砷超富集植物的超微结构、形态特征及其植物修复效果
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砷污染问题已引起世界各国的密切关注。土壤中的砷可通过食物链途径进入人体,还可由飘尘、淋失等造成大气和水体的二次污染。常规土壤治理方法不能经济有效地修复砷污染土壤,应用砷超富集植物蜈蚣草对砷污染土壤进行植物修复是被认为是经济、快速、无二次污染的新方法。本文调查湖南郴州市的典型砷污染区农田中植物砷浓度,评估其健康风险及危害途径,结合进行砷超富集植物的微观结构及形态特征变化研究,试图筛选适合于砷污染农田修复的植物种类(居群)。本文研究结果表明:
     1.土壤砷污染程度对抛荒农田自然恢复植被类型有显著影响,恶性杂草雀稗是自然恢复植被物种丰富度的直接控制因子。当地蔬菜可食部位的砷浓度超标现象严重。人体通过蔬菜途径摄入的砷量超过了WHO限定的安全标准(每日2.1 μg/kg体重)。砷的摄入途径分析发现,自然恢复植被和种植污染区域的蔬菜都是当地居民砷暴露的重要途径。
     2.在砷污染农田上进行不同种类植物的小区对比试验表明,超富集植物蜈蚣草适于修复农田砷污染。耐性植物五节芒和苎麻对污染农田的修复效率为蜈蚣草的四百至六百分之一,不适用于修复砷污染农田。工业用经济作物蓖麻的生物积累砷量最小,而且产量很低。
     3.对不同地区蜈蚣草体细胞染色体倍性的初步分析表明,各地区
    
    硕士学位论文砷超富集植物的超微结构、形态特征及其植物修复效果
    娱蚁草倍性有差异,不同倍性螟蛤草对砷的总富集量为:二倍体>三
    倍体>四倍体。不同浓度砷处理对娱蚁草袍子的萌发和配子体的发育
    有显著影响:低浓度砷起促进作用,高浓度砷起抑制作用,且抑制作
    用随砷浓度升高而增强。
     4.对砷、钙处理下叶片细胞的超微结构变化研究表明:娱蚁草对
    砷、钙具有较强的耐受能力,过高浓度的钙使娱蚁草叶绿体结构受到
    一定程度的破坏。介质中钙的适量增加可缓解砷对大叶井口边草叶绿
    体和线粒体的胁迫。大叶井口边草对缺钙的敏感程度较高。对细胞中
    Caz+分布研究表明:高钙处理对娱蚁草产生逆境胁迫;高砷胁迫下,
    娱蚁草可自主协调适应。钙和大叶井口边草对砷的解毒作用可能有
    关。
Arsenic contamination and exposure, because of its toxicity ,and carcinogenicity, caused great concern. However, the hazard of soil arsenic contamination, which usually fails to notice and consider, has not became an important environmental issue. Conventional technology has not adapted to remediated arsenic contaminated soil effectively and economically. Phytoremediation of As-contaminated soils with arsenic hypteraccumulator - Pteris vittata L. has been considered to be an economic, fast and little secondary contaminative new remedial technology. In order to pick out the right plants (groups) which can be apply to phytoremediation of As-contaminated farmlands, arsenic in plants and potential risk for human from As-contaminated farmlands in Chenzhou city, Hunan province were assessed, and ultrastructure and morphological character change of arsenic hyperaccumulators after arsenic treatment have been researched.
    1.Revegetation in As-contaminated soil was significantly affected by contaminated grade, The main factor for controlling the species diversity in the soil was growth of Paspalum sp., a dominated weed. As concentration in edible part of most vegetables exceed the maximal permissible limit. Intake of arsenic from consuming vegetables exceeded the standard (2.1 ng/kg body wt. per day) set by WHO.
    2.Comparative test of four different plants on As-contaminated farmland, the results showed: hyperaccumulator - P. vittata is the one which adapt to apply to phytoremediation; both remedial efficiency of tolerant plants Miscanthus floridulu Warb. and Boehmeria nivea (L.) Gaud, far lower than P. vittata's, so these two kinds tolerant plants are not fit to apply to phytoremediation; arsenic biotic pyramid of the industrial commercial crop Ricinus communis L. is the lowest one ,and it's crop output
    
    
    was very low.
    3.Ploidies of P. vittata come from three areas have been analyzed, and the results show that they are different. As-accumulate capability trend of different ploidy is: diploid>triploid>tetraploid. Growth and development of P. vittata's gametophyte was significantly affected by arsenic concentration: they can be promoted by the low concentration and be inhibited by high concentration, and the inhibition can be strengthening by lifting of arsenic concentration.
    4.Ultrastructure character change of leaf after different arsenic and calcium concentration treatment have been research, the results show that structure of P. vittata's chloroplast can be damaged by the high calcium concentration, and P. vittata have the high tolerance to arsenic and calcium. Add proper quantities calcium can lighten arsenic menace to chloroplast and mitochondria of Pteris nevosa. Research of the Ca2+ distribution in cell show that high concentration calcium makes menace to P. vittata, which can adjust itself under high arsenic menace. Calcium maybe related to the arsenic antidotal action of P. nevosa.
引文
[1] Nriagu J O, Pacyna J M. Quantitative assessment of world-wide contamination of air, water and soils by trace metals. Nature (London), 1988, 333: 134-139
    [2] 陈怀满.土壤—植物系统中的重金属污染.科学出版社.北京,1996
    [3] 小山雄生.土壤和作物中的砷(杨国治译).土壤农化,1976,6:41-51
    [4] O'Nell R Arsenic, In: Alloway B J (ed), Heavy Metals in Soils, Blackie, Glasgow and London, 1990: 83-99
    [5] 翁焕新,张霄宇,邹乐君,等.中国自然土壤中砷的自然存在状况及其成因分析.浙江大学学报(工学版),2000,1:54-58
    [6] Ng J C, Kratzman S M, Qi L X, et al. Speciation and absolute bioavailability: risk assessment of arsenic-contaminated sites in a residential suburb in Canberra. Analyst, 1998, 123: 889-892
    [7] Mitchell P, Barr D. The nature and significance of public exposure to arsenic: a review of its relevance to south west England. Environmental Geochemistry and Health, 1995, 17: 57-82
    [8] Gidhagen L, Kahelin H, Schmidt-Thomé P, et al. Anthropogenic and natural levels of arsenic in PM10 in Central and Northern Chile. Atmospheric Environment, 2002, 30: 3803-3817
    [9] 王连方,颜世铭.我国地方性砷中毒研究进展。世界元素医学,1999,6(3): 19-24
    [10] Rahman M, Tondel M, Ahmad S A, et al. Hypertension and arsenic exposure in Bangladesh Source. Hypertension, 1999, 33: 74-78
    [11] Das D, Chatterjee C, Mandal B K, et al. Arsenic in groundwater in six districts of West Bengal, India: the biggest arsenic calamity in the world, Part 2: Arsenic concentration in drinking water, hair, nails, urine, skin-scale and liver tissue of the affected people. Analyst, 1995, 120: 917-924
    [12] 廖自基.微量元素的环境化学及生物效应.中国环境科学出版社,1992
    [13] 北京青年报,2000-1-16
    [14] 陈同斌.土壤中砷的吸附特点及其与水稻生长发育的关系.中国农业科学院
    
    博士学位论文,北京,1990
    [15] 刘更另,高素端.红壤中砷对农作物的影响.土壤通报,1987,18(5):231-233
    [16] 许嘉琳,杨居荣,荆红卫.砷污染土壤的作物效应及其影响因素.土壤,1996,2:85-89
    [17] 陈同斌,刘更另.砷对水稻生长发育的影响及其原因.中国农业科学,1993,26(6):50-58
    [18] Carbonell A A, Aarabi M A and Delaune R D, et al. The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant and Soil. 1998, 198: 33-43
    [19] Carbonell A A, Aarabi M A, DeLaune R D, et al. Arsenic in wetland vegetation: Availability, phytotoxicity, uptake and effects on plant growth and nutrition. The Science of the Total Environment, 1998, 217: 189-199.
    [20] 王友保,刘登义,张莉.铜砷及其复合污染对黄豆影响的初步研究.应用生态学报,2001,12(1):117-120
    [21] Carbonell A A, Burló F, MataixNS, et al. Effect of sodium arsenic and sodium chloride on bean plant nutrition (macronutrients), Plant Nutrition, 1997, 20(11): 1617-1633
    [22] Marcus-wyner L, Rains D W. Uptake, accumulation and translocation of compounds by cotton. Journal Environment Quality, 1982, 11 (4): 715-719
    [23] Xie Z M, Huang C Y. Control of arsenic toxicity in rice plants gown on an arsenic-polluted paddy soil. Communications in Soil Science and Plant Analysis, 1998, 29(15&16): 2471-2477
    [24] Machlis L. Accumulation of arsenic in the shoots of sudan grass and bush beans. Plant Physiology, 1941, 16: 521-544
    [25] Richard P. Arsenic speciation in environmental samples of contaminated soil. Science of the Total Environmental. 1998, 224: 133-141
    [26] 谢正苗,黄昌勇.铅锌砷复合污染对水稻生长的影响.生态学报,1994,14(2):2-15
    [27] Carbonell A A, Burl6 F, López E, et al. Arsenic toxicity and accumulation in radish as affected by arsenic chemical speciation. Journal Envionment Science
    
    Health, 1999, 34(4): 661-679
    [28] Burló F, Guijarro I, Carbonell A A, et al. Arsenic species: Effects on and accumulation by tomato plants. Journal Agricultural Food Chemistry. 1999, 47: 1247-1253
    [29] 岑慧贤,吴群河,陈志澄.各形态和浓度砷对生菜生长的影响试验.农业环境与发展,1999,16(4):20-22
    [30] Baker A J M. Accumulators and excluders-strategies in the response of plants to heavy metals. Journal of Plant Physiology, 1981, 3: 643-654
    [31] Richardson D H S, Nieboer B E, Padovan D, et al. Anion accumulation by lichens I. The characteristics and kinetics of arsenate uptake by Umbilicaria muhlenbergii. 1984, 96: 71-82
    [32] 张素芹,杨居荣.农作物对镉铅砷的吸收与运输.农业环境保护,1992,11(4):171-175
    [33] Berry W L, Plant and factors influencing the use of plant analysis as a tool for biogeochemical prospecting. In: Carlise D, Berry W L, Kaplan I. R and Watterson J R (Eds), Mineral Exploration: Biogeological Systems and Organic Matter, prentice-Hall, Englewood Cliffs, N J. 1986, 5:13
    [34] Feed Additive Compendium (FAC), vol. 13, Munneapolis, The Miller Publishing Company, 1975: 330
    [35] Baroni F, Boscagli A, Di L L A, et al. Arsenic in soil and vegetation of contaminated areas in southern Tuscany (Italy). Journal of Geochemical Exploration, 2004, 81: 1-14
    [36] 夏立江,华珞,韦东普.部分地区蔬菜的含砷量.土壤,1996,(2):105-110
    [37] Baker R S, Barrentine W L, Bowman D H, et al. Crop response and arsenic uptake following soil incorporation of MSMA. 1976, 24(3): 322-326
    [38] Warren G P, Alloway B J, Lepp N W, et al. Field trials to assess the uptake of arsenic by vegetables from contaminated soils and soil remediation with iron oxides, Science of the Total Environment, 2003, 311: 19-33
    [39] Woolson E A, Axley J H, Kearney P C. The chemistry and phytotoxicity of arsenic in soils: Ⅱ. Effects of time and phosphorus. Soil Science Society of
    
    America Journal, 1973, 37: 254-259
    [40] Ullrich-Eberius C I, Sanz A, Novacky. Evaluation of arsenate- and vanadateassociated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. Journal of Experimental Botany, 1989, 40: 119-128
    [41] Meet-jain, Grarde R. Effect of As on chlorophyll and protein contents and enzymic activities in greening maize leaves. Water, Air and Soil Pollution, 1997, 93: 109-115
    [42] Paivoke A E A, Simola L K. Arsenate toxicity to Pisum sativum: mineral nutrients, chlorophyll content and phytase activity. Ecotoxicology and Environmental Safety, 2001, 49: 111-121
    [43] Simola L K. Growth and ultrastructure of Sphagnum fimbriatum cultured with arsenate, fluoride, mercury and copper ions. Journal of the Hattori Botanical Laboratory, 1977, 43: 365-377
    [44] Simola L K. The effect of lead, cadmium, arsenate and fluoride ions on the growth and the fine structure of Sphagnum nemoreum in aseptic culture. Canadian Journal of Botany, 1977, 55: 426-435
    [45] Nieboer E, Lavoie P, Padovan D, Anion Accumulation by Lichens I. The Characteristics and Kinetics of Arsenate Uptake by Umbilicaria Muhlenbergii, New Phytologist, 1984, 96: 71-82
    [46] 李道林,何方,马成泽,等.砷对土壤生物学活性及蔬菜毒性的影响.农业环境保护,2000,19(3):148-151
    [47] 胡家恕,邵爱萍,叶兆杰.大豆种子萌发过程中砷毒害与膜脂过氧化作用.浙江农业大学学报,1995,21(4):435-440
    [48] Meharg A A, Macnair M R. Suppression of the high affinity phosphate uptake system: a mechanism of arsenate tolerance in Holcus lanatus L. Journal of Experimental Botany, 1992, 43: 519-534
    [49] Sharples J M, Meharg A A, Chambers S M, et al. Symbiotic solution to arsenic contamination. Nature, 2000, 404: 951-952
    [50] Meharg A A, Macnair M R. Uptake, accumulation and translocation of arsenate in arsenate-tolerant and non-tolerant Holcus lanatus L. New Phytologist, 1991,
    
    177: 225-231
    [51] Meharg A A, Macnair M R. Genetic correlation between arsenate tolerance and the rate of influx of arsenate and phosphate in Holcus lanatus L. New Phytologist, 1992, 69: 336-341
    [52] Meharg A A, Macnair M R. Relationship between plant phosphorus status and the kinetics of arsenate influx in clones of Deschampsia cespitosa (L.) Beauv that differ in their tolerance to arsenate. Plant and Soil, 1994, 162: 99-106
    [53] Hartley-Whitarker J, Ainsworth G, Voojis R, et al. Phytochelatins are involved in differential arsenate tolerance in Holcus lanatus. Plant Physiology, 2001, 126: 299-306
    [54] Nissen P, Benson A A. Arsenic metabolism in freshwater and terrestrial plants. Plant Physiology, 1982, 54: 446-450
    [55] 范晓.海藻中砷化学形态及代谢机制.海洋科学,1997,3:30-32
    [56] 韦朝阳,陈同斌.2001.重金属超富集植物及植物修复技术研究进展.生态学报,21(7):1196-1203
    [57] USEPA. Cleaning up the nation's waste sites: markets and technology trends. EPA/542/R-96/005. Office of Solid Waste and Emergency Response, Washington, DC. 1997
    [58] 夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学,1997,18(3):74-76
    [59] 骆永明,金属污染土壤的植物修复.土壤,1999,(5):261-265
    [60] 沈振国,刘友良.重金属超量积累植物研究进展.植物生理通讯,1998,34(2):133-139
    [61] 孙波,骆永明.超积累植物吸收重金属机理的研究进展.土壤,1999,3:113-119
    [62] 蒋先军,骆永明,赵其国.土壤重金属污染的植物提取修复技术及其应用前景.农业环境保护,2000,19(3):179-183
    [63] 陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报,2002,47(3):207-210
    [64] Brooks R R, Lee, Reeves R D, et al. Detection of nickeliferous rocks by analysis
    
    of herbarium specimens of indicator plants. Journal of Geochemical Exploration, 1977, 7: 49-77
    [65] Maffate A S. Plant proving their worth in toxic metal cleanup. Science, 1995, 269: 302-303
    [66] Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic. Nature, 2001, 409: 579
    [67] Visoottiviseth P, Francesconi K, Sridokchan W. The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land. Environmental Pollution, 2002, 118: 453-461
    [68] 韦朝阳,陈同斌.高砷区植物的生态与化学特征.植物生态学报,2002,26(6):695-700
    [69] 韦朝阳,陈同斌,黄泽春,等.大叶井口边草一种新发现的富集砷的植物.生态学报,2002,22(5):777-779
    [70] 黄泽春.砷超富集植物的筛选及其富集机理的研究.中国科学院地理科学与资源研究所,博士论文,2003
    [71] 中国科学院中国植物志编辑委员会.中国植物志(第三卷第一分册).北京:科学出版社,1990.37
    [72] 谷安根,汪矛,王立军,等.蕨类植物和裸子植物的起源与进化.植物学通报,1990,7(2):58-62
    [73] 李星学,等.植物界的发展和演化.北京:科学出版社,1981:41-110
    [74] 徐仁.生物史(第二分册):植物的发展.北京:科学出版社,1980:142-156
    [75] 福斯特A S,小吉福德E M.维管植物比较形态学(李正理,张新英,李荣敖等译).北京:科学出版社,1983:313-445
    [76] 周云龙.植物生物学.北京:高等教育出版社,1999:473
    [77] Maton I, Sledge W A. Observation on the cytology and taxonomy of the Pteridophyte flora of Ceylon. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 1954, 238: 149
    [78] Walker T G. The Pteris quadriaurita complex in Ceylon. Kew Bull, 1960, 14: 321-332
    [79] Kurita S. Chromosome numbers of some Japanese ferns Ⅲ. Journal of the
    
    College and Arts Scoiety in Chibo University Nature Science Series. 1962, 3: 463-464
    [80] Mehra P N, Verma S C. Cytotaxonomical observation on some west Himalayan Pteridaceae. Caryologia, 1960, 13: 619-650
    [81] Mitui K. Chromosome and speciation in ferns. Science Reports of Tokyo Kyoiku Daigoku Biology, 1968, 13: 285-333
    [82] Mitui K. Chromosome number of Japanese pterdophytes. Bulletin of Nippon Dental College General Education, 1975, 4: 228-234
    [83] Mitui K. Chromosome number of some ferns in the Ryukyu islands. Journal of Japanese Botany, 1976, 51: 33-41
    [84] Roy R P, Siaha M B, Sakya A R. Cytology of some ferns of Kathrnandu valley. British Fern Gazette, 1971, 10: 193-199
    [85] Verma S C, Kbulla S P. Cytogenetics of some western Himalayan Adiantaceae (scosu Alston) with cytotaxonmic comments. Caryologia, 1965, 18: 85-106
    [86] Abraham A, Ninan C A, Mathew P M. Studies on the cytology and phylogeny of the Pteridophytes. Ⅶ, Observation on one hundred species of south Indian ferns. Journal of India Botanical Society, 1962, 41: 344-348
    [87] 王中仁.中国凤尾蕨属细胞学的初步研究.植物分类学报,1989,27(6):421-438
    [88] 周厚高,谢义林,黎桦,等.广西石灰岩地区蜈蚣蕨居群的遗传多样性研究.广西植物,2002,22(1):67-70
    [89] Stebbins G L.植物的变异与进化.上海:上海科学技术出版社,1963:242-291
    [90] Miller, J H. Fern Gametophytes as Experimental Material. The Botanical Review, 1968, 34: 361-440
    [91] 包文美,敖志文,陈发生.东北蕨类植物配子体发育的研究,Ⅰ.水龙骨科.植物研究,1985,5(4):104-114
    [92] 刘朝晖,刘宁,周云龙.海金沙(Lygodium japonicum)精细胞中生毛体发育及多层结构起源的超微结构研究.植物学报,1999,41(11):1160-1163
    
    
    [93] 李兆亮,原永兵,曹宗巽.藻类植物和蕨类植物有性生殖的细胞学和生物化学研究现状.植物学通报,1995,12(2):1-8
    [94] Sobota A E, Partanen C R. The grow than and division of cells in relation to morphogenesis in fern gametophtes Ⅰ. Photomorpho genetic studies in Pterdium aquillinum. Canadian Journal of Botany, 1966, 44: 497-506
    [95] Miller J H, Miller P M. Blue light in the development of the gametophytes and its interaction with far-red and red light. American Journal of Botany, 1964, 51: 329-334
    [96] Ito M. Effects of blue and red light on the cell division cycle in pteris protonemata. Plant Science Letters, 1974, 3(5): 351-355
    [97] Eilenberg H, Hanania U, Stein H, et al. Characterization of rbcS genes in the fern Pteris vittata and their photoregulation. Planta, 1998, 206: 204-214
    [98] Armin R G. Antheridiogenesis in the fern Pteris vittata. Ⅰ. Photocontrol of antheridium formation, Plant Science, 1986, 43 (2): 135-140
    [99] 李文学.超富集植物蜈蚣草对砷的吸收及两种提高植物修复效率的方法探讨.中国科学院地理科学与资源研究所,博士后出站报告,2003
    [100] Tu C, Ma L Q. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake. Journal of Environmental Quality, 2002, 31: 641-647
    [101] Tu C, Ma L Q, Bondada B. Arsenic accumulation in the hyperaccumulator Chinese brake and its utilization potential for phytoremediation. Journal of Environmental Quality, 2002, 31: 1671-1675
    [102] 廖晓勇,陈同斌,谢华,等.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究.环境科学学报,2004,24(4)(印刷中)
    [103] 莫良玉.提高砷超富集植物蜈蚣草富砷能力及蜈蚣草组织培养探讨.中国科学院地理科学与资源研究所,博士后研究工作报告,2003
    [104] Tu C, Ma L Q, Zhang W H, et al. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata). Environmental Pollution 2003, 124(2): 223-30
    [105] Wang J R, Zhao F J, Meharg A A, et al. Mechanisms of arsenic
    
    hyperaccumulation in Pteris vittata: uptake kinetics, interactions with phosphate and arsenic speciation. Plant Physiology, 2002, 130: 1552-1561
    [106] Zhang W H, Cai Y, Tu C, et al. Arsenic speciation and distribution in an arsenic hyperaccumulating plant. Science of the Total Environment, 2002, 300: 167-177
    [107] Francesconi K, Vsoottiviseth P, Sridokchan W. Arsenic species in an arsenic hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of arsenic-contaminated soils. Science of the Total Environment, 2002, 284: 27-35
    [108] 黄泽春,陈同斌,雷梅,等.砷超富集植物中砷化学形态及其转化的EXAFS研究.中国科学,2003,33(6):488-494
    [109] Mattusch J, Wenrich R, Schmidt A C, et al. Determination of arsenic species in water, soils and plants. Fresenius Journal of Analytical Chemistry, 2000, 366(2): 200-203
    [110] Pickering I J, Prince R C, George M J, et al. Reduction and coordination of arsenic in Indian Mustard. Plant Physiology, 2000, 122: 1171-1177
    [111] Ghosh M, Shen J, Rosen B R Pathways of As(Ⅲ) detoxification in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 5001-5006
    [112] Lombi E, Zhao FJ, Fuhrmann M, et al. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytologist, 2002, 156: 195-203
    [113] 陈同斌,黄泽春,黄营宇,等.砷超富集植物中元素的微区分布及其与砷的 富集关系.科学通报.2003,48(11):1163-1169
    [114] Diaz-Barriga F, Santos M A, Mejia J J, et al. Arsenic and cadmium exposure in children living near a smelter complex in San Luis Potosi, Mexico. Environmental Research, 1993, 62: 242-250
    [115] Dudka S, Miller W P. Permissible concertrations of arsenic and lead in soils based on risk assessment. Water, Air and Soil Pollution, 1999, 113: 127-132
    [116] Desesso J M, Jacobson C F, Scialli A R, et al. An assessment of the developmental toxicity of inorganic arsenic. Reproductive Toxicology, 1998,
    
    12(4): 385-433
    [117] Ullah, S. M. In Abstracts: International conference on arsenic pollution of groundwater in Bangladesh: causes, effects and remedies, 8-12 February 1998, Dhaka Community Hospital, Dhaka, Bangladesh, 1998: 133
    [118] Meharg A A, Rahman M M. Arsenic contaminatin of Bangladesh paddy field soils: Implications for rice contribution to arsenic consumption. Environmental Science and Technology, 2003, 37: 229-234
    [119] Speich M, Pineau A, Ballereau F M, trace elements and related biological variables in athletes and during physical activity. Clinica Chimica Acta, 2001, 312: 1-11
    [120] Mandal B K, Suzuki K T. Arsenic round the world: a review. Talanta, 2002, 58: 201-235
    [121] Rossman T G. Mechanism of arsenic carcinogenesis: an integrated approach. Mutation Research Fundamental and Molecular Mechanisms of Mutagenesis, 2003, 533: 37-65
    [122] Roychowdhury T, Tokunaga H, Ando M. Survey of arsenic and other heavy metals in food composites and drinking water and assessment of dietary intake by the villagers from an arsenic-affected area of West Bengal, India. Science of the Total Environment, 2003, 308: 15-35
    [123] Tsuda T, Babazono A, Yamamoto E, et al. Ingested arsenic and internal cancer: a historical cohort study followed for 33 years. American Journal of Epidemiology. 1995, 141: 198-209
    [124] Das H K, Mitra A K, Sengupta P K, et al. Arsenic concentrations in rice, vegetables, and fish in Bangladesh: a preliminary study. Environment International, 2004, 30: 383-387
    [125] 曾清如,周细红,铁柏清,等.铅锌矿自然扩散晕内重金属的污染特征及其防治技术.农村生态环境,1997,13(1):12-15
    [126] 廖晓勇,陈同斌,肖细元,等.污染水稻田中土壤含砷量的空间变异特征.地理研究,2003,22(5):635-643
    [127] EPA 3050B. www.epa.gov/epaoswer/hazwaste/test main.htm, revision 2, 1996,
    
    3050B: 1-12
    [128] EPA 3010A. www.epa.gov/epaoswer/hazwaste/test main.htm, revision 2, 1996,3010A: 1-5
    [129] 张丽,张兴昌.植物生长过程中水分、氮素、光照的互作效应.2003,21(3):43-46
    [130] Liao X Y, Chen T B, Xie H, et al. Soil As contamination and its risk assessment in industrial districts of Chenzhou, Southern China. Environment International. 2004(已接收)
    [131] Bech J, Poschenrieder C, Barcelo J, et al. Plants from mine spoils in the south American area as potential sources lf germplasm for phytoremediation technologies. Acta Biotechnol, 2002, 22(1/2): 5-11
    [132] Flores T E, Alarcion H M T, Conzalez E S, et al. Arsenic tolerating plants from mine sites and hot springs in the semi-arid region of Chihuahua, Mexico. Acta Biotechnol, 2003, 23 (2/3): 113-119
    [133] 蔡保松,陈同斌,廖晓勇,等.土壤砷污染对蔬菜砷含量及食用安全性的影响.生态学报,2004,24(4):711-717
    [134] Alam M G M, Allinson G, Stagnitti F, et al. Arsenic contamination in Bangladesh groundwater: a great environmental and social disaster. International Journal of Environmental Health Research, 2002, 12(3): 235-253
    [135] Tripathi R M, Raghunath R, Krishnamoorthy T M. Arsenic intake by the adult population in Bombay City. Science of the Total Environment, 1997, 208: 89-95
    [136] 土壤环境容量协作组.中国主要类型土壤Cd、Pb、Cu和As主要生态学指标和临界含量.环境科学,1999,12(4):29-34
    [137] Wei C Y, Chen T B, Huang Z C, et al. accumulation by two brake ferns in south China., Chemosphere, 2004(已接收)
    [138] Liao X Y, Chen T B, Lei M, et al. Root distributions and elemental accumulations of Chinese brake (Pteris vittata L.) from As-contaminated soils. Plant and Soil, 2004 (印刷中)
    [139] 王振刚,何海燕,严于伦,等.石门雄黄矿地区居民砷暴露研究.卫生研究,
    
    1999, 28(1): 12-14
    [140] Baker A J M, Reeves R D, McGrath S P. In situ decontamination of heavy metal polluted soils using crops of metal-accumulating plants - a feasibility study. In: Hinchee R E, Olfenbuttel R F (Eds). In Situ Bioreclamation, Butterworth-Heinemann, Boston, USA, 1991: 600-605
    [141] Blaylock M J, Muhr E, Page K, et al. Phytoremediation of lead contaminated soil at a Brownfield site in New Jersey. Proceeding of America Chemistry Society, Birmingham, AL, Sept. 1996: 9-11
    [142] Brown S L, Chancy R L, Angle J S, et al. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and metal tolerant Silene vulgaris grown on sludge-amended soils. Environmental Seience and Technology, 1995, 29: 1581-1585
    [143] Salt D E, Blaylock M, Kumar P B A N, et al. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnology, 1995, 13: 468-474
    [144] 谢华,廖晓勇,陈同斌,等.污染农田中植物的砷含量及其健康风险评估—以湖南郴州邓家塘为例.地理研究,2004(已接收)
    [145] 中国网.http://sars.china.com.cn/chinese/2003/Jul/374700.htm,2003-7-29
    [146] 中国新闻网.http://www.chinanews.com.cn/n/2003-07-27/26/328639.html., 2003-7-29
    [147] 吴兆洪,秦仁昌.中国蕨类植物科属志.北京:科学出版社,1991:223
    [148] 陈瑞阳,宋文芹,李秀兰.植物染色体标本制备的去壁低渗法及其在细胞学中的意义.遗传学报,1982,9(2):151-159
    [149] Murashige T, Skoog F. A revised medium for rapid growth and bioassays dor tobacco tissue cultures. Physiol Plant, 1962, 15: 473-497
    [150] 刘建武,刘宁.蕨类植物配子体发育及其性器官分化的研究进展,植物学通报,2001,18(1):149-157
    [151] 周琼,周厚高,谢庆武,等.南宁地区蜈蚣蕨居群的遗传多样性分析.广西农业生物科学,1999,18(4):239-242
    [152] Ullrich-Eberius C I, Sanz A, Novacky. Evaluation of arsenate and vanadate
    
    associated changes of electrical membrane potential and phosphate transport in Lemna gibba G1. Journal of Experimental Botany, 1989, 40: 119-128
    [153] Kauss H. Some aspects of calcium-dependent regulation in plant metabolism. Annual Review of Plant Physiology and Plant Molecular Biology, 1987, 38: 47-72
    [154] Sotiropoulos T S, Therios I N, Dimassi K N. Calcium application as a means to improve tolerance of kiwifruit (Actinidia deliciosa L.) to boron toxicity. Scientia Horticulturae, 1999, 81: 433-439
    [155] 周卫,汪洪,林葆.镉胁迫下钙对镉在玉米细胞中分布及对叶绿体结构与酶活性的影响.植物营养与肥料学报,1999,5(4):335-340
    [156] Skórzyska-Polit E, Tukendorf A, Selstam E, et. al. Calcium modifies Cd effect on runner bean plants. Environmental and Experimental Botany, 1998, 40: 275-286
    [157] 廖晓勇,肖细元,陈同斌.砂培条件下施加钙、砷对蜈蚣草吸收砷、磷和钙的影响.生态学报,2003,23(10):2057-2065
    [158] Quartacci M F, Pinzino C, Sgherri C L M, et. al. Growth in excess copper induces changes in the lipid composition and fluidity of PSⅡ-enriched membranes in wheat. Physiologia Planatarum, 2002, 108: 87-93
    [159] Slocum R D, Roex S J. An Improved method for the subcellular localization of calcium using a modification of the antimonite precipitation technique. Journal of Histichemistry and Cytochemistry 1982, 30: 617-629
    [160] Bowler C, Neuhaus G. Cyclic GMP and calcium mediate phytochrome phototransduction. Cell, 1994, 77: 73-78
    [161] Hepler P K, Wayne R O. Calcium and plant development. Annual Review of Plant Physiology, 1985, 36: 397-439
    [162] 廖晓勇.砷污染土壤的植物修复技术研究及其应用.中国科学院地理科学与资源研究所,博士论文,2004
    [163] 史密斯 H.植物细胞分子生物学.北京:科学出版社,1989:67-147
    [164] 王爱国,罗广华,邵从本,等.大豆下胚轴线粒体产生超氧物自由基的效率.
    
    植物生理学报,1986,12:148-153
    [165] 彭鸣,王焕校,吴玉树.镉、铅诱导的玉米(Zea mays L.)幼苗细胞超微结构的变化.中国环境科学,1991,11(6):426-431
    [166] 王红,简令成,张举仁.低温胁迫下水稻幼叶细胞中Ca~(2+)水平的变化.植物学报,1994,36(8):587-591
    [167] 王凤茹,张晓红.干旱逆境下小麦幼苗细胞叶绿体内钙离子浓度变化的电镜细胞化学研究.电子显微镜学报,2002,21(2):106-109
    [168] 缪颖,蒋有条,曾广文,等.大白菜干烧心病发生过程中心叶组织Ca~(2+)定位及超微结构变化.园艺学报,1997,24(2):145-149
    [169] 周卫,林葆.花生缺钙症状与超微结构特征的研究.中国农业科学,1996,29(4):53-57
    [170] Wim S J J M, Bruce G, Renier J J A M, et al. Spatial and temporal aspects of Ca~(2+) oscillations in Xenopus laevis melanotrope cells. Cell Calcium, 1996, 19(3): 219-227

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700