西南含砷金矿区砷富集植物筛选及其除砷应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着金矿大规模的开采和黄金选冶技术的发展,黄金资源开发的范围不断扩展,从性质单一的易处理黄金资源,迅速发展到难处理金矿资源领域。含砷金矿是难处理金矿石中储量最大、回收经济价值最高的金矿类型,也是目前研究最多的矿石类型。由于砷(As)的毒性和致畸、致癌、致突变效应,长期以来砷已成为公众普遍关注的环境污染物之一。金矿中砷的存在不但影响金的浸出,同时会造成大气、水体和土壤的环境污染,因此有必要对含砷难处理金矿进行除砷预处理。随着植物修复思想的提出、植物修复技术的发展以及蜈蚣草、大叶井口边草等砷超富集植物的发现,为砷污染土壤和水体的治理提供了更为经济有效和环境友好的方法,也为将其用于金矿除砷奠定了基础。
     本研究通过野外调查,对云南、贵州部分难处理金矿区矿物样品、周围土壤及植物进行了采样分析,评价了含砷金矿区造成的土壤和植物砷污染状况;选定了金、砷含量均较高的贵州兴仁金矿进行后续植物除砷的研究;利用研究区域内广泛分布的砷超积累植物蜈蚣草对难处理金矿进行了预处理;对金矿进行了直接淋洗活化,筛选有效促进砷淋溶的活化剂;以盆栽试验进行了调控处理,得到了有效的金矿除砷条件的调控方法;通过对金矿调控,分别提高了蜈蚣草砷去除效率及生物量;研究了淋洗剂及蜈蚣草根系分泌物对于金矿砷形态变化的影响。主要研究结果如下:
     1.本研究收集了云南省文山州渭砂金矿(WS)、红河州官厅金矿(GT)、普雄金矿(PX)和贵州兴仁县紫木魅金矿(XR)等矿物样品,通过对4个金矿尾矿区周围土壤调查分析表明,调查区域土壤中砷含量范围258.16-3594mg/kg,不仅远高于我国红壤中砷含量的平均值(约为19.85mg/kg),而且均超过GB15618-1995《土壤环境质量标准》中的砷含量旱地三级标准值。说明该有色金属矿区土壤超标率100%,超标倍数为6.45~89.85,土壤砷污染较严重,有待进行修复治理。另外,尾矿库有微量金残留,但是仅依靠氰化堆浸很难达到工业利用价值,因此有必要探索新的方法进行金的二次回收利用。
     2.植物调查结果表明,含砷金矿区周围植物砷含量变化较大,除已经公认的砷超积累植物蜈蚣草和大叶井口边草外,钻型紫菀、密蒙花、苋菜、珠光香青和尼泊尔蓼等几种植物地上部As积累量相对较高,转运系数均大于6。有望将其作为一种修复植物来治理土壤砷污染。另外分析表明,矿区周围栽种的部分农作物(除玉米未采集到种子)及野生的可食用植物,其可食部位砷含量均超标,有必要从食品安全的角度进行系统的研究和防治。
     3.通过对四个矿区金矿样品进行金、砷含量测定,筛选出金、砷含量均较高的兴仁金矿样品作为进一步植物除砷的目标。兴仁金矿矿石中的金元素的平均含量为3.8g/t,砷平均含量为0.85%。利用X衍射衍射分析(XRD)表明,兴仁金矿矿石中金属矿物组成较为复杂,所见金属矿物为:黄铁矿毒砂、闪锌矿、黄铜矿、方铅矿、赤铁矿、褐铁矿、臭葱石等,所见贵金属矿物包括自然金、银金矿石、自然银、辉银矿。矿石中脉石矿物组成主要是以碳酸盐矿物为主,其次为长石等其他矿物。通过鉴定发现金矿物在矿石中嵌布粒度呈现微细粒的特点,其中金主要以微细颗粒存在于黄铁矿和毒砂中,砷主要以毒砂形态存在。
     4.淋洗实验结果表明,金矿砷速效态(淋洗剂可溶态及离子态之和)含量极低,仅占原矿总砷的万分之五,而残渣态含量高,占总砷的81.94%。表明金矿砷有效性较低,通过用乙二胺四乙酸二钠、磷酸二氢铵、亚硫酸氢钠、碳酸氢钠、硝酸铵、柠檬酸和丁二酸7种试剂各3个浓度、3个时间梯度进行震荡、分级提取实验,结果表明,除硝酸铵外各试剂淋洗下速效态砷含量均有显著增加,并且有随着震荡时间延长而逐渐增加的趋势,在高浓度的磷酸二氢铵和柠檬酸作用下,震荡3h和20h后,速效态砷含量最大可以增加到1%以上。结合态砷含量(A1-As、Fe-As和Ca-As)在不同震荡时间下有不同变化趋势,但是除亚硫酸氢钠外,总结合态含量有随着震荡时间延长而增加的趋势,在高浓度柠檬酸作用下,从1h的19%分别增加到3h的33%和20h的37%。因此利用不同试剂进行金矿淋洗,可以把砷从残渣态向结合态和离子态逐渐活化,震荡淋洗时间从有效、节能的角度考虑以3h为佳。
     5.蜈蚣草调控试验结果表明,蜈蚣草吸收累积去除金矿砷的总量在磷酸二氢铵处理下有显著增加,表明磷酸二氢铵一方面起到肥料的作用,为金矿蜈蚣草生长添加了N、P肥,另外也对金矿砷的吸附-解吸起到竞争作用。通过磷酸二氢铵的加入,促进了砷从黄铁矿、粘土矿物等的解吸,提高了砷的有效性,从而促进了蜈蚣草对砷的累积。另外柠檬酸对生物量的增加起到了较明显的作用。其他试剂如EDTA-Na2、亚硫酸氢钠、碳酸氢钠和硝酸铵在蜈蚣草生长1个月和3个月时分别表现出不同的调控效果。蜈蚣草每生长3个月进行收割可以取得较高的除砷效率。在细磨矿样上种植蜈蚣草,有利于微细粒毒砂等砷化合物的暴露,从而去除效率比不同粒径配比的矿样高。
     6.根区砷形态分析试验结果表明,种植蜈蚣草后,与种植前的原矿相比,蜈蚣草根区、非根区的离子态砷含量、结合态砷含量均有明显提高,而残渣态砷含量则明显减少,表明植物对于残渣态砷向结合态砷转化、结合态砷向离子态转化有很大作用,蜈蚣草根系分泌物对于金矿砷活化有显著的作用。根区残渣态砷含量下降了近30%,而非根区残渣态砷含量下降了近20%。另外除Fe-As外,根区的离子态砷、Al-As、Ca-As均比非根区多,证明了蜈蚣草根系吸收营养和砷的同时对矿样中砷向根区移动有明显的作用。XRD定量分析结果也表明,种植蜈蚣草前后矿样的矿物组成基本相同,但矿物含量有所变化,矿物种植蜈蚣草前后毒砂减少了0.89%,相当于砷减少了0.41%。
     7.蜈蚣草预处理前后金氰化浸出试验结果表明,未经种植植物的原矿金浸出率最低,只有34.21%,而种植蜈蚣草4个月后的矿样金浸出效率均有所提高,其中利用柠檬酸调控的蜈蚣草处理后矿样金浸出效率最高,可以提高到52.54%。与未种植蜈蚣草的原矿以及种植蜈蚣草的对照(即未加调控剂)相比,利用磷酸二氢铵、亚硫酸氢钠和柠檬酸调控蜈蚣草除砷后金浸出效率也有显著提高。表明利用这三种试剂调控进行蜈蚣草除砷后对于金的浸提有明显效果。
     本论文成果通过植物预处理方法代替传统的火法焙烧预处理工艺,在提高金的浸出效率的同时,避免了传统工艺中因采用焙烧法除砷工艺给大气环境带来的砷污染,通过植物可以回收有价金属砷,有利于节能减排,对我国黄金选冶行业砷污染控制有推广应用价值。
With the fast development of gold mining, dressing and smelting technologies, the scope of gold resources is constantly and rapidly expanding, from simple and easy resources to hard-to-process ones. Among the hard-to-process gold resources, arsenic sulfide gold ore has the most reserves and the highest recycling value, and thus it has received closed attention recently. Arsenic (As), due to its highly-toxic potential that may cause defection, cancer and deformation, arouses widespread public concerns. The arsenic in gold ores not only impairs cyanide leaching rate but also contaminates the air, water and soil. Therefore, it is essential to exclude the arsenic from the hard-to-process gold ores. Thanks to the development of phytoremediation and the discovery of As-hyperaccumulators, such as Pteris vittata L., Pteris cretica L., it has become possible to remediate As-contaminated soil and water with the economical, effective and environmentally-friendly method. These As-hyperaccumulators can also be used to remove the arsenic from arsenic-bearing gold ores.
     A field survey was conducted to screen potential As hyperaccumulators and evaluate current As contamination of soil and plants in arsenic-gold-ore mine areas in Yunnan and Guizhou Provinces. The results showed that Xingren arsenic gold mine of Guizhou province has higher concentrations of arsenic and gold than those in other investigated area, and further arsenic removal is needed using arsenic hyperaccumulators. In subsequent research, the direct-leaching experiments was conducted using arsenic gold ore to find the efficient As activate agents. The As hyperaccumulator, Pteris vittata L. is widely distributed in the research area. In the following pot experiments, Pteris vittata L. was planted in arsenic-containing gold ore which was smashed and passed through a filter of<0.037mm mesh. Different agents were added to improve the arsenic removal efficiency of Pteris vittata L. The As forms in the arsenic-containing gold ore were studied under different leaching agents treatment and root-exudation.
     The results showed that:
     1) In Southwestern China, riched arsenic-gold-ore mineral resources were found. Mineral samples were collected and concentrations of Au and As were measured from Weisha gold mine(WS), Guanting gold mine(GT), Puxiong gold mine(PX) and Xingren gold mine(XR). Based on the data of soil and mineral survey around these four gold mine areas, the concentrations of As in the soils were much higher than those in red earth of China (average19.85mg/kg). Moreover, it was far beyond the third class standard (≤40mg/kg) in dryland according to Environmental Quality Standard for Soils in China (GB15618-1995). The soils in these investigated areas were heavily contaminated by As to some extent. The unqualified rate of soil As was100%, far exceeding the recommended Environmental Quality Standard for Soils mentioned above, with exceeding times from6.45to89.85. The soil was heavilly polluted by As around tailings dam, and further recovering is needed. Trace amounts of gold residue were also determined from the arsenic-containing gold-ore mine tailing. It will be difficult to yield gold by cyanidation leaching from mine tailing for industrial value. Therefore, it is necessary to find a new technique, such as phytoremediation, to recover and reuse gold resisue effectively.
     2) Arsenic concentrations varied greatly in plants growing in the investigated areas. Arsenic concentrations in stems and leaves were relatively high in some species except previously reported arsenic hyper-accumulators, such as P. vittata and P. cretica. The translocation factor of Aster subulatus, Buddleia officinalis, Amaranthus tricolor, Anaphalis margaritacea and Polygonum nepalense was higher than6. They could serve as potential As hyper-accumulators to remediate As pollution in soil. In addition, As concentrations in edible parts of crops (except Zea mays L.) and other wild edible plant greatly exceeded the standard for food safety of China. All of the plants in present study were naturally collected from the old mine areas, and their As concentrations exceeded the maximum tolerance concentrations. Prevention of soil As pollution must be studied systematically to guarantee food safety.
     3) Mineral samples of above four gold mine were collected to determined Au and As concentrations. Results showed that only Xingren gold mine in Guizhou Province met our demand for present research. Au and As concentrations were3.8mg/kg and8500mg/kg in Xingren gold mine, respectively. X-ray diffraction (XRD) analysis indicated that the mineral samples consisted of complicated materials. Major metallic minerals in samples included pyrite, arsenopyrite, sphalerite, chalcopyrite, galena, stibnite (antimonite), native Sb (stibnite), tetrahedrite, hematite, limonite, scorodite, chalcocite, and some precious metal materials such as native gold, silver-gold mineral, nature silver and argentite. Gangue minerals was mainly calcite, muscovite, quartz, dolomite and other minerals such as feldspar. We used some methods to study the main gold-bearing minerals of Xingren(Zimudan) gold deposit, including panning, chemical analysis, X-ray diffraction analysis, microprobe analysis etc. The gold mineral was mainly native gold and little silver-gold mineral. Other gold mineral and gold-bearing minerals was not found. One part of gold was lied in pyrite and arsenopyrite as independent minerals such as native gold. The gold was mainly existed as microparticles in pyrite and arsenopyrite, but arsenic mainly existed in arsenopyrite.
     4) Ionic As concentrations were negligible in Xingren gold ore with a ratio of0.05%, but residual fraction was up to81.94%. Arsenic availability was extremely low in investigated gold mineral samples. Shocking and leaching experimental study were conducted by ethylenediaminetetraacetic acid disodium salt (EDTA-Na2), monoammonium phosphate (NH4H2PO4,MAP), sodium bisulfite (NaHSO3), sodium bicarbonate (NaHCO3), monoammonium nitrate (NH4NO3), citric acid (C6H8O7,CA) and succinic acid (C4H6O4) with different concentrations and process time. A blank control group (CK) was leached by deionized water simultaneously. The sequentailly extracted experiments were designed to determine different As forms by ammonium chloride (NH4C1), ammonium fluoride (NH4F), sodium chloride (NaCl), sodium hydroxide (NaOH) and sulfuric acid (H2SO4). Results showed that available As including soluble As and ionic As increased obviously by adding different leaching agent except NH4NO3. Available As increased progressively with the extension of shocking time. Under the conditions of present experiment, maximum available As ratio increased to1%after leaching with high concentration of NH4H2PO4and CA(C6HgO7) after shocking3hours and20hours. Quasi-bound state As concentrations including Al-As, Fe-As and Ca-As varied differently with different shocking time. They increased with the extension of shocking time except NaHSO3treatment. Under the conditions of this experiment, maximum bounded-As ratio increased from19%to37%after leaching by high concentration of C6H8O7when shocking from1hour to20hours. According to activation ability of As from residual forms to available ones and taking energy-conserving into account, it was efficient to set the shocking time as3hours.
     5) Pot experiment showed that total quantity of As removal were siginificantly higher after leaching by MAP than other treatments. On the one hand, MAP can serve as fertilizer to promote the growth of P. vittata. On the other hand, MAP can compete adsorption sites from pyrite and clay minerals to activate available As concentration. Therefore, MAP increased As uptake of P. vittata. Citric acid increased the biomass of P. vittata. Different effect of other leaching agents and culture time (1month and3months) on P. vittata was observed. Pot experiment indicated that higher removal of As could be acquired by harvesting P. vittata every4months. P. vittata plants cultured in smashed materials could remove more As than those in middle size or coarse sand of the gold mineral samples, because it is easier for As expose in smashed materials.
     6) The concentrations of ionic As and combination forms (including Al-As, Fe-As and Ca-As) were improved obviously in rhizosphere and in non-rhizosphere when P.vittata plants were cultured in smashed arsenic-gold-ore. However, residual fraction As were reduced obviously in rhizosphere compared with non-rhizosphere. Results showed that P. vittata played an important role in As activation from residual fraction to Ca-As, Al-As and ion-As. It was shown that root exudants had obvious effects on arsenic activation from arsenic-containing gold-ore. The residual fraction of As in original ore was decreased by30%and20%after planting P. vittata for4months in rhizosphere and in non-rhizosphere, respectively. Secondly, the concentrations of ionic As and combination forms were improved obviously in rhizosphere compared with non-rhizosphere when planting P. vittata in smashed arsenic-gold-ore. The root exudants of P. vittata has an obvious effect on arsenic translocation from the roots to fronds. The results from XRD analysis indicated that the ore samples had the same mineral constituents but different concentrations after growing P. vittata for4months. Arsenopyrite was decreased by0.89%after planting P. vittata for4months, to be equivalent to As decreasing by0.41%.
     7) The gold recovery was34.21%by using direct cyanide leaching, but the rate increased by12%-18%after planting P. vittata in arsenic-containing gold-ore. Citric acid could improve the cyanidation leaching environment, increase the leaching speed and reduce the cyanidation leaching time and the cyanide consumption. Cyanide leaching of arsenic-containing gold-ore regulated by citric acid resulted in a gold recovery of52.24%. Gold recovery of cyanide leaching was significantly increased by adding ammonium dihydrogen phosphate, sodium bisulphate and citric acid compared with the non-planted or non-regulated original ore. The three agents has noticeable arsenic activation from arsenic gold ore and further experiments in large scale are needed.
引文
[1]李南,田风.我国增加黄金储备的战略意义[J].经济研究参考,2006(39):10-11
    [2]刘汉钊.国内外难处理金矿焙烧氧化现状和前景[J].国外金金属矿选矿,2005,(7):5-10
    [3]郑晔.难处理金矿石预处理技术及应用现状[J].黄金,2009,30(1):36-41
    [4]朱长亮,杨洪英,王玉峰,等.含砷难处理金矿石的细菌氧化预处理工艺研究现状及进展[J].现代农业,2009,6:14-17,107
    [5]刘四清,宋焕斌.含砷金矿石工艺矿物学特征及其应用[J].昆明理工大学学报,1998,(4):20-21
    [6]杨天足编著.贵金属冶金及产品深加工[M].长沙:中南大学出版社,2005:56-215
    [7]江国红,欧阳伦熬,张艳敏.含砷硫高碳卡淋型金矿石焙烧氰化浸金工艺试验研究[J].湿法冶金,2003,22(3):129-132
    [8]Celep O, Alp I, Deveci H, et al., Characterization of refractory behavior of complex gold/silver ore by diagnostic leaching[J].Transactions of Nonferrous Metals Society of China,2009,19:707-713
    [9]殷书岩.湖南某高砷难处理金精矿的催化酸性加压氧化预处理与细菌氧化预处理试验研究[D].[硕士学位论文].沈阳:东北大学,2007
    [10]鲍利军,吴国元.高砷硫金矿的预处理[J].贵金属,2003,24(3):61-66
    [11]郑存江.含砷难浸金矿的研究及应用[J].陕西地质,2003,21(1):88-98
    [12]V.A.卢加诺夫,张兴仁,李皓.含砷金矿石的处理工艺[J].国外金属矿选矿,2004,41(11):14-]8
    [13]叶国华,童雄,张杰.含砷矿石的除砷研究进展[J].国外金属矿选矿,2006.3:20-24,30
    [14]邱美珍,韦丛中,蒋奇亮,等.广西难处理金矿固化焙烧氰化提金试验[J].广西地质,2002,15(4):43-46
    [15]孙德四.复杂多金属硫化矿型含铜金矿加压预氧化浸出理论与工艺[D].[博士学位论文].北京:北京科技大学,2006
    [16]马名扬,粤西河台金矿区砷的污染特征及其环境地球化学效应[D].[硕士学位论 文].广州:中山大学,2003
    [17]王华东,郝春曦,王建.环境中的砷[M],北京:中国环境科学出版社,1992:1-95
    [18]Dunn JG, Chamberlain AC. The recovery of gold from refractory arsenopyrite concentrates by pyrolysis-oxidation[J]. Minerals Engineering,1997,10(9):919-928
    [19]Lehmann MN, Leary SO', Dunn JG. An evaluation of pretreatments to increase gold recovery from a refractory ore containing arsenopyrite and pyrrhotite[J]. Minerals Engineermng,2000,13(1):1-18
    [20]孟宇群,吴敏杰,宿少玲,等.某含砷难浸金精矿常温常压强化碱浸预处理试验研究[J].黄金,2002,23(6):25-31
    [21]Langhans D, Lord A, Lampshire D, et al., Bioxidation of an arsenic-bearing refractory gold ore[J]. Minerals Engineering,1995,8(2):147-158,1995
    [22]訾建威,杨洪英,巩恩普,等.细菌氧化预处理含砷难处理金矿的研究进展[J].贵金属,2005,26(1):66-70
    [23]Brieriey L.Bacterial oxidation[J],Engineering and Mining Journal.1995,196 (5):42-44
    [24]汤庆国,沈上越.高砷金矿的非氰化浸出研究[J].矿产综合利用,2003(2):16-20
    [25]康建雄,周跃,吕中海,等.含砷金矿浮选研究现状与展望[J],四川有色金属,2008,(3):2-4
    [26]乔红光.广西贵港高砷浮选金精矿微波预处理氧化浸出试验研究[D].[硕士学位论文].南宁:广西大学,2005
    [27]邱廷省,熊淑华,夏青.含砷难处理金矿的磁场强化氰化浸出试验研究[J].金属矿山,2004(12):32-34
    [28]袁明亮,赵国魂,邱冠周.砷金矿与锰银矿同时浸出中的超声强化作用[J].过程工程学报,2003,3(5):409-412
    [29]Amankwah RK, Pickles CA. Microwave roasting of a carbonaceous sulphidic gold concentrate[J]. Minerals Engineering.2009,22:1095-1101
    [30]王海娟,宁平,唐兴进,等.含砷金矿蜈蚣草除砷应用前景探讨[J],矿业研究与开发,2010,30(2):94-98
    [31]王海娟,宁平,张泽彪,等,含砷金矿的植物除砷预处理初步研究[J],武汉理工大学学报,2010,32(8):50-54
    [32]徐步县,何承涛.金矿开采引起砷污染的初步研究及治理措施[J].污染防治技术,2007,20(2):27-29
    [33]韦朝阳,陈同斌.重金属污染植物修复技术的研究与应用现状[J].地球科学进展,2002,17(6):833-839
    [34]郜红建,蒋新,常江,等.根分泌物在污染土壤生物修复中的作用[J].生态学杂志,2004,23(4):135-139
    [35]Baker AJM, Brooks RR,Pease AJ, et al..Studies on copper and cobalt tolerance in three closely related taxa within the genus Silene L.(Caryophyllaceae) from Zaire.[J].Plant and Soil,1983,73(3):377-385
    [36]唐世荣,超积累植物在时空、科属内的分布特点及寻找方法[J].农村生态环境.2001,17(4):56-60
    [37]Wang HB, Ye ZH, Shu WS, et al., Arsenic uptake and accumulation in fern species growing at arsenic-contaminated sites of Southern China: Field surveys [J]. International Journal of Phytoremediation,2006 (8):1-11
    [38]Wang HB, Wong MH, Lan CY, et al., Uptake and accumulation of arsenic by eleven Pteris taxa from southern China[J]. Environmental Pollution,2007, (145):225-233
    [39]韦朝阳,陈同斌,黄泽春,等.大叶井口边草——一种新发现的富集砷的植物[J].生态学报,2002,22(5):777-778
    [40]Zhao FJ, Dunham SJ, McGrath SP. Arsenic hyperaccumulation by different fern species[J].New Phytologist,2002,156:27-31
    [41]Visoottiviseth FK, Sridokchan W.The potential of Thai indigenous plant species for the phytoremediation of arsenic contaminated land[J]. Environmental Pollution,2002, 118 (3):453-461
    [42]陈同斌,韦朝阳,黄泽春,等.砷超富集植物蜈蚣草及其对砷的富集特征[J].科学通报,2002,47(3):207-210
    [43]Ma LQ, Komar KM, Tu C, et al., A fern that hyperacuumulates arsenica hardy, versatile,fast-growing plant helps to remove arsenic from contaminated soils[J].Nature,2001,409,579
    [44]韦朝阳,陈同斌.高砷区植物的生态与化学特征[J].植物生态学报,2002,26(5):695-700
    [45]陈同斌,黄泽春,黄宇营,等.蜈蚣草羽叶中砷及植物必需营养元素的分布特点[J].中国科学,C辑,2004,34(4):304-309
    [46]陈同斌,阎秀兰,廖晓勇,等.蜈蚣草中砷的亚细胞分布与区隔化作用[J].科学通报,2005,50(24):2739-2744
    [47]韦朝阳,郑欢,孙歆,等.不同来源蜈蚣草吸收富集砷的特征及植物修复效率的探讨[J],土壤,2008,40(3):474-478
    [48]周宝利,蜈蚣草富集砷过程中的土壤微生物变化与钾、钙分析[D],[硕士学位论文].重庆:西南大学,2006
    [49]Tu C, Ma L. Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator ladder brake[J]. Journal of Environmental Quality,2002,311: 6417-647
    [50]李文学,陈同斌,陈阳,等.蜈蚣草毛状体对砷的富集作用及其意义[J].中国科学C辑,2004,34(5):402~408
    [51]Wagner GJ, Wang E, Shepherd RW, et al., New approaches for studying and exploiting an old protuberance, the plant trichome[J]. Annals of Bontany,2004,93: 3-11
    [52]杨肖娥,龙新宪,倪吾钟,等.东南景天(Sedum alfredii H)——一种新的锌超积累植物[J].科学通报,2002,47(13):1003-1006.
    [53]蔡保松,蜈蚣草富集砷能力的基因型差异及其对环境因子的反应[D].[博士学位论文].杭州:浙江大学,2004
    [54]HartleyWJ, Ainsworth G, Meharg AA. Copper and arsenate induced oxidative stress in Holcus lanatus L. clones with differential sensitivity[J]. Plant, Cell and Environment,2001,24:713-722
    [55]Meharg AA, Hartley WJ. Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species[J]. New Phytologist,2002,154:29-43
    [56]Wang JR, Zhao FJ, Andrew A. et al., Mechanisms of arsenic hyperaccumulation in Pteris vittata:uptake kinetics, interactions with phosphate, and arsenic speciation[J]. Plant Physiology,2002,130:1552-1561
    [57]黄泽春,陈同斌,雷梅,等.砷超富集植物中砷化学形态及其转化的EXAFS研究[J].中国科学:C辑,2003,33(6):488-494
    [58]邓培雁,刘威,韩志国.砷胁迫下蜈蚣草光合作用的变化[J].生态环境.2007,16(3):775-778
    [59]谢飞,王宏镔,王海娟,等.砷胁迫对不同砷富集能力植物叶片抗氧化酶活性的影响[J],农业环境科学学报,2009,28(7):1379-1385
    [60]O'Neill P. Arsenic. In:Heavy Metals in Soils[M].(edited by Alloway BJ), New York: John Wiley and Sons,1990,1:83-99
    [61]谢正苗,黄昌勇,何振立.土壤砷的化学平衡[J].环境科学进展,1998,6(1):22-37
    [62]陈静,王学军,朱立军.pH值和矿物成分对砷在红土中的迁移影响[J].环境化学,2003,22(1):121-125
    [63]Hughes MF. Arsenic toxicity and potential mechanism of action[J].Toxicology Letters, 2002,133:1-16
    [64]魏显有,王秀敏,刘云惠,等.土壤中砷的吸附行为及其形态分布研究[J].河北农业大学学报,1999,22:28-30
    [65]陈同斌.土壤溶液中的砷及其与水稻生长效应的关系[J].生态学报,1996,16(2):147-153
    [66]梁月香,砷在土壤中的转化及其生物效应[D].华中农业大学,2007,1-12
    [67]简放陵.砷吸附解析及其与土壤性质的关系[J].热带亚热带土壤科学,1994,3:138-145
    [68]李道林,程磊.砷在土壤中的形态分布与青菜的生物学效应[J].安徽农业大学学报,2000,27(2):131-134
    [69]Fayiga AO, Ma LQ, Rathinasabapathi B. Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Peteris vittata L.[J].Environmental and Experimental Botany.2008,62:231-237
    [70]Xie QE, Yan XL, Liao XY, et al., The Arsenic Hyperaccumulator Fern Pteris vittataL[J]. Environmental Science and Technology.2009,43(22):8488-8495
    [71]Tu S, Ma LQ, LuongoT. Root exudates and arsenic aceumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata [J].Plant and Soil,2004,258(1):9-19
    [72]Tu S, Ma LQ. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulator Pteris vittata L.under hydroponic conditions[J]. Environmental and Experimental Botany,2003,50:243-251
    [73]Chen TB.Fan ZL,Lei M, et al,.Effects of phosphorus on arsenic accumulation in As-hyperaccumulator Pteris vittata L. and its implication[J].Chinese Science Bulletin, 2002,47:1876-1879
    [74]Cao X,Ma LQ,ShiralipourA.Effects of compost and phosphate amendments on arsenic mobility and arsenic uptake by the hyperaccumulator Pteris vittata L.[J]..Environmental Pollution,2003,126:157-167
    [75]周娟娟,高超,李忠佩,等.磷对土壤As(V)固定与活化的影响[J].土壤,2005,37(6):645-648
    [76]廖晓勇,陈同斌,谢华,等.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究[J].环境科学学报,2004,24(3):455-462
    [77]肖细元,廖晓勇,陈同斌,等.砷、钙对蜈蚣草中金属元素吸收和转运的影响[J].生态学报,2003,23(8):]477-1487
    [78]Caille N, Swanwick S, Zhao FJ, et al., Arsenic hyperaccumulation by Pteris vittata L. from arsenic contaminated soils and the effect of liming and phosphate fertilization [J].Environmental Pollution,2004,132(1):113-120
    [79]Li WX, Chen TB, Huang ZC, et al., Effect of arsenic on chloroplast ultrastructure and calcium distribution in arsenic hyperaccumulator Pteris vittata L. [J], Chemosphere, 2006,62:803-809
    [80]廖晓勇,谢华,陈同斌,等.蜈蚣草的超微结构和砷、钙的亚细胞分布[J].植物营养与肥料学报,2007,13(2):305-312
    [81]廖晓勇,肖细元,陈同斌.砂培条件下施加钙、砷对蜈蚣草吸收砷、磷和钙的影响[J].生态学报,2003,23(10):2057-2065
    [82]李勋光.土壤砷吸附及砷的水稻毒性[J].土壤,1996,28(2):98-100
    [83]Weasy SA.Remediation of soils polluted by heavy metals using organic acids and chelating [J]. Environmental Technology,1998,19(4):369-379
    [84]廖晓勇,陈同斌,阎秀兰,等.不同磷肥对砷超富集植物蜈蚣草修复砷污染土壤的影响[J].环境科学,2008,29(10):2906-2911
    [85]Huang ZC,An ZH.Chen TB, et a.,Arsenic uptake and transport of Pteris vittataL. as influnenced by phosphate and inorganic arsenic species under sand culture[J].Journal of Environmental Sciences,2007,19:714-718
    [86]Baker AJM, McGrmh SP, Sidoli CMD, et al., The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants [J], Resources, Conservation and Recycling,1994,11:41-49
    [87]Robinson BH, Brooks RR, Clothier BE. Soil amendment affecting Nickel and Cobalt uptake by Berkhyea coddii:potential use for phytomining and phytoremediation[J]. Annals of Botany,1999,84(6):689-694
    [88]查红平,肖维林,雷晓琳,等.砷的植物修复研究进展[J].地质灾害与环境保护,2007,18(2):55-60
    [89]Anderson CWN, Brooks RR, Chiarucci A, et al., Phytomining for nickel, thallium and gold[J]. Journal of Geochemical Exploration,1999,67:407-415.
    [90]Anderson C, Moreno F, Meech J. A field demonstration of gold phytoextraction technology[J]. Minerals Engineering,2005,18:385-392.
    [91]范麦妮,王海娟.植物冶金的研究进展[J1.安徽农业科学,2007,35(34):10958-10959,10974
    [92]Rodriguez, E, Parsons, JG., Peralta-Videa, JR, et al., Potential of Chilopsis linearis for gold phytomining:using XAS to determine gold reduction and nanoparticle formation within plant tissues[J]. International Journal of Phytoremediation.2007,9(2), 133-147.
    [93]Nicks LJ, Chambers MF. Farming for metals[J]. Mining Environmental Management, 1995(9).-15-18.
    [94]Robinson BH, Chiarucci A, Brooks RR, et al., The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel[J]. Journal of Geochemical Exploration,1997a,59:75-86
    [95]Robinson BH, Brooks RR, Howes AW, et al., The potential of the high-biomass nickel hyperaccumulator Berkheya coddii for phytoremediation and phytomining[J]. Journal of Geochemical Exploration,1997b,60:115-126.
    [96]徐敏.冶金与环保[J].江西化工,2003,2:50-51
    [97]Brown SL, Chancy RL, Angle JS, et al.,Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens and bladder campion for zinc-and cadmium-contaminated soil[J]. Journal of Environmental Quality,1994,23:1151-1157
    [98]杨肖娥,龙新宪,倪吾钟,等.东南景天(Sedum alfredii H)——一种新的锌超积累植物[J].科学通报,2002,47(13):1003-1006
    [99]Robert RB, Michael FC, Larry JN,etal.,Phytomining[J].Trends in Plant Science. 1998,3 (9):45-51
    [100]朱文宇,侯明明.超积累植物的资源化利用[J].环保科技,2009(2):44-48
    [101]邢前国,潘伟斌.富含Cd、Pb植物焚烧处理方法的探讨[J].生态环境.2004,13(4):585-586
    [102]柯文山,席红安,杨毅.大冶铜绿山矿区海州香薷(Elsholtzia haichowensis)植物地球化学特征分析[J].生态学报,2001,21(6):907-912
    [103]谢学锦,徐邦梁.铜矿指示植物海州香薷[J].地质学报,1953,32(4):360-368
    [104]李华,骆永明,宋静.不同铜水平下海州香薷的生理特性和铜积累研究[J].土壤,2002,34(4):225-228
    [105]龚长根,胡新生,陈军.湖北铜绿山古铜矿矿物共生指示植物的找矿分析研究[J].资源环境与工程,2008,22(1):9-15
    [106]李德先,高振敏,朱咏喧,等.铊矿物及铊的植物找矿[J].地质与勘探,2003,39(5):44-48
    [107]阮德水,李卫萍.金的化学[J].高等函授学报(自然科学版),2000,13(1):25-29
    [108]张力先.氰化提金工艺的最新进展[J].黄金学报,2001,3(2):124-130
    [109]张斌才,不同蜈蚣草(Pteris vittata L.)种群富集能力及其生理机制研究[D].[硕士学位论文].呼和浩特:内蒙古大学,2005
    [110]王云,魏复盛编著,土壤环境元素化学[M],北京:中国环境科学出版社,1995,1-80
    [111]李宁,吴龙华,李法云,等.不同铜污染土壤上海州香薷生长及铜吸收动态[J].土壤,2006,38(5):598-601
    [112]Mukhopadhyay R, Rosen BP, Pung LT, et al., Microbial arsenic:from geocycles to genes and enzymes[J].Fens Microbiology Reviews,2002,26(3):311-325
    [113]蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展[J].土壤,2004,36(3):246-270
    [114]王连方,颜世铭.我国地方性砷中毒研究进展[J].世界元素医学,1999,6(3):19-24
    [115]王焕校主编,污染生态学[M].北京:高等教育出版社,2002
    [116]鲍士旦.土壤农化分析(第三版)[M].北京:中国农业出版社,2000.
    [117]梁立忠.活性炭吸附火焰原子吸收法测定矿石中的金[J].河南化工,2001(12):31-32
    [118]袁健中,石英.活性炭吸附火焰原子吸收法测定地矿样品中的金[J].黄金,2001,22(5):44-46
    [119]王宏镔,凤尾蕨属植物对砷的富集特征及有关机理探讨[D].[博士学位论文].广州:中山大学,2005
    [120]崔爽,周启星,晁雷.某冶炼厂周围8种植物对重金属的吸收与富集作用[J].应用生态学报,2006,17(3):512-515
    [121]苏惠民,姜仁社,顾元良.从金矿尾矿中回收金、银、硫的试验研究[J],黄金,2003,24(8):31-33
    [122]李江涛,库建刚,赵文权.从某尾矿中回收金的浮选试验研究[J].黄金,2007,28(10):38-41
    [123]王海娟,宁平,张泽彪等.一种回收金尾矿金的植物冶金方法[P],中国发明专利,200910095088.9,2009-10-09
    [124]陈菲菲,黄蕊,张玉明,等起草.金矿石化学分析方法第三部分:砷含量的测定(GB/T20899.1-2007)[S].北京:中国标准出版社,2007
    [125]刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,1997
    [125]中国科学院南京土壤研究所.土壤理化分析[M].上海:上海科学技术出版社,1978
    [126]长春黄金设计院,长春黄金研究院.紫木魅金矿扩建工程可行性研究报告[M].2004,20-45
    [127]Zhang X.,Cornelis R., DE Kimpe J. et al..Speciation of toxicologically important arsenic species human serum by Liquid Chromatography-hydride generation atomic absorption spectrometry[J]. Journal of Analytical Atomic Spectrometry,1996, 11:1075-1079
    [128]张广莉,宋光煜,赵红霞.磷影响下根际无机砷的形态分布及其对水稻生长的影响[J].土壤学报,2002,39(1):23-28
    [129]武斌,廖晓勇,陈同斌,等.石灰性土壤中砷形态分级方法的比较及其最佳方案[J].环境科学学报,2006,26(9):1467-1473
    [130]涂从,苗金燕,何峰.土壤砷有效性研究[J].西南农业大学学报,1992,6:1-5
    [131]孙歆,韦朝阳,王五一.土壤中砷的形态分析和生物有效性研究进展[J].地球科学进展,2006,21(6):625-632
    [132]苗金燕,何峰,魏世强,等.紫色土外源砷的形态分配与化学、生物有效性[J].应用生态学报,2005,16(5):899-902
    [133]雷梅,陈同斌,范稚连等.磷对土壤中砷吸附的影响[J].应用生态学报,2003,14(11);1989-992.
    [134]邹强,重庆紫色土中砷含量分布及主要行为特征研究[D].[硕士学位论文].重庆:西南大学,2009
    [135]党廷辉,郝明德,郭胜利.石灰性土壤磷素的化学活化途径探讨[J].水土保持学报,2005,19(2):100-101,146
    [136]陶玉强,姜威,苑春刚,等.草酸盐影响污染土壤中砷释放的研究[J].环境科学学报,2005,25(9):1232-1235
    [137]于洋.蜈蚣草植酸酶特性和抗氧化系统对砷胁迫的响应研究[D]:[硕士学位论文].武汉:华中农业大学,2008,1-5
    [138]高松,谢丽.中国土壤砷污染现状及修复治理技术研究进展[J].安徽农业科学,2009,37(14):6587-6589
    [139]宋书巧,周永章,周兴,等.土壤砷污染特点与植物修复探讨[J].热带地理,2004,24(1):6-9
    [140]陈同斌,范稚莲,雷梅,等.磷对超富集植物蜈蚣草吸收砷的影响及其科学意义[J].科学通报,2002,47(15):1156-1159
    [141]李文学,陈同斌,刘颖茹.刈割对蜈蚣草的砷吸收和植物修复效率的影响[J].生态学报,2005,25(3):58-542
    [142]谷晋川,刘亚川.金矿氰化浸出助浸剂的研究[J].金属矿山,2001(9):28-30
    [143]Whtlehean D C.Some aspects of the influence of organic matter on fertility[J].Soils and Fertilizers,1963,26(4):217-223
    [144]陈怀满.土壤中化学物质的行为与环境质量[M].北京:科学出版社,2002,79-81
    [145]蔡保松,陈同斌,廖晓勇,等.土壤砷污染对蔬菜砷含量及食用安全性的影响[J].生态学报,2004,24(1):711-717
    [146]张国祥,杨居荣,华珞.土壤环境中的砷及其生态效应[J].土壤,1996,2:64-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700