双波长激光痛觉刺激的方法和技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
痛觉是人们生活中普遍存在的一种不愉快的躯体感觉以及与之相关联的恐惧和负面情绪。痛觉刺激在脑科学、神经病变的诊断、慢性痛的研究以及止痛药物和止痛方法研发等痛觉相关领域中都有着广泛的应用。它是非常重要的实验方法,具有极为重要的临床应用价值。有效的痛觉刺激方法是进行痛觉研究的必要工具。在各种刺激痛觉刺激方法中,激光诱发电位技术(Laser evoked potentials,LEPs)以其非接触的特异性激活伤害性感受器、同步性好等特点而成为了最为有效的痛觉刺激的实验方法。目前,该方法已经被应用于科学研究和临床诊断中,并在痛觉相关领域的研究中起到了不可替代的重要作用。然而,该方法也有一定的不足之处,比如难以控制基线温度或产生持续致痛。而这些不足之处又限制了LEPs在痛觉研究中的更进一步的应用。
     本研究基于理论研究和临床实际对痛觉刺激的客观需求,提出了一种既可以实现传统的短暂痛觉刺激,又能实现持续痛觉刺激、基线温度控制以及照射面积控制的LEPs技术、方法和仪器。
     针对绝大多数LEPs只采用脉冲激光刺激工作模式因而难以产生持续致痛的缺点,本文设计采用由脉冲980nm半导体激光和持续输出的1940nmTm:YAG激光双系统并行输出激光的工作方式来进行痛觉刺激。基于此设计,本文研发了双波长激光痛觉刺激器的程控电路和上位机软件,组装了整个双波长激光痛觉刺激器系统。为实现本研究的预设目标,本研究重点开发了以下三个关键技术:皮肤致痛区域控制技术、被照射表面温度反馈控制技术和导热涂层技术。通过使用由准直镜和滤光片组成的简单的光学系统,实现了对被照射皮肤表面照射区域的大小和形状控制,进而实现了对皮肤致痛区域的控制;通过设计并实现了由测温模块、上位机和程控电路中的精密控制电压源所组成的闭环反馈控制系统以及对应的温度控制算法,实现了对被照射皮肤表面的温度控制,进而实现了双波长激光器系统的基线温度控制和持续致痛模式;从980nm激光和1940nm激光照射皮肤组织发生光热效应的机理和上述两种激光的吸收率出发,研究了导热涂层技术,将激光热痛刺激的刺激方式从光热吸收致痛转变为热传导致痛,从而达到了提升激光刺激效果、降低皮肤损伤风险的目的。为验证上述三个技术的实际效果,本文设计并完成了热痛刺激的离体实验。通过离体实验中被照射表面温度的相关信息,证明了上述技术的可行性。
     此外,为了了解激光照射在皮肤组织中的温度分布情况并指导实际科研和临床致痛研究,本研究建立了经双波长激光照射后,皮肤中的温度场分布的模型:在通过实验确定了双波长激光痛觉刺激系统相关参数的基础上,本文针对1940nm激光在水中吸收率高,折射和反射率低的特点,建立了符合本文所设计双波长激光痛觉刺激器1940nm激光实际输出情况的皮肤双层有限元(Finite Element Method,FEM)分析模型;本文针对980nm激光在氧合血红蛋白导热涂层中吸收率较高的特点,建立了980nm激光照射涂有固定厚度的导热涂层的皮肤所产生的温度场分布模型,并通过离体实验对上述模型进行了验证。
     本文所设计的双波长激光痛觉刺激器,其优势在于可以在机体上同时或调制的进行短暂致痛和持续致痛而不会刺激非伤害性感受器。此外,通过对致痛区域的控制,可以对单位面积上的伤害性感受器进行致痛。这在进行神经纤维在皮肤中的分布密度的检验是有用的。基线温度控制功能,可以防止由于皮肤表面基线温度不同而对LEPs造成的影响,更有利于诱发电位信号的检出。该系统在痛觉研究、临床诊断和药物研发中具有广泛的应用前景和应用价值。
Pain is an unpleasant experience and corresponding emotion of fear and positive feeling of human.Pain stimulation has been widely used in brain science,the diagnose of neuropathy,chonic pain study and research of analgesic research.lt is a very important experimental tool in mechanism study,and also a significant method in clinical application.An effective pain stimulation is necessary in pain study,and the laser evoked potentials(LEPs) is one of the most valuable pain stimulating experimental mode by its character of non-contacting,specially eliciting nociceptors and great synchronism.Nowadays,this method has been applied in scientific study and clinical diagnosis,and shown its indispensable in pain study.However,LEPs also has some shortages which includes can not accomplish baseline control and eliciting tonic pain. And these shortages limit its further application.
     Based on the demands of pain mechanism study and clinical application,this study presented a new kind LEPs technique,method and instrument which could both elicit traditional transient pain and tonic pain,baseline control and irradiating area control.
     Considering that most of the LEPs only use pulse laser as stimulator and thus the tonic pain can be hardly elicited,this study designed a new work mode for pain stimulation:assembling both pulse980nm diode laser and continue waveform1940nm Tm:YAG laser together.Based on this design,this study developed the special designed programmed circuit and corresponding upper computer software,and finally assembled the whole dual wavelength laser stimulating system.For achieving the research target mentioned above,three key techiques had been invented:pain stimulating area control,the feedback control of irradiated surface and laser absorbed heat layer.By using the simple optical system composed by collimating lens and filters,the shape and size control of irradiated region on target skin was realized,therefore,the pain stimulating area control was achieved.By designed and accomplished the temperature control method and corresponding closed feedback control system which composed by temperature measured module,upper computer and the precise voltage control module of programmed circuit,the feedback temperature control of irradiated surface was accomplished.Thus,the dual wavelength laser owned the ability of baseline temperature control and tonic pain stimulation.For generating ideal transient eliciting effects and reducing the danger of cutaneous damage,the laser absorb heat layer which based on the mechanism of photothermal effect and absorption coefficient of980nm and1940nm lasers had been studied and used.By the laser absorb heat layer technique,the mechanism of laser heat pain had been changed from photothermal effect to heat cutaneous conduction.For testing the real effects of these techiques mentioned above,the in vitro experiments had been applied.The temperature records of these experiments showed that the aim of this study had been certified successfully accomplished.
     In addition,for understanding the temperature distribution and guiding pain study and clinical application,we established the cutaneous temperature distribution model of dual wavelength laser:First we measured the parameter of dual wavelength laser system,and then built an accurate FEM-2temporal and spital temperature distribution model by1940nm laser irradiation which benefit by the high water absorption coefficient and the low reflectance and emission in the skin;we built the temperature distribution model of hemoglobin absorb heat layer brushing skin after980nm pulse laser irradiation which benefit by the high hemoglobin absorption coefficient.The reasonableness of these models were certified by in vitro experiments.
     The dual wavelength laser pain stimulator presented in this study own the advantage of eliciting both transient pain and tonic pain in the same organism by synchronous or modulation stimulation.And the character of specially eliciting nociceptors can be reserved.In addition,several nociceptors in certain area can be elicited by pain region control,which is an advantage in IENF detection.Baseline temperature control can avoid the detection of LEPs by different baseline and enhance the LEPs quantity. In conclusion,this system presents great application prospect and value in pain study,clinical diagnosis and medicine research.
引文
[1 陈军.大奖后的思考——谈疼痛研究“国家一等奖”的缺感与展望[J].医学争鸣,2010(2):1-4.
    [2]Legrain V, Iannetti G D, Plaghki L, et al. The pain matrix reloaded:a salience detection system for the body[J].2011,93(1):111-124.
    [3]Bonica J J. History of pain concepts and pain therapy.[J]. The Mount Sinai journal of medicine, New York,1991,58(3):191-202.
    [4]俞永林.疼痛医学的历史,现状和展望[J].老年医学与保健,2012,18(5):257-259.
    [5]罗瑞林.《黄帝内经》疼痛理论探析[J].中医药学刊,2005,22(7):1312.
    [6]喻晓春,高俊虹,付卫星.论阿是穴与穴位特异性[J].针刺研究,2006,30(3):183-186.
    [7]Melzack R, Wall P D. Pain mechanisms:a new theory[J].1967,11(2):89-90.
    [8]Caterina M J, Leffler A, Malmberg A B, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor[J]. Science,2000,288(5464):306-313.
    [9]龙程.脑研究的进展,挑战与机遇[J].华南师范大学学报(自然科学版),2013.
    [10]Julius D, Basbaum A I. Molecular mechanisms of nociception[J]. Nature, 2001,413(6852):203-210.
    [11]Plaghki L, Mouraux A. How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation[J]. Neurophysiologie Clinique/Clinical Neurophysiology,2003,33(6):269-277.
    [12]Spiegel J, Hansen C, Treede R. Clinical evaluation criteria for the assessment of impaired pain sensitivity by thulium-laser evoked potentials [J]. Clinical neurophysiology,2000,111(4):725-735.
    [13]Tominaga M, Julius D. Capsaicin receptor in the pain pathway.[J].2000,83(1):20-24.
    [14]高苏宁,刘伟强.下腰痛的神经学机理认识[J].中国脊柱脊髓杂志,2000,10(4):242-244.
    [15]Penfield W. Engrams in the human brain. Mechanisms of memory.[J]. Proceedings of the Royal Society of Medicine,1968,61(8):831.
    [16]Mazzola L, Isnard J, Peyron R, et al. Stimulation of the human cortex and the experience of pain: Wilder Penfield's observations revisited[J]. Brain,2012,135(2):631-640.
    [17]郭俊唐,于生元.痛觉中枢的功能成像学研究[J].中国疼痛医学杂志,2002,8(3):165-168.
    [18]Jones A K, Friston K, Frackowiak R S. Localization of responses to pain in human cerebral cortex. [J].1992.
    [19]Bingham B, Ajit S K, Blake D R, et al. The molecular basis of pain and its clinical implications in rheumatology[J]. Nature Clinical Practice Rheumatology,2009,5(1):28-37.
    [20]Plaghki L, Mouraux A. EEG and laser stimulation as tools for pain research.[J]. Current opinion in investigational drugs (London, England:2000),2005,6(1):58-64.
    [21]Peyron R, Laurent B, Garcia-Larrea L. Functional imaging of brain responses to pain. A review and meta-analysis (2000) [J]. Neurophysiologie Clinique/Clinical Neurophysiology, 2000,30(5):263-288.
    [22]Maestu C, Cortes A, Vazquez J M, et al. Increased brain responses during subjectively-matched mechanical pain stimulation in fibromyalgia patients as evidenced by MEG[J]. Clinical Neurophysiology,2013,124(4):752-760.
    [23]Legrain V, Iannetti G D, Plaghki L, et al. The pain matrix reloaded:a salience detection system for the body[J]. Progress in neurobiology,2011,93(1):111-124.
    [24]Liu C C, Shi C, Franaszczuk P J, et al. Painful laser stimuli induce directed functional interactions within and between the human amygdala and hippocampus[J]. Neuroscience, 2011,178:208-217.
    [25]Roosink M, Renzenbrink G J, Buitenweg J R, et al. Somatosensory symptoms and signs and conditioned pain modulation in chronic post-stroke shoulder pain[J]. The Journal of Pain, 2011,12(4):476-485.
    [26]Gallace A, Torta D M, Moseley G L, et al. The analgesic effect of crossing the arms[J], Pain, 2011,152(6):1418-1423.
    [27]Legrain V, Crombez G, Mouraux A. Controlling attention to nociceptive stimuli with working memory[J]. PloS one,2011,6(6):e20926.
    [28]Mancini F, Bolognini N, Haggard P, et al. Tdcs modulation of visually induced analgesia[J]. Journal of cognitive neuroscience,2012,24(12):2419-2427.
    [29]Stancak A, Ward H, Fallon N. Modulation of pain by emotional sounds:A laser-evoked potential study[J]. European Journal of Pain,2013,17(3):324-335.
    [30]Meng J, Jackson T, Chen H, et al. Pain perception in the self and observation of others:an ERP investigation[J]. Neuroimage,2013,72:164-173.
    [31]Chouchou F, Pichot V, Perchet C, et al. Autonomic pain responses during sleep:a study of heart rate variability[J]. European Journal of Pain,2011,15(6):554-560.
    [32]Azevedo E, Manzano G M, Silva A, et al. The effects of total and REM sleep deprivation on laser-evoked potential threshold and pain perception[J]. Pain,2011,152(9):2052-2058.
    [33]Stancak A, Johnstone J, Fallon N. Effects of motor response expectancy on cortical processing of noxious laser stimuli[J]. Behavioural brain research,2012,227(1):215-223.
    [34]Romero Y R, Straube T, Nitsch A, et al. Interaction between stimulus intensity and perceptual load in the attentional control of pain.[J]. Pain,2013,154(1):135-140.
    [35]Haanpaa M, Attal N, Backonja M, et al. NeuPSIG guidelines on neuropathic pain assessment J]. Pain,2011,152(1):14-27.
    [36]Truini A, Biasiotta A, Di Stefano G, et al. Peripheral nociceptor sensitization mediates allodynia in patients with distal symmetric polyneuropathy[J]. Journal of neurology,2013,260(3):761-766.
    [37]Guerit J. Neurophysiological pain assessment:How to objectify a subjective phenomenon?[J]. Neurophysiologie Clinique/Clinical Neurophysiology,2012,42(5):263-265.
    [38]Rage M, Van Acker N, Knaapen M W, et al. Asymptomatic small fiber neuropathy in diabetes mellitus:investigations with intraepidermal nerve fiber density, quantitative sensory testing and laser-evoked potentials[J]. Journal of neurology,2011,258(10):1852-1864.
    [39]Weiss T, Giersch D A, Sauer H, et al. Perception to laser heat stimuli in depressed patients is reduced to A δ-and selective C-fiber stimulation[J]. Neuroscience letters,2011,498(1):89-92.
    [40]Kumar S, Ashe H A, Parnell L N, et al. The Prevalence of Foot Ulceration and its Correlates in Type 2 Diabetic Patients:a Population- based Study[J]. Diabetic Medicine,1994,11(5):480-484.
    [41]Geber C, Baumgartner U, Fechir M, et al. Comparison of LEP and QST and their contribution to standard sensory diagnostic assessment of spinal lesions:a pilot study[J]. Neurological Sciences, 2011,32(3):401-410.
    [42]Ferraro D, Vollono C, Miliucci R, et al. Habituation to Pain in "Medication Overuse Headache": A CO2 Laser-Evoked Potential Study[J]. Headache:The Journal of Head and Face Pain, 2012,52(5):792-807.
    [43]Haefeli J, Curt A. Refined sensory measures of neural repair in human spinal cord injury: bridging preclinical findings to clinical value[J]. Cell and tissue research,2012,349(1):397-404.
    [44]Truini A, Biasiotta A, Di Stefano G, et al. Palmitoylethanolamide restores myelinated-fibre function in patients with chemotherapy-induced painful neuropathy [J]. CNS & Neurological Disorders-Drug Targets (Formerly Current Drug Targets-CNS & Neurological Disorders), 2011,10(8):916-920.
    [45]Bjorkedal E, Flaten M A. Interaction between expectancies and drug effects:an experimental investigation of placebo analgesia with caffeine as an active placebo[J]. Psychopharmacology, 2011,215(3):537-548.
    [46]Tzabazis A, Klyukinov M, Manering N, et al. Differential activation of trigeminal C or A δ nociceptors by infrared diode laser in rats:behavioral evidence[J]. Brain research, 2005,1037(1):148-156.
    [47]Arendt-Nielsen L, Chen A C. Lasers and other thermal stimulators for activation of skin nociceptors in humans[J]. Neurophysiologie Clinique/Clinical Neurophysiology,2003,33(6):259-268.
    [48]Baumgartner U, Greffrath W, Treede R. Contact heat and cold, mechanical, electrical and chemical stimuli to elicit small fiber-evoked potentials:Merits and limitations for basic science and clinical use[J]. Neurophysiologie Clinique/Clinical Neurophysiology,2012,42(5):267-280.
    [49]Zhang R, Ren K. Animal models of inflammatory pain[J].2011:23-40.
    [50]Treede R, Lorenz J, Baumgartner U. Clinical usefulness of laser-evoked potentials[J]. Neurophysiologie Clinique/Clinical Neurophysiology,2003,33(6):303-314.
    [51]Cruccu G, Anand P, Attal N, et al. EFNS guidelines on neuropathic pain assessment[J]. European Journal of Neurology,2004,11(3):153-162.
    [52]Kakigi R, Inui K, Tamura Y. Electrophysiological studies on human pain perception[J]. Clinical neurophysiology,2005,116(4):743-763.
    [53]Svensson P, BAAD HANSEN L, Pigg M, et al. Guidelines and recommendations for assessment of somatosensory function in oro- facial pain conditions- a taskforce report[J]. Journal of oral rehabilitation,2011,38(5):366-394.
    [54]Lu P, Hsu S, Tsai M, et al. Temporal and spatial temperature distribution in the glabrous skin of rats induced by short-pulse CO2 laser[J]. Journal of biomedical optics,2012,17(11):117002.
    [55]Mor J, Carmon A. Laser emitted radiant heat for pain research[J]. Pain,1975,1(3):233-237.
    [56]Cruccu G, Aminoff M J, Curio G, et al. Recommendations for the clinical use of somatosensory-evoked potentials [J]. Clinical neurophysiology,2008,119(8):1705-1719.
    [57]Cruccu G, Garcia-Larrea L. Clinical utility of pain-laser evoked potentials [J]. Supplements to Clinical neurophysiology,2004,57:101-110.
    [58]Guelsoy M, Durak K, Kurt A, et al.980-nm diode laser application in electroneurophysiology:a LEP study:EOS/SPIE European Biomedical Optics Week,2001[C]. International Society for Optics and Photonics.
    [59]Leandri M, Saturno M, Spadavecchia L, et al. Measurement of skin temperature after infrared laser stimulation[J]. Neurophysiologie Clinique/Clinical Neurophysiology,2006,36(4):207-218.
    [60]Gulsoy M, Durak K, Kurt A, et al. The 980-nm diode laser as a new stimulant for laser evoked potentials studies[J]. Lasers in surgery and medicine,2001,28(3):244-247.
    [61]Mouraux A, Iannetti G D, Colon E, et al. Nociceptive steady-state evoked potentials elicited by rapid periodic thermal stimulation of cutaneous nociceptors[J]. The Journal of Neuroscience, 2011,31(16):6079-6087.
    [62]Truini A, Galeotti F, Pennisi E, et al. Trigeminal small-fibre function assessed with contact heat evoked potentials in humans[J]. Pain,2007,132(1):102-107.
    [63]Kenshalo D R, Bergen D C. A device to measure cutaneous temperature sensitivity in humans and subhuman species[J]. Journal of applied physiology,1975,39(6):1038-1040.
    [64]Baumgartner U, Cruccu G, Iannetti G D, et al. Laser guns and hot plates[J]. Pain, 2005,116(1):1-3.
    [65]Valeriani M. How much does the neurophysiological assessment of the nociceptive pathways cost?[J]. Clinical Neurophysiology,2011,122(12):2334-2335.
    [66]Andersen O K, Jensen L M, Brennum J, et al. Evidence for central summation of C and A δ nociceptive activity in man[J]. Pain,1994,59(2):273-280.
    [67]Greenspan J D, McGillis S L. Thresholds for the perception of pressure, sharpness, and mechanically evoked cutaneous pain:effects of laterality and repeated testing[J]. Somatosensory & motor research,1994,11 (4):311-317.
    [68]Lefaucheur J, Ahdab R, Ayache S S, et al. Pain-related evoked potentials:A comparative study between electrical stimulation using a concentric planar electrode and laser stimulation using a CO2 laser[J]. Neurophysiologie Clinique/Clinical Neurophysiology,2012,42(4):199-206.
    [69]Lelic D, Morch C D, Hennings K, et al. Differences in perception and brain activation following stimulation by large versus small area cutaneous surface electrodes [J]. European Journal of Pain, 2012,16(6):827-837.
    [70]de Tommaso M, Santostasi R, Devitofrancesco V, et al. A comparative study of cortical responses evoked by transcutaneous electrical vs CO2 laser stimulation[J]. Clinical Neurophysiology, 2011,122(12):2482-2487.
    [71]Perchet C, Frot M, Charmarty A, et al. Do we activate specifically somatosensory thin fibres with the concentric planar electrode? A scalp and intracranial EEG study [J]. Pain, 2012,153(6):1244-1252.
    [72]Lefaucheur J, Ahdab R, Ayache S S, et al. Pain-related evoked potentials:A comparative study between electrical stimulation using a concentric planar electrode and laser stimulation using a CO2 laser[J]. Neurophysiologie Clinique/Clinical Neurophysiology,2012,42(4):199-206.
    [73]Naert A L, Kehlet H, Kupers R. Characterization of a novel model of tonic heat pain stimulation in healthy volunteers [J]. Pain,2008,138(1):163-171.
    [74]Torebjork E. Human microneurography and intraneural microstimulation in the study of neuropathic pain[J]. Muscle & nerve,1993,16(10):1063-1065.
    [75]Granmo M, Jensen T, Schouenborg J. Nociceptive Transmission to Rat Primary Somatosensory Cortex- Comparison of Sedative and Analgesic Effects[J]. PloS one,2013,8(1):e53966.
    [76]Voegelin M R, Zoppi M, Meucci R, et al. Factors influencing pricking pain threshold using a CO2 laser[J]. Physiological measurement,2003,24(1):57.
    [77]Arendt-Nielsen L, Bjerring P. Sensory and pain threshold characteristics to laser stimuli.[J]. Journal of Neurology, Neurosurgery & Psychiatry,1988,51(1):35-42.
    [78]Hardy J D, Muschenheim C. The radiation of heat from the human body. IV. The emission, reflection, and transmission of infra-red radiation by the human skin[J]. Journal of Clinical Investigation,1934,13(5):817.
    [79]Kramer J, Haefeli J, Curt A, et al. Increased baseline temperature improves the acquisition of contact heat evoked potentials after spinal cord injury[J].2012,123(3):582-589.
    [80]Tillman D, Treede R, Meyer R A, et al. Response of C fibre nociceptors in the anaesthetized monkey to heat stimuli:estimates of receptor depth and threshold.[J]. The Journal of physiology, 1995,485(Pt3):753-765.
    [81]Wu G, Campbell J N, Meyer R A. Effects of baseline skin temperature on pain ratings to suprathreshold temperature-controlled stimuli[J]. Pain,2001,90(1):151-156.
    [82]Hardy J D, Goodell H, Wolff H G. The influence of skin temperature upon the pain threshold as evoked by thermal radiation.[J]. Science,1951.
    [83]Tjolsen A, Berge O, Kristian Eide P, et al. Apparent hyperalgesia after lesions of the descending serotonergic pathways is due to increased tail skin temperature[J]. Pain,1988,33(2):225-231.
    [84]Hole K, Tjolsen A. The tail-flick and formalin tests in rodents:changes in skin temperature as a confounding factor[J]. Pain,1993,53(3):247-254.
    [85]Chen A C, Niddam D M, Arendt-Nielsen L. Contact heat evoked potentials as a valid means to study nociceptive pathways in human subjects[J]. Neuroscience letters,2001,316(2):79-82.
    [86]Chen A C, Treede R. The McGill Pain Questionnaire in the assessment of phasic and tonic experimental pain:behavioral evaluation of the'pain inhibiting pain'effect[J]. Pain, 1985,22(1):67-79.
    [87]Coderre T J, Vaccarino A L, Melzack R. Central nervous system plasticity in the tonic pain response to subcutaneous formalin injection[J]. Brain research,1990,535(1):155-158.
    [88]Churyukanov M, Plaghki L, Legrain V, et al. Thermal Detection Thresholds of A δ-and C-Fibre Afferents Activated by Brief CO2 Laser Pulses Applied onto the Human Hairy Skin[J]. PloS one, 2012,7(4):e35817.
    [89]SMITH G M, EGBERT L D, MARKOWITZ R A, et al. An Experimental Pain Method Sensitive to Morphine in Man:the Submaximum Effort Tourniquet Technique[J]. Survey of Anesthesiology,1967,11(4):332.
    [90]Simone D A, Ochoa J. Early and late effects of prolonged topical capsaicin on cutaneous sensibility and neurogenic vasodilatation in humans[J]. Pain,1991,47(3):285-294.
    [91]Casanova-Molla J, Grau-Junyent J M, Morales M, et al. On the relationship between nociceptive evoked potentials and intraepidermal nerve fiber density in painful sensory polyneuropathies[J]. Pain, 2011,152(2):410-418.
    [92]Valentini E, Torta D M, Mouraux A, et al. Dishabituation of laser-evoked EEG responses: dissecting the effect of certain and uncertain changes in stimulus modality[J]. Journal of cognitive neuroscience,2011,23(10):2822-2837.
    [93]Liu C, Ohara S, Franaszczuk P J, et al. Attention to painful cutaneous laser stimuli evokes directed functional connectivity between activity recorded directly from human pain-related cortical structures[J]. Pain,2011,152(3):664-675.
    [94]Moont R, Pud D, Sprecher E, et al.'Pain inhibits pain'mechanisms:Is pain modulation simply due to distraction?[J]. Pain,2010,150(1):113-120.
    [95]Liu C C, Crone N E, Franaszczuk P J, et al. Fear conditioning is associated with dynamic directed functional interactions between and within the human amygdala, hippocampus, and frontal lobe[J]. Neuroscience,2011,189:359-369.
    [96]Kou L, Labrie D, Chylek P. Refractive indices of water and ice in the 0.65-to 2.5-μm spectral range[J]. Applied Optics,1993,32(19):3531-3540.
    [97]Walsh J T, Flotte T J, Deutsch T F. Er:YAG laser ablation of tissue:effect of pulse duration and tissue type on thermal damage[J]. Lasers in surgery and medicine,1989,9(4):314-326.
    [98]Pope R M, Fry E S. Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements[J]. Applied optics,1997,36(33):8710-8723.
    [99]Parker S. Verifiable CPD paper:laser-tissue interaction[J]. British dental journal, 2007,202(2):73-81.
    [100]ROMANOS G, NENTWIG G. Diode laser (980 nm) in oral and maxillofacial surgical procedures:clinical observations based on clinical applications[J]. Journal of clinical laser medicine & surgery,1999,17(5):193-197.
    [101](?)洋.激光生物学[M].湖南科学技术出版社,1995.
    [102]李海涛,杨继庆.激光生物效应及医学应用研究[J].第四军医大学学报,2007,28(14):1341-1342.
    [103]Madsen S J, Patterson M S, Wilson B C. The use of India ink as an optical absorber in tissue-simulating phantoms[J]. Physics in medicine and biology,1992,37(4):985.
    [104]Plaghki L, Mouraux A. How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation[J]. Neurophysiologie Clinique/Clinical Neurophysiology,2003,33(6):269-277.
    [105]Leandri M, Saturno M, Spadavecchia L, et al. Measurement of skin temperature after infrared laser stimulation[J]. Neurophysiologie Clinique/Clinical Neurophysiology,2006,36(4):207-218.
    [106]Ochoa J, Mair W G. The normal sural nerve in man. I. Ultrastructure and numbers of fibres and cells.[J]. Acta neuropathologica,1968,13(3):197-216.
    [107]Lauria G, Cornblath D R, Johansson O, et al. EFNS guidelines on the use of skin biopsy in the diagnosis of peripheral neuropathy [J]. European Journal of Neurology,2005,12(10):747-758.
    [108]马浩统,周朴,王小林,等.基于液晶空间光调制器的激光束近场整形[J].光学学报,2010(7):2032-2036.
    [109]黄水平,胡德敬.激光准直仪的设计性物理实验[J].物理实验,2004,24(5):31-34.
    [110]李小霞.激光照射下生物组织热效应的数值分析与实验研究[D].天津:天津大学,2004.
    [111]Pennes H H. Analysis of tissue and arterial blood temperatures in the resting human forearm[J]. Journal of applied physiology,1998,85(1):5-34.
    [112]丁海峰.皮肤生物组织光热响应研究[D].上海:上海交通大学,2008.
    [113]Oliver J W, Stolarski D J, Kumru S S, et al. Infrared skin damage thresholds from 1940-nm continuous-wave laser exposures[J]. Journal of biomedical optics,2010,15(6):65008.
    [114]Kojundzic S L, Dujmovic I, Grkovic I, et al. Regional differences in epidermal thickness and behavioral response following partial denervation of the rat paw[J]. International Journal of Neuroscience,2008,118(12):1726-1740.
    [115]Frahm K S, Andersen O K, Arendt-Nielsen L, et al. Spatial temperature distribution in human hairy and glabrous skin after infrared CO2 laser radiation[J]. Biomedical engineering online, 2010,9(1):69.
    [116]宋菲君,贾卓颖.近红外影像诊断的物理基础和乳腺癌的早期诊断[J].物理,2009,38(01):0-0.
    [117]Bornhovd K, Quante M, Glauche V, et al. Painful stimuli evoke different stimulus-response functions in the amygdala, prefrontal, insula and somatosensory cortex:a single-trial fMRI study[J]. Brain,2002,125(6):1326-1336.
    [118]李逾晖.交直交开关电源数控系统设计及关键问题研究[D].杭州:浙江大学,2004.
    [119]肖克,吴士明.考察红外热像仪医用价值的临床试验报告[J].激光杂志,2013,34(2):62-63.
    [120]Al-Saadi M H, Nadeau V, Dickinson M R. A novel modelling and experimental technique to predict and measure tissue temperature during CO2 laser stimuli for human pain studies[J]. Lasers in medical science,2006,21(2):95-100.
    [121]郑子伟.红外测温仪概述[J].计量与测试技术,2006,33(10):22-23.
    [122]Iannetti G D, Leandri M, Truini A, et al. A δ nociceptor response to laser stimuli:selective effect of stimulus duration on skin temperature, brain potentials and pain perception[J]. Clinical neurophysiology,2004,115(11):2629-2637.
    [123]虞致国,徐健健.MAX6675的原理与应用[J].国外电子元器件,2002(12):41-43.
    [124]魏可臻,张奇.热电偶热传导测温中的动态响应时问和误差估计[J].测试技术学报,2008,21(6):523-526.
    [125]Huang J, Togawa T. Measurement of the thermal inertia of the skin using successive thermograms taken at a stepwise change in ambient radiation temperature[J]. Physiological measurement,1995,16(4):213.
    [126]Paxinos George,帕克森诺斯,Watson Charles,等.大鼠脑立体定位图谱[M].人民卫生出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700