楼宇冷热电联供系统中余热锅炉的参数优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前我国能源的开发利用面临着经济增长和环境保护的双重巨大压力,合理有效的利用能源已成为我国可持续发展的关键。当前我国投入巨资建设的西气东输工程,就是应对这一压力的措施之一。小型多联产总能系统即楼宇冷热电联产(BCHP)系统能够实现对一次能源合理的梯级利用,正是合理利用天然气资源的最佳途径和最有效手段。但是,目前国内BCHP系统初投资和燃料价格都较高,在这种情况下对系统中的一个关键设备——余热锅炉进行参数优化,以使整个工程达到最佳的经济性显然非常必要,对BCHP在国内的顺利推广具有重要意义。
     本文针对一投入运行的BCHP系统,根据其实际运行所测得的结果,建立了余热锅炉的热力学模型。由于目前尚没有专门用于冷热电三联供系统冷热电三种产品的成本分摊计算方法,在对现有用于热电联产的成本分摊方法进行热经济学分析的基础上,提出把作功能力法和热量法结合起来对冷热电三联供系统成本分摊,这种方法对三联供成本分摊来说较合理且方便。利用国内制造厂的实际经验数据和公式,建立了实用的余热锅炉造价估算模型。按照本文提出的成本分摊方法及余热锅炉造价估算模型,建立了BCHP系统的热经济学模型。
     建立了以BCHP系统的冷量成本为目标函数,以余热锅炉排烟温度、蒸发器和省煤器中螺旋翅片管管排数、每排管数、管束横向节距和管束纵向节距为决策变量的余热锅炉优化模型。应用所建立的优化计算模型,对BCHP系统七个工况分别进行优化计算。在无论哪个工况下,余热锅炉参数优化后其(火用)效率、BCHP系统总(火用)效率都比较未优化时有所提高,冷量分摊的成本、冷热两种产品所分摊的成本都比较未优化时有所减少。本文所建立的模型与BCHP系统实际负荷分布图结合,就能得到余热锅炉结构参数最终的一组优化结果。
     由本文变工况优化结果可推断出一个重要结论:余热锅炉的最优结构与BCHP系统的负荷特性有关。本文还就BCHP系统负荷分布特性的影响作了分析,最后指出余热锅炉最终优化结果只是适用于一个特定的BCHP系统,并不具有通用性。
Currently, The energy's development and usage are facing the bigness pressure in the economy increase and the environmental protection, making use of the energy validly and reasonably has became the sustainable development's crux in our country. The project which our country are consuming the enormous investment to construct transporting the natural gas from west to east is one of the measure to reply this pressures. The Building Cooling Heating and Power Generation (BCHP) system can realize not only the most reasonable usage to the primary energy but also the best path and the most valid means to make use of the natural gas resources. But recently in our country the initial investment and the fuel costs of BCHP system are higher, so in this case it is necessary to optimize the important equipment-Heat Recovery Steam Generator (HRSG) to make the whole system have the best thermal-economic, and it will have the important meaning to popularize the BCHP system smoothly in our country.
    According to the practical result for a running BCHP system, the thermal model of HRSG was established. Because there is not the special cost apportionment method for the products of the BCHP system, on the bases of analysis the cost apportionment methods for Combined Cycle, with the workability and calorific methods and using operating data of the system, the costs of unit amount of exergy of cool, heat and electric power were calculated by apportioning the overall cost of the system among the cool, heat and power. The cost apportionment method to the whole system was established. The cost-evaluation model of HRSG was also established, the data and empirical correlations used in cost model are all from domestic manufactures and hence are real and practical.
    For the optimization function of HRSG, the cool costs is considered as the objective function and the variables are the number of row, the number of tube per row, the horizontal distance and vertical distance between tubes of the Evaporator and the Economizer. Using the optimization model, the optimization results can be calculated respectively on the off-design performance of the system, discussions on the calculation results were carried out. A group of optimal parameters of HRSG can be received by combined the models in this paper and the chart of the BCHP system's actual load.
    Based on the optimal results an important conclusion can be predicted out that the optimal structure of HRSG are related with the load characteristic of the BCHP system. Furthermore, the factors which affect the load characteristic of the BCHP system were analyzed, finally, it was pointed out that the optimal structure of HRSG just be applicable to a particular BCHP system and so it cannot be used generally.
引文
[1] 李明辉,肖青,能源环境与可持续发展,地域研究与开发,1997,16(3),24-29.
    [2] 徐建中.分布式供电和冷热电联产的前景,节能与环保,2002.3,10-14
    [3] 朱成章.热电联产、冷热电联产和小型冷热电联产,节能和环保,2001.1,25-27
    [4] 韩晓平,小型燃气轮机热电联产—西气东输市场的最佳选择,节能与环保,2002(2),8-12.
    [5] 韩晓平,小型燃气轮机热电联产,节能与环保,2002(2),8-12.
    [6] 王铭忠.在我国发展天然气联合循环发电的障碍与建议,中国能源,2003,25(8),18-20.
    [7] 刘凤强,张时飞,潘卫国,等.楼宇冷热电联供系统的变工况及热力学分析,动力工程,2002,22(5),2002-2010
    [8] 朱成章.从热电联产走向冷热电联产,国际电力,2000.2,10-12
    [9] 韩晓平,楼宇热电厂,节能和环保,2002(3),30-31.
    [10] 盛凯夫,饶如鳞.燃气机驱动冷热电联供系统的发展前景,煤气与热力,2002,22(6),510-514
    [11] 高林华.溴化锂吸收式制冷机在燃机发电领域的应用,制冷技术,1999,1,49-53.
    [12] 戴永庆.溴化锂吸收式制冷技术及应用,机械工业出版社,1996.
    [13] 王振铭.从节能、环保角度谈发展热电联产的重要意义,电力技术经济,2002(5),39-40.
    [14] 韩晓平,第二代能源系统解读信息时代,节能与环保,2002(1),15-19.
    [15] 王振铭,韩晓平.发展BC^2HPGH楼宇热电冷植联产全能量—资源综合利用和零排放生态能源系统应作为北京申奥的一张王牌,中国能源网.
    [16] 郑国耀,李道林,张时飞等.黄浦区中心医院“热、电、冷”三联供工程设计及实践,动力工程,2002,1 37(5),2002-20 10.
    [17] 黄文波,林汝谟,肖云汉.联合循环中余热锅炉及其热力特性分析,燃汽轮机技术,1996,9(4),21-30.
    [18] 杨伟良,徐栋梅,吕震宇.燃气—蒸汽联合循环余热锅炉概述,锅炉制造,2001.5,12-15
    [19] 薛一泰.燃气—蒸汽联合循环发电的市场前景与余热锅炉技术发展,余热锅炉,2002.1,1-5
    [20] 岳伟挺,李素芬,沈胜强.双压再热余热锅炉蒸汽参数优化与分析,节能,2001,8,10-12.
    [21] 王德慧,李政,徐大懋.余热锅炉型联合循环蒸汽系统优化设计,燃气轮机发电技术,2000.11(2).
    [22] 彭根南,余热锅炉的(火用)分析及其参数选择,长沙电力学院学报,1997,12(4),416-420。
    [23] Manuel Valders, Jose L. Rapun, Optimization of heat recovery steam generators for combined cycle gas turbines power plants, Applied Thermal Engineering, November 2000, 1149-1159.
    [24] Akber Pasha, Sanjeev Jolly, Combined Cycle Heat Recovery Steam Generators Optimum Capabilities and Selection Criteria, Heat Recovery System & CHP Vol. 15, No. 2, 1995, 147-154.
    [25] 王德慧,周一工.大型燃机联合循环余热锅炉的发展,锅炉制造,2000.11,25-29
    [26] 曹家牲.高频焊接螺旋翅片管的换热及阻力特性,东方电气评论,1996,2(6),78-81.
    
    
    [27] 陈起铎,刘长和,赵时光,等.燃气轮机余热锅炉的设计特点.热能动力工程,1995.10(5),283-290.
    [28] 董益成,冷冰,黄持胜.燃气轮机余热锅炉的优化设计,电力建设,2003.24(1),13-16
    [29] 董益成,冷冰,黄持胜.大型燃气轮机联合循环发电厂余热锅炉优化设计的几个问题探讨,余热锅炉,2002.3,12-1 7
    [30] 王德慧,联合循环蒸汽系统设计与优化研究,学位论文.
    [31] 奚士光,吴味隆,蒋君衍.锅炉及锅炉房设备,中国建筑工业出版社,1999.
    [32] 冯俊凯,沈幼庭.锅炉原理及计算,科学出版社,1992.
    [33] 卡拉西娜,摩强.锅炉机组热力计算标准方法,中国工业出版社
    [34] 王加璇,张恒良.动力工程热经济学,水利电力出版社,1995.
    [35] 朱明善.能量系统的(火用)分析,清华大学出版社,1988.
    [36]于淑梅,张树芳.热电联产的多样性与热电成本分摊方法适应性的探讨,电站系统工程,2002,18(5),45—46.
    [37] 金采赤.热电联产成本分摊方法的研究,东北电力技术,1998,19(11),26-28.
    [38] 秦志红,刘凤强,曹家枞.楼宇冷热电联供系统的热经济性分析,2003,19(2),116-121.
    [39] 沈幼庭,何锦英.热力系统及设备最优化,机械工业出版社,1985.
    [40] Mirkovic Z. Heat Transfer and Flow Resistance Correlation for Helically Finned and Staggered Tube Banks in Cross-flow, Heat Exchangers, Design and Theory Source Book, edited by N. Afgan and E. U. Schlumder, Scripta Book Company, USA, 1974, 599-584.
    [41] 苏金明,阮沈勇.MATLAB 6.1实用指南,电子工业出版社,2002.1
    [42] 施阳,李俊.MATLAB语言工具箱—TOOLBOX实用指南,西北工业大学出版社,1999.
    [43] Edward B.Magrab等.MATLAB原理与工程应用,电子工业出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700