[Ph.D Dissertation]. Evanston:Northwestern University.1999
    [40]Areias, P.M.A., Belytschko, T. Analysis of three-dimensional crack initiation and propagation using the extended finite element method[J]. International Journal for Numerical Methods in Engineering, 2005,63(5):760-788.
    [41]Melenk, J.M., Babuska, I. The partition of unity finite element method:Basic theory and applications[J]. Computer Methods in Applied Mechanics and Engineering,1996,139(1-4):289-314.
    [42]Osher, S., Sethian, J.A. Fronts Propagating with Curvature-Dependent Speed-Algorithms Based on Hamilton-Jacobi Formulations [J]. Journal of Computational Physics,1988,79(1):12-49.
    [43]Shinozuk, M., Astill, C.J. Random Eigenvalue Problems in Structural-Analysis[J]. Aiaa Journal, 1972,10(4):456-468.
    [44]Cambou, B. Application of first order uncertainty analysis in the finite element method in linear elasticity[C]. Proa,2nd Int. Conf. on Applications of Statistics and Probability in Soil and Structural Engineering,Aachen, Germany,1975
    [45]秦权,林道锦,梅刚.结构可靠度随机有限元——理论与工程应用.北京:清华大学出版社.2006.
    [46]Ghanem, R.G., Spanos, P.D. Spectral Stochastic Finite-Element Formulation for Reliability-Analysis[J]. Journal of Engineering Mechanics-ASCE,1991,117(10):2351-2372.
    [47]秦权,林道锦.可靠度随机有限元程序PSAP[J].建筑科学,2002,18(增2):41-45.
    [48]Elishakoff, I., Ren, Y,J. The bird's eye view on finite element method for structures with large stochastic variations[J]. Computer Methods in Applied Mechanics and Engineering,1999,168(1-4):51-61.
    [49]Yang, Z., Xu, X.F. A heterogeneous cohesive model for quasi-brittle materials considering spatially varying random fracture properties [J]. Computer Methods in Applied Mechanics and Engineering, 2008,197(45-48):4027-4039.
    [50]Krajcinovic, D., Vujosevic, M. Strain localization-Short to long correlation length transition[J]. International Journal of Solids and Structures,1998,35(31-32):4147-4166.
    [51]Gitman, I.M., Askes, H., Sluys, L.J. Representative volume:Existence and size determination[J]. Engineering Fracture Mechanics,2007,74(16):2518-2534.
    [52]Lopez, C.M., Carol, I., Aguado, A. Meso-structural study of concrete fracture using interface elements. Ⅱ: compression, biaxial and Brazilian test[J]. Materials and Structures,2008,41(3):601-620.
    [53]Teng, J.G., Zhu, W.C., Tang, C.A. Mesomechanical model for concrete. Part Ⅱ:applications[J]. Magazine of Concrete Research,2004,56(6):331-345.
    [54]Caballero, A., Lopez, C.M., Carol, I.3D meso-structural analysis of concrete specimens under uniaxial tension[J]. Computer Methods in Applied Mechanics and Engineering,2006,195(52):7182-7195.
    [55]Sfantos, G.K., Aliabadi, M.H. A boundary cohesive grain element formulation for modelling intergranular microfracture in polycrystalline brittle materials[J]. International Journal for Numerical Methods in Engineering, 2007,69(8):1590-1626.
    [56]Ibrahimbegovic, A., Delaplace, A. Microscale and mesoscale discrete models for dynamic fracture of structures built of brittle material[J]. Computers & Structures,2003,81 (12):1255-1265.
    [57]Xu, X.F., Graham-Brady, L. A stochastic computational method for evaluation of global and local behavior of random elastic media[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(42-44):4362-4385.
    [58]Koutsourelakis, P.S., Deodatis, G. Simulation of multidimensional binary random fields with application to modeling of two-phase random media[J]. Journal of Engineering Mechanics-Asce,2006,132(6):619-631.
    [59]Graham-Brady, L., Xu, X.F. Stochastic Morphological Modeling of Random Multiphase Materials[J]. Journal of Applied Mechanics-Transactions of the Asme,2008,75(6):1-22.
    [60]Most, T. Stochastic crack growth simulation in reinforced concrete structures by means of coupled finite element and meshless methods[Ph.D Dissertation]. Weimar:Bauhaus-Universitat.2005
    [61]Bruggi, M., Casciati, S., Faravelli, L. Cohesive crack propagation in a random elastic medium[J]. Probabilistic Engineering Mechanics,2008,23(1):23-35.
    [62]Grassl, P., Bazant, Z.P. Random Lattice-Particle Simulation of Statistical Size Effect in Quasi-Brittle Structures Failing at Crack Initiation[J]. Journal of Engineering Mechanics-Asce,2009,135(2):85-92.
    [63]Carmeliet, J., Deborst, R. Stochastic approaches for damage evolution in standard and nonstandard continua[J]. International Journal of Solids and Structures,1995,32(8-9):1149-1160.
    [64]Gutierrez, M.A., De Borst, R. Deterministic and stochastic analysis of size effects and damage evolution in quasi-brittle materials[J]. Archive of Applied Mechanics (Ingenieur Archiv),1999,69(9):655-676.
    [65]Vorechovsk, M. Interplay of size effects in concrete specimens under tension studied via computational stochastic fracture mechanics[J]. International Journal of Solids and Structures,2007,44(9):2715-2731.
    [66]Espinosa, H.D., Zavattieri, P.D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part Ⅰ:Theory and numerical implementation[J]. Mechanics of Materials, 2003,35(3-6):333-364.
    [67]Espinosa, H.D., Zavattieri, P.D. A grain level model for the study of failure initiation and evolution in polycrystalline brittle materials. Part Ⅱ:Numerical examples[J]. Mechanics of Materials,2003,35(3-6):365-394.
    [68]Zhou, F.H., Molinari, J.F. Stochastic fracture of ceramics under dynamic tensile loading[J]. International Journal of Solids and Structures,2004,41 (22-23):6573-6596.
    [69]Tomar, V., Zhou, M. Deterministic and stochastic analyses of fracture processes in a brittle microstructure system[J]. Engineering Fracture Mechanics,2005,72(12):1920-1941.
    [70]Abaqus. ABAQUS 6.7 User Documentation. Providence:Dassault Systemes Simulia Corporation.2007.
    [71]Barenblatt, G.I. The formation of equilibrium cracks during brittle fracture:general ideas and hypothesis, axially symmetric cracks[J]. Applied Mathematics and Mechanics,1959.23:622-636.
    [72]Dugdale, D.S. Yielding of Steel Sheets Containing Slits[J]. Journal of the Mechanics and Physics of Solids, 1960,8(2):100-104.
    [73]Rice, S.O. Mathematical Analysis of Random Noise[J]. Bell System Technical Journal,1945,24(1):46-156.
    [74]Shinozuka, M., Jan, C.M. Digital Simulation of Random Processes and Its Applications[J]. Journal of Sound and Vibration,1972,25(1):111-+.
    [75]Yang, J.N. Simulation of Random Envelope Processes[J]. Journal of Sound and Vibration,1972,21(1):73-&.
    [76]Karhunen, K. Ueber lineare Methoden in der Wahrscheinlichkeitsrechnung.1947:1-79.
    [77]Loeve, M. Probability Theory:I and II. Berlin-Heidelberg-New York:Springer-Verlag.1978.
    [78]Grigoriu, M. Evaluation of Karhunen-Loeve, spectral, and sampling representations for Stochastic processes[J]. Journal of Engineering Mechanics-Asce,2006,132(2):179-189.
    [79]Stefanou, G., Papadrakakis, M. Assessment of spectral representation and Karhunen-Loeve expansion methods for the simulation of Gaussian stochastic fields[J]. Computer Methods in Applied Mechanics and Engineering, 2007,196(21-24):2465-2477.
    [80]Yamazaki, F., Shinozuka, M. Digital Generation of Non-Gaussian Stochastic Fields[J]. Journal of Engineering Mechanics-Asce,1988,114(7):1183-1197.
    [81]Deodatis, G., Micaletti, R.C. Simulation of highly skewed non-Gaussian stochastic processes[J]. Journal of Engineering Mechanics-Asce,2001,127(12):1284-1295.
    [82]Xu, X.F. Morphological and multiscale modeling of stochastic complex materials[Ph.D Dissertation]. Baltimore:The Johns Hopkins University.2005
    [83]Hordijk, D.A. Tensile and tensile fatigue behaviour of concrete:experiments, modeling and analyses[Report]. HERON 37, Stevin Laboratory and TNO Research, Delft.1992
    [84]Riks, E. Incremental Approach to the Solution of Snapping and Buckling Problems[J]. International Journal of Solids and Structures,1979,15(7):529-551.
    [85]Crisfield, M.A. A fast incremental iterative solution procedure that handles "snap-through"[J]. Computers & Structures,1981,13:55-62.
    [86]May, I.M., Duan, Y. A local arc-length procedure for strain softening[J]. Computers & Structures, 1997,64(1-4):297-303.
    [87]中华人民共和国建设部.建筑结构可靠度设计统一标准.北京:中国建筑工业出版社.2001.
    [88]Trunk, B. Einfluss der Bauteilgroesse auf die Bruchenergie von Beton[Ph.D Dissertation]. Freiburg:2000
    [89]Trunk, B., Schober, G., Helbling, A.K., Wittmann, F.H. Fracture mechanics parameters of autoclaved aerated concrete[J]. Cement and Concrete Research,1999,29(6):855-859.
    [90]Feist, C. Numerical Simulations of Localization Effects in Plain Concrete[Ph.D. dissertation]. Innsbruck:University Innsbruck.2003
    [91]Brokenshire, D.R. A Study of Torsion Fracture Tests[Ph.D. Dissertation]. Cardiff:Cardiff University.1996
    [92]Jefferson, A.D., Barr, B., Bennett, T., Hee, S. Three dimensional finite element simulations of fracture tests using the Craft concrete model[J]. Computers and Concrete,2004,1 (3):261-284.
    [93]Gasser, T.C., Holzapfel, G.A.3D Crack propagation in unreinforced concrete. A two-step algorithm for tracking 3D crack paths[J]. Computer Methods in Applied Mechanics and Engineering, 2006,195(37-40):5198-5219.
    [94]Gasser, T.C., Holzapfel, G.A. Modeling 3D crack propagation in unreinforced concrete using PUFEM[J]. Computer Methods in Applied Mechanics and Engineering,2005,194(25-26):2859-2896.
    [95]Bordas, S., Rabczuk, T., Zi, G. Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment[J]. Engineering Fracture Mechanics,2008,75(5):943-960.
    [96]Rots, J.G. Computational Modelling of Concrete Fracture[Ph.D. Dissertation]. Delft:Delft University of Technology.1988
    [97]Du, J., Yon, J.H., Hawkins, N.M., Arakawa, K., Kobayashi, A.S. Fracture Process Zone for Concrete for Dynamic Loading[J]. Aci Materials Journal,1992,89(3):252-258.
    [98]Belytschko, T., Organ, D., Gerlach, C. Element-free Galerkin methods for dynamic fracture in concrete[J]. Computer Methods in Applied Mechanics and Engineering,2000,187(3-4):385-399.
    [99]Burrows, R.W. The Visible and Invisible Cracking of Concrete. New York:ACI Publisher.1998.
    [100]Romualdi, J.P., Mandel, J.A. Tensile strength of concrete affected by uniformly distributed closely spaced short length of wire reinforcement[J]. ACI Journal,1964.
    [101]Majumdar, A.J., Ryder, A.F. Glass fiber reinforcement of cement products[J]. Glass Technology, 1968,9(3):78-84.
    [102]Naaman, A.E. A statistical theory of strength for fiber reinforced concrete[Ph.D Dissertation]. Massachusetts:Massachusetts Institute of Technology.1972
    [103]Shah, S.P., Ranjan, R.V. Fiber reinforced concrete properties [J]. ACI Journal,1971,68(2):126-135.
    [104]Li, V.C., Leung, C.K.Y. Steady-State and Multiple Cracking of Short Random Fiber Composites[J]. Journal of Engineering Mechanics-Asce,1992,118(11):2246-2264.
    [105]徐世娘,李贺东.超高韧性水泥基复合材料研究进展及其工程应用[J].土木工程学报,2008,41(6):72-87.
    [106]Zhang, J., Leng, B. The transition from macro-multiple cracking to micro-multiple cracking in cementitious composites [J]. Tsinghua Science and technology,2008,13(5):513-517.
    [107]徐世娘,李庆华.超高韧性水泥基复合材料在高性能建筑结构中的基本应用.北京:科学出版社.2010.
    [108]梁坚凝,曹倩.高延性永久模板在建造耐久混凝土结构中的应用[J].东南大学学报(自然科学版),2006,36(Sup Ⅱ):110-115.
    [109]姜国庆,孙伟.生态型工程水泥基复合材料的制备与性能研究[J].西安建筑科技大学学报,2008,40(1):93-100.
    [110]Hededal, O., Kroon, I.B. Lightly Reinforced High-Strength Concrete[Ph.D Dissertation]. Denmark:University of Aalborg.1991
    [111]Gerstle, W.H., Dey, P.P., Prasad, N.N.V., Rahulkumar, P., Xie, M. Crack-Growth in Flexural Members-a Fracture-Mechanics Approach[J]. ACI Structural Journal,1992,89(6):617-625.
    [112]Fantilli, A.P., Mihashi, H., Vallini, P. Multiple cracking and strain hardening in fiber-reinforced concrete under uniaxial tension[J]. Cement and Concrete Research,2009,39(12):1217-1229.
    [113]Park, K., Paulino, G.H., Roesler, J. Cohesive fracture model for functionally graded fiber reinforced concrete[J]. Cement and Concrete Research,2010,40(6):956-965.
    [114]Rabczuk, T., Zi, G., Bordas, S., Nguyen-Xuan, H. A geometrically non-linear three-dimensional cohesive crack method for reinforced concrete structures[J]. Engineering Fracture Mechanics,2008,75(16):4740-4758.
    [115]Ruiz, G., Carmona, J.R., Cendon, D.A. Propagation of a cohesive crack through adherent reinforcement layers[J]. Computer Methods in Applied Mechanics and Engineering,2006,195(52):7237-7248.
    [116]Sluys, L.J., deBorst, R. Failure in plain and reinforced concrete-An analysis of crack width and crack spacing[J]. International Journal of Solids and Structures,1996,33(20-22):3257-3276.
    [117]Vanalli, L., Paccola, R.R., Coda, H.B. A simple way to introduce fibers into FEM models[J]. Communications in Numerical Methods in Engineering,2008.24(7):585-603.
    [118]Cervenka, V., Jendele, L., Cervenka, J. ATENA program documentation. Prague:Cervenka Consulting Ltd. 2009.
    [119]Radtke, F.K.F., Simone, A., Sluys, L.J. A computational model for failure analysis of fibre reinforced concrete with discrete treatment of fibres[J]. Engineering Fracture Mechanics,2010,77(4):597-620.
    [120]Cunha, V.M.C.F., Barros, J.A.O., Sena-Cruz, J.M. An integrated approach for modelling the tensile behaviour of steel fibre reinforced self-compacting concrete[J]. Cement and Concrete Research,2011,41(1):64-76.
    [121]Hauwaert, A.V., Mier, J.G.M.V. Computational modelling of the fibre-matrix bond in steel fibre reinforced concrete[C]. Fracture Mechanics of Concrete Structures,Germany,1998
    [122]Leite, J.P.B., Slowik, V., Mihashi, H. Computer simulation of fracture processes of concrete using mesolevel models of lattice structures[J]. Cement and Concrete Research,2004,34(6):1025-1033.
    [123]Bolander, J.E. Numerical modelling of fibre reinforced cement composites:linking material scales[C].6th RILEM Symposium on Fibre Reinforced Concretes,Varenna, Italy,2004
    [124]Kabele, P. Multiscale framework for modeling of fracture in high performance fiber reinforced cementitious composites[J]. Engineering Fracture Mechanics,2007,74(1-2):194-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700