波尔多液营养保护剂在土壤中的生化行为及作物效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
波尔多液营养保护剂是山东农业大学主持完成的国家“948”计划“波尔多液营养保护剂制作技术及作物效应研究”项目的研究创新成果,其在传统波尔多液有效成分配比的基础上,配以载体填料和配方助剂,根据需要加入某些微量营养元素,加以浓缩、精制而研制开发的一种具有营养和杀菌双重功能的新型干悬浮剂。该制剂在植株表面附着时间长,不仅能增强其防病抑菌的效果,还可减少一定的喷药量及喷药次数,并且使用、运输及存储方便。另外,由于制剂中添加了少量微量元素,可为作物的生长发育提供营养。波尔多液营养保护剂的上述优势可媲美甚至赶超国内外同类产品,且产品的生产技术成熟,可大批量生产,具有广阔的应用前景。而针对波尔多液营养保护剂使用后所造成的土壤中铜累积及其对土壤环境和作物生长发育的影响是目前亟待研究和解决的问题。
     本研究采用土柱模拟、解吸试验、室内培养、急性毒理试验、盆栽试验,结合化学连续浸提法和生物统计等手段,系统研究了波尔多液营养保护剂产品有效成分铜在土壤中的垂直迁移、形态转化和解吸特性,深入探讨了产品对作物生长、发育和品质的影响,明确了波尔多液营养保护剂土壤污染表征的生物活性指标,为波尔多液营养保护剂的生产、应用推广和生态安全评价提供理论依据。主要研究结果如下:
     (1)经pH为7.0和4.0的淋滤液淋溶后,波尔多液营养保护剂有效元素铜仍累积于土柱表层,向下垂直迁移性很小,不会对地下水体产生铜污染。增施有机物料和提高淋溶液酸度会促进土柱中Cu的迁移,尤其是pH为2.0的酸雨模拟淋溶下,土柱中上层Cu被活化主要以交换态发生向下迁移。三种铜制剂中以硫酸铜处理下Cu的迁移速率和程度最大,可迁至10-15cm土层,而波尔多液营养保护剂和美国Kocide2000则主要集中于7-10cm土层;三种铜制剂处理土柱底层15-20cm土壤均未受到铜严重污染。
     (2)随有机酸浓度升高,草酸和柠檬酸对波尔多液营养保护剂处理的土壤中Cu2+的解吸率增加,尤以柠檬酸对Cu2+解吸的促进作用最强。随着解吸液温度的升高,草酸体系中有利于Cu2+的解吸,而柠檬酸体系中对Cu2+的解吸有抑制作用。随着解吸液pH值的升高,草酸体系中土壤Cu2+的解吸率降低;而柠檬酸体系中土壤Cu2+的解吸率呈降低-升高-再降低的变化。再者,铜制剂处理的潮土(钙质淡色潮湿雏形土)中铜的解吸率显著低于铜制剂处理的棕壤(简育湿润淋溶土),前者中Cu2+的有效性和迁移性显著小于后者。本试验条件下,三种铜制剂处理的土壤中均以波尔多液营养保护剂土壤中Cu2+的解吸量最少,亦对土壤环境带来的影响最小。
     (3)双常数方程和Elovich方程可用来描述波尔多液营养保护剂处理土壤Cu2+的解吸动力学特性。在有机酸影响下铜制剂处理的棕壤和潮土中Cu2+的解吸速率均较快,60min左右基本达到平衡,且以柠檬酸存在时土壤中Cu2+的解吸速率最大。三种铜制剂处理的土壤相比,以波尔多液营养保护剂处理土壤中Cu2+的解吸初始速率最小。
     (4)棕壤中施用波尔多液营养保护剂显著增加了土壤中晶质锰氧化物结合态和无定型铁结合态铜,潮土中则主要以铁锰氧化物结合态铜占优。两种土壤上波尔多液营养保护剂处理下交换态铜所占比例要显著小于硫酸铜和美国Kocide2000,铜的有效性最低。随培养时间的延长,棕壤上交换态、有机结合态、晶质锰氧化物结合态和无定型铁结合态铜呈升高趋势,而晶质锰氧化物结合态和残渣态铜则有先升高后降低趋势。潮土上铜形态的转化幅度小,交换态、碳酸盐结合态和残渣态铜总体上呈降低趋势,铁锰氧化物结合态和有机结合态铜呈升高趋势,培养第14天时各形态铜之间的转化基本达到平衡。
     (5)长期使用铜制剂会对土壤脲酶、蔗糖酶、磷酸酶活性和微生物生物量碳产生不可逆的抑制作用,且生物活性与铜含量呈极显著性负相关,可将其作为波尔多液营养保护剂和其它铜制剂对土壤铜污染程度的生物学指标。以磷酸酶为预警指标,得到棕壤一级土壤预警值为19.26%,二级土壤为22.04%;潮土上分别为7.02%和30.11%。
     (6)探明了波尔多液营养保护剂处理土壤中铜的各化学形态与土壤生物学指标的关系。棕壤中有机结合态和交换态对土壤酶活性和微生物量碳的影响最大,晶质锰氧化物结合态、无定型铁结合态和晶质铁氧化物结合态也有一定影响。有机结合态、交换态和铁锰氧化物结合态对潮土生化指标都有影响,尤其是前者的贡献最大。因此,综合两种土壤铜形态与生物学性质的关系,在衡量波尔多液营养保护剂对棕壤和潮土铜污染程度时需要考虑铜的交换态和有机结合态。
     (7)土培试验中,波尔多液营养保护剂对土壤生物学性质的影响与硫酸铜相似,甚至某些酶活性小于硫酸铜,这或许与产品的添加剂对某些土壤生物学性质有一定的抑制作用有关。但在种植作物的土壤上,添加剂的这种抑制作用稍有减弱,产品对土壤生物学性质的影响小于硫酸铜。无论是种植作物的土壤还是没有种植作物的土壤,产品对土壤生物学性质的影响均略大于美国Kocide2000。因此,还应考虑研究添加剂的替代改良品种或用量配比,以便改善产品对土壤生物学性质的影响。
     (8)波尔多液营养保护剂的长期施用不可避免带来土壤中铜的累积,但铜的有效性小于美国Kocide2000和硫酸铜,由于铜的施用量远小于传统波尔多液,所带来的铜累积污染也会显著减少。产品中微量元素锌的添加,能够显著提高土壤中锌的有效性;而受土壤中高铜浓度的影响,即使产品中添加了铁元素,土壤中铁的有效性仍显著降低。增施有机物料可降低潮土铜的有效性,而提高有效锌和铁的含量。
     (9)颗粒粉剂型波尔多液营养保护剂与美国Kocide2000因其铜溶解度低对植物发芽的影响小于硫酸铜,三者对作物发芽产生相同抑制率时的铜浓度前两者是后者的2-4倍。因此,在评价粉状铜制剂对环境的影响时,应充分考虑其自身的特点。不同植物对铜制剂污染物的毒性响应具有明显差异,本试验中三种植物对铜制剂的敏感顺序为:油菜>番茄>小麦,可将油菜作为铜制剂污染土壤毒理诊断的指示植物。
     (10)发芽指标中以发芽指数和根伸长受铜制剂的影响最敏感,与铜浓度呈对数或二次多项式相关,可用于研究铜制剂污染毒性与植物响应的剂量-效应关系。本文潮土中波尔多液营养保护剂对作物种子发芽抑制阈值的铜浓度要明显高于棕壤4-6倍。
     (11)长期使用铜制剂导致蔬菜可食部分中铜的大量积累,从而影响作物的生长、发育和品质,且在短时间内不会消除。然而,由于波尔多液营养保护剂处理土壤中有效锌含量的增加,提高了菠菜对锌的吸收,从而增加了菠菜体内锌含量。四种铜制剂中,传统波尔多液对作物的影响最大,硫酸铜次之,波尔多液营养保护剂与美国Kocide2000相近。增施3%的有机物料可以缓解波尔多液营养保护剂对植物生长发育的影响,棕壤上三种作物增产26%-192%,潮土上菠菜增产30%-118%。
Bordeaux nutritional protective powder (BNPP) is a kind of dry suspending agent, which is based on the effective element rate of Bordeaux mixture, added with additives and assistant materials, then concentrated and refined. Because of the trace element added in the preparation, it could provide nutrition to the crops. Moreover, the preparation could stick to plant surface for a long time, so that it could enhance the effects on preventing and curing germina, reduce the quantity and time of spray, and have other advantages in the manufacturing, applying and storing procedures. Bordeaux nutritional protective powder could be equal even exceed to congeneric product in the word. Furthermore, the maturely productive technique made it be volume-produced, so Bordeaux nutritional protective powder in farming widely use will come true. However, as the effective component of Bordeaux nutritional protective powder—copper applied frequently, the cumulation of copper in soil must be keep track to study the influence of copper on soil property and crop growth.
     In order to offer academic thereunder for producing, spreading and ecosecurity estimation of Bordeaux nutritional protective powder, several experiments were conducted and sequential extractive method and biostatistical method were used in this study. The vertical transferance, fraction transformation and desorption characterisitcs of copper in soil treated with Bordeaux nutritional protective powder were examined by column simulation, desorption experiment, laboratory incubation. Also, the effects of BNPP on seed germination, growth and development of plants and so on were studied by acute toxicity and pot experiment. The biologic activity index of the soil contamination by Bordeaux nutritional protective powder and other copper agents was definituded. The main results were summarized as follows:
     (1) Copper, the effective component of BNPP mainly accumulated in top soil after leaching by pH 7.0 and 4.0 leaching water, the upright down transference of copper was small and could not contaminate the groundwater. The moving of copper was accelerated with the increasing of organic materiel and acidity of leaching water, especially leaching by pH 2.0 simulated acid rain. The copper migrating in the soil column was mainly in exchangeable form. The greatest migratory speed and extent was found in CS treatment, which could move to 10-15cm in soil column; copper was mainly accumulated in 7-10cm soil layers in BNPP and KCD treatments. However,soil in the bottom of soil column was not polluted by copper.
     (2) The desorption rate of Cu2+ from soils treated by three copper-based pesticides increased with increase of concentration of oxalic acid and citric acid, especially of citric acid. The higher temperature was in organic acid desorption solution (except in citric acid), the higher desorption rate of Cu2+ was found in soil. As pH value of desorption solutions increased, Cu2+ desorption rate decreased as oxalic acid was added into soil; in contrast, when citric acid was added into the tested soil, Cu2+ desorption rate decreased at first, then enhanced, and then decreased again, showing as of lying“S”. Furthermore, Cu2+ desorption in the calcareous Fluvo-aquic soil (Och-Aquic Cambosols) was higher than in the Brown soil (Hap-Udic Luvisols), so the effectivity and transference of Cu2+ in the former was less than the latter. Taking all the experiment conditions into account, the Cu2+ desorption rate for three copper-based pesticides soil was CS>KCD>BNPP, and thus soil environment was least effected by BNPP.
     (3) The best model to describe Cu2+ desorption kinetics in BNPP treated soil was two-constant equations, followed by the Elovich equation. Cu2+ desorption rate from copper-based pesticides treated soil was desorpted so fast that the desorption equilibrium could be reached only after 60 min desorption. Comparing with oxalic acid, desorption rate was greater when citric acid was used. And the least Cu2+ initial desorption rate was found in BNPP treated soil.
     (4) The application of BNPP significantly increased the ratio of MnOX-Cu and NFe-Cu in the Brown soil (Hap-Udic Luvisols), and the ratio of FeMnOX-Cu in the calcareous Fluvo-aquic soil (Och-Aquic Cambosols). The ratio of EX-Cu in both two kinds of soil treated with BNPP was significantly less than that of CS and KCD. In the incubation, EX-Cu, OR-Cu, MnOX-Cu and NFe-Cu were increased; FeOX-Cu and Res-Cu were increased first then decreased in the Brown soil (Hap-Udic Luvisols). However, the invert extent of copper conformation in the calcareous Fluvo-aquic soil (Och-Aquic Cambosols)was small, EX-Cu, Car-Cu and Res-Cu were decreased, FeMnOX-Cu and OR-Cu were increased, and the transformation of copper reached equilibrium in fourteen days after incubation.
     (5) The activities of urease, sucrase, acdic phosphatas and the SMBC were irreversibly inhibited by BNPP and the inhibitions were increased with the increasing BNPP dosage. And statistical analysis indicated that there was great remarkable negative relationship between the biological activity and copper content. It was feasible to use them mentioned above as biological index to evaluate BNPP polluted soil. Taking phosphatase as warning index, the threshold value of warning of first-class soil was 19.26%, that of second-class soil was 22.04% in Brown soil; there were 7.02% and 30.11% in Fluvo-aquic soil, respectively.
     (6) The relationship between copper chemical conformation and biological index in soil treated with BNPP was primarily proved up. In the Brown soil (Hap-Udic Luvisols), the more contributions to inhibiting effect of soil enzymatic activities and SMBC were OR-Cu and EX-Cu; MnOX-Cu, NFe-Cu and FeOX-Cu also had some effects. OR-Cu, EX-Cu and FeMnOX-Cu played an important role in biological index of the calcareous Fluvo-aquic soil (Och-Aquic Cambosols), especially the former. In order to weight the contamination degree of BNPP in both soils, OR-Cu and EX-Cu should be taken into account.
     (7) In the soil incubation experiment, BNPP made similar effects with CS on soil biological property. Even, some enzyme activity in BNPP were less than CS, these results might attribute to the additives in BNPP. However, the inhibition of additives was reduced in soil with plant growth, and the effects of BNPP on soil biological properties were less than that of CS. But the effects of BNPP on soil biological were still higher than that of KCD not only in soil with plant but also in soil without plant. Therefore, in order to improve the effect of BNPP on soil biological properties, the kinds and dosage proportion of additives should be taken into account.
     (8) Copper inevitably accumulated in soil for the long term application of BNPP and other copper agents, but the availability of copper in the soil was less than KCD and CS. Furthermore, the availability of zinc in soil was increased; this might contribute to zinc which added in the product. But, soil available iron was significantly decreased for the higher content of copper in the soil even if iron added in the produc. The application of organic matter could reduce the availability of the calcareous Fluvo-aquic soil (Och-Aquic Cambosols) copper, and increase the content of available zinc and iron.
     (9) The inhibitory effects of BNNP and KCD on the plant seed germination were lower than that of CS, this might be related to their low copper solubility. And the copper concentrations of BNNP and KCD which caused the same inhibitory rate of plant seed germination were 2-4 times than that of CS. So the characteristics of copper-based pesticides should be taken into account as evaluating those effects on the environment. The toxic responses of plants for the copper-based pesticides were significantly different, and the plant sensitive sequence order was cole>tomato>wheat. It was feasible to use cole as indicatory plant to be toxicological diagnosis of soil contaminated with copper-based pesticides.
     (10) The germination index and root elongation were the most sensitive to copper-based pesticides pollution, and they were significantly related with the copper concentration for logarithmic expression or quadratic polynomial expression. So germination index and root elongation could be applied in the research on the dose-response relationship between pollution toxicity of copper-based pesticides and plant response. In this research, the threshold copper concentration which inhibited the germination of seed in the calcareous Fluvo-aquic soil (Och-Aquic Cambosols) was significant higher 4-6 times than that in the Brown soil (Hap-Udic Luvisols).
     (11) Copper was accumulated in the edible part of the vegetable, and the growth, development and quality of vegetable were also affected for long term application of copper-based pesticides and these effects could not be eliminated in a short time. The zinc content in the spanich was increased due to the increased content of available zinc in the BNPP treated soil. Plants were affected mostly by BDM, next was CS and the effect of BNPP was a little higher than that of KCD. Organic materials added with the 3% rate in BNPP applied soil could reduce the negative effects of BNPP on plant growth and development. Biomass of crops increased 26%-192% in the Brown soil (Hap-Udic Luvisols), and 30%-118% in the calcareous Fluvo-aquic soil (Och-Aquic Cambosols).
引文
不破敬一郎.生物体与重金属[M].北京:中国环境科学出版社,1985.
    陈怀满,熊毅.紫云英和稻草对土壤溶液pH和Eh的影响[J].土壤,1984,16(5),189-193.
    陈建斌,高山.有机物料对土壤中外源铜形态及土壤化学性质的影响[J].农业环境保护,2000,19(1):38-40.
    陈建斌.有机物料对土壤的外源铜和镉形态变化的不同影响[J].农业环境保护,2002,21(5): 450-452.
    陈实.使用波尔多液应注意的问题[J].北京农业, 1994,(7):23.
    陈世俭,胡霭堂.土壤铜形态与有机物质的影响[J].长江流域资源与环境,1995,4(4):367-371.
    陈世俭,胡霭堂.有机物种类对污染土壤铜形态及活性的影响[J].土壤通报,2001,32(2):38-46.
    陈世俭.泥炭和堆肥对几种污染土壤中铜化学活性的影响[J].土壤学报,2000,37(2):280-283.
    陈世俭.污染土壤添加有机质对黑麦草吸收铜的影响[J].农村生态环境,2001,17(1):37-39.
    陈世俭.有机物质添加量对污染土壤铜形态及活性的影响[J].土壤与环境,1999,8(1):22-25.
    陈雯莉,黄巧云,郭学军.瘤菌对土壤铜、锌和镉形态分配的影响[J].应用生态学报,2003,14(8): 278-1282
    陈有鑑 ,黄艺,曹军,等.玉米根际土壤中不同重金属的形态变化[J].土壤学报,2003,40(3):367-373.
    陈有鑑,陶澍,邓宝山,等.小麦根际环境中铜和铅形态的变化[J].环境科学学报,2000,20(3):365-369.
    储玲,王友保,丁佳红,等.铜对三叶草—土壤酶系统的影响[J].应用生态学报,2005,16(12):2413-2417.
    戴灵鹏,柯文山,陈建军,等.重金属铜对红菜苔(Brassica campestris L [1].var. purpurea Baileysh)的生态毒理效应[J].湖北大学学报(自然科学版),2004,26(2):160-163.
    丁中元.重金属在土壤—作物中分布规律研究[J].环境科学,1989,10(5):78-84.
    段路路.波尔多液营养保护剂矫治植物缺铁锌症状及生物效应研究[D].山东农业大学硕士论文,2006.
    高贵深,陈树民.“绿得保”保护性杀菌剂的研制与开发[J].河北农业大学学报,1996,(3):43-50.
    高彦征,贺纪正,凌婉婷,等.几种有机酸对污染土中Cu解吸的影响[J].中国环境科学,2002,22(3):244-248.
    龚宁,薛长雷,劳保新,等.Cu-Cd复合处理对小白菜硝酸盐含量的影响[J].安徽农业科学,2007,35(33):10649-10650.
    关松荫.土壤酶及其研究法[M].北京:中国农业科技出版社,1983.
    郭朝晖,黄昌勇,廖柏寒.模拟酸雨对污染土壤中Cd、Cu和Zn释放及其形态转化的影响[J].应用生态学报,2003,14(9):1547-1550.
    韩凤祥,胡霭堂,秦怀英,等.土壤痕迹元素形态分级提取方法的研究—以土壤锌形态分级为例[J].农业环境科学学报,1989,8(5):26-29.
    韩林,韩学斋,尹树玳.铜素杀菌剂的种类及使用[J].河北果树,2002(2):31-32.
    贺建群,许嘉琳,杨居荣,等.土壤中有效态Cd、Cu、Zn、Pb提取剂的选择[J].农业环境保护,1994,13(6):246-251.
    何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997,1:8.
    和文详,马爱生,武永军,等.砷对土壤脲酶活性影响的研究[J].应用生态学报,2004,15(5):895-898.
    胡正义,沈宏,曹志洪.Cu污染土壤—水稻系统中Cu的分布特征[J].环境科学,2000,21(2):62-65.
    黄雅琴,杨在中.蔬菜对重金属的吸收累积特点[J].内蒙古大学学报(自然科学版),1995,16(5):608-615.
    黄艺,陶澍,姜学艳,等.过量铜对4种外生菌根真菌的生长、碳氮和铜积累的影响[J].微生物学报,2002,42(6):737-744.
    黄振东,严德胜,陈道茂,等.一种铜素杀菌剂:“绿菌灵”的研制[J].农药,2001,40(12):17-18
    加里乌林·乌·维.根据土壤酶的活性监测土壤的重金属污染[J].国外农业环境保护,1992,3:33-37.
    蒋廷惠,胡霭堂,秦怀英.土壤中锌、铜、铁、锰的形态区分方法的选择[J].环境科学学报,1990,10(3):280-286.
    李斌.杀菌剂研发进展[J].农药,2001,(5):6-8.
    李道林,何方,马成泽,等.砷对土壤生物学活性及蔬菜毒性的影响[J].农业环境保护,2000,19(3):148-151.
    李锋民,熊治廷,胡洪营,等.海州香薰对铜的蓄积及铜的毒性效应[J].环境科学,2003,24(3):30-34.
    李合生主编.现代植物生理学[M].北京:高等教育出版社,2002.
    李天杰.土壤环境学[M].北京:高等教育出版社,1995.
    李洪军,李瑛,张桂银,等.有机酸对潮褐土和红壤吸附Cu(Ⅱ)的影响及其机制[J].土壤与环境,2002,11(4):343-347.
    李伟娟,姚来根,倪世伟,等.土壤对氟离子吸附与解吸的动态土柱法研究[J].长春地质学院学报,1995,25(3):317-322.
    李文庆,张民,束怀瑞,等.苹果园土壤中铜的含量及形态特征研究[J].园艺学报,2005,32(5):769-772.
    李笑峰,葵宝明,李芳,等.低温逆境对长白落叶松雄球花及花粉影响的研究[J].林业科技,1997(5):9-11.
    李晓军,张勇,曲健禄,等.波尔多液等不同杀菌剂防治苹果褐班病和果实轮纹病实验[J].落叶果树,1999(1):3-4.
    李学坦,王启发,徐凤琳.稻草还田对土壤K、P、Zn的吸附-解吸及其有效性的影响[J].华中农大学报,2000,19(3):227-232.
    林启美,吴玉光,刘焕龙.熏蒸法测定土壤微生物量碳的改进[J].生态学杂志,1999,18(2):63-66.
    刘春生,常红岩,孙百晔,等.外援铜对土壤果树系统中酶活性影响的研究[J].土壤学报,2002,39(1):37-44.
    刘登义,王友保.Cu、As对作物种子萌发和幼苗生长影响的研究[J].应用生态学报,2002,13(2):179-182.
    刘登义,谢建春,杨世勇,等.铜尾矿对小麦生长发育和生理功能的影响[J].应用生态学报,2001,12(1):126-128.
    刘景春,李裕红,晋宏.铜污染对辣椒产量、铜累积及叶片膜保护酶活性的影响[J].福建农业学报,2003,18(4):254-257.
    刘清,王子健,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展[J].环境科学,1996,17(1):89-91.
    刘霞,刘树庆,唐兆宏.潮土和潮褐土中重金属形态与土壤酶活性的关系[J].土壤学报,2003,40(4):581-587.
    刘新,尤民生,郭丽萍,等.杀菌剂对桔全爪螨实验种群的影响[J].福建农业大学学报(自然科学版),1999,178-181.
    刘志强.取代波尔多液的理想选择中国唯一乳油铜制剂——绿乳铜[J].北京农业,1998,(6):29.
    龙健,黄昌勇,滕应,等.我国南方红壤矿区复垦土壤的微生物生态特征研究I对土壤微生物活性的影响[J].应用生态学报,2003,14(11):1925-1928.
    龙健,黄昌勇,滕应,等.铜矿尾矿库土壤-海洲香薷(Elsholtzia harchowensis)植物体系的微生物特征研究[J].土壤学报,2004,41(1):120-125.
    隆茜,张经.陆架区沉积物中重金属研究的基本方法及其应用[J].海洋湖沼通报,2002,3(3):25-35.
    陆晓辉,黎成厚,涂成龙.不同有机物料对土壤外源铜有效性的影响[J].山地农业生物学报,2004,23(1):5-9.
    吕兴,朱英存,戴燕棠.模拟酸雨对土壤中的铜释放与缓冲作用研究[J].污染防治技术,2007,20(3):20-21,96.
    莫测辉,吴启堂,周友平,等.城市污泥对作物种子发芽及幼苗生长影响的初步研究[J].应用生态学报,1997,8(6):645-649.
    莫争,王春霞,陈琴,等.重金属Cu,Pb,Zn,Cr,Cd在水稻植株中的富集和分布[J].环境化学,2002,21(2):110-116.
    南京农业大学主编.土壤农化分析[M].农业出版社,1986.
    倪才英.铜对紫云英根系生长发育的影响[J].江西师范大学学报(自然科学版),2000,24(2):176-180.
    倪才英,陈英旭,骆永明,等.紫云英(Astragalus siniucus L.)对重金属胁迫的响应[J].中国环境科学, 2003,23(5):503-508.
    倪吾钟,马海燕,余慎,等.土壤-植物系统的铜污染及其生态健康效应[J].广东微量元素科学,2003,10(1):1-5.
    倪吾钟.主要农作物铜素失调症[A].见:马国瑞,石伟勇主编.农作物营养失调症原色图谱[C].北京:中国农业出版社,2002.
    潘瑞炽,董愚得.植物生理学[M].第三版,北京:高等教育出版社,1995:35.
    彭克明,裴保义.农业化学[M].北京:农业出版社,1980.
    荣湘民,岳振华,朱红梅.湖南省几种主要菜园土铅的化学行为及其作物效应的初步研究[J].1996,5(1):27-32.
    邵涛,刘真.油污染土壤重金属赋存形态和生物有效性研究[J].中国环境科学,2000,20(1):57-61.
    石伟勇.果树铜素失调症[A].见:马国瑞,石伟勇主编.果树营养失调症原色图谱[C].北京:中国农业出版社,2002.
    史长青.重金属污染对水稻土酶活性的影响[J].土壤通报,1995,26(1):24-35.
    宋印刚,田逢俊,王会杰.杨树腐烂病防治试验[J].林业科技通报,1999,(6):26-34.
    宋玉芳,许华夏,任丽萍,等.重金属对土壤中萝卜种子发芽与根伸长抑制的生态毒性[J].生态学杂志,2001a,20(3):4-8.
    宋玉芳,许华夏,任丽萍,等.重金属对西红柿种子发芽与根伸长的抑制效应[J].中国环境科学,2001b,21(5):390-394.
    宋玉芳,许华夏,任丽萍,等.土壤重金属对白菜种子发芽与根伸长抑制的生态毒性效应[J].环境科学,2002a,23(1):103-107.
    宋玉芳,周启星,许华夏,等.重金属对土壤中小麦种子发芽与根伸长抑制度生态毒性[J].应用生态学报,2002b,13(4):459-462.
    孙敬亮,武文钧,韦东普,等.重金属土壤污染及植物修复技术[J].长春理工大学学报,2003,26(4):46-48.
    孙庆业,田胜尼.尾矿污染与几种土壤酶活性[J].土壤,2000,(1):54-56.
    唐启义,冯明光.实用统计分析及其计算机处理平台[M].北京:中国农业出版社,1997,56-108.
    滕应,黄昌勇,龙健,等.铜尾矿污染区土壤酶活性研究[J].应用生态学报,2003,14(11):1976-1980.
    田胜尼,刘登义,彭少麟,等.香根草和鹅观草对Cu、Pb、Zn及其复合重金属的耐性研究[J].生物学杂志,2004,21(3):15-19.
    屠子钦.铜素杀菌剂的技术经济效益评述及其合理使用[J].植保技术与推广,1994,(4):21-22.
    王芳,蒋新,王代长,等.模拟酸雨作用下红壤中Cu2+的释放动力学[J].环境化学,2003,22(4):340-344.
    王果,陈建斌,高山,等.稻草和紫云英对土壤外源铜的形态及生态效应的影响[J].生态学报,1999,19(4):551-556.
    王慎强,王玉军,周东美,等.邻苯二胺对外源铜在红壤中形态影响的研究[J].农业环境科学学报,2003,22(1):9-12.
    王淑芳,胡连生,纪有海,等.重金属污染黑土中固氮菌及反硝化菌作用强度的测定[J].应用生态学报,1991,2(2):174-177.
    汪细桥.可杀得2000防治西芹斑枯病试验[J].长江蔬菜,1998(6):15-16.
    王维君,邵宗臣,何群.红壤粘粒对Co、Cu、Pb和Zn吸附亲和力的研究[J].土壤学报,1995,32(2):167-178.
    王秀丽,徐建民,谢正苗,等.重金属铜和锌污染对土壤环境质量生物学指标的影响[J].浙江大学学报(农业与生命科学版),2002,28(2):190-194.
    王秀丽,徐建民,姚槐应,等.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响[J].环境科学学报,2003,23(1):22-27.
    王友保,刘登义,张莉,等.Cu、As及其复合污染对黄豆影响的初步研究[J].应用生态学报,2001,12(1):117-120.
    王友保,张莉,刘登义.灰渣场土壤酶活性与植被和土壤化学性质的关系[J].应用生态学报,2003,14(1):110-112.
    王忠文,曾东强,涂崇贵.可杀得2000和敌力脱防治香蕉叶斑病药效试验[J].广西植保, 1999,12(1):18-19.
    王忠跃.铜制剂及在世界上的发展[J].中外葡萄与葡萄酒,2001,2:34-35.
    吴龙华,王桂荣,张春兴,等.草炭与风化炭改良盐碱土的生态效应[J].生态农业研究,2000,8(2):34-37.
    吴新民,潘根兴.影响城市土壤重金属污染因子的关联度分析[J].土壤学报,2003,40(6):921-929.
    武玫玲.土壤矿质胶体的可变电荷表面对重金属离子的专性吸附[J].土壤通报,1985,16(2):89-94.
    夏家淇.土壤环境质量标准详解[M].北京:中古环境科学出版社,1996.
    谢思琴,周德智,顾宗濂.模拟酸雨下土壤中铜、镉行为及急性毒性效应[J].环境科学,1991,12(2):24-28.
    谢正苗.土壤中铜的化学平衡[J].环境科学进展,1996,4(2):1-23.
    邢世和,赵振宇,周碧青,等.粉煤灰泥混合污染物对土壤性质、萝卜产量与品质的影响[J].应用生态学报,2001,12(1):121-125.
    徐磊.铜胁迫对小白菜生理生化指标的毒害作用[D].福建农林大学硕士学位论文,2003.
    徐振.铜基营养杀菌剂的合成工艺及其作物效应研究[D].山东农业大学硕士学位论文,2005.
    许长敏,陈清云,刘金成.马铃薯晚疫病药剂防治筛选试验[J].农药,2002,41(2):31-32.
    许嘉琳,杨居荣.陆地生态系统中的重金属[M].北京:中国环境科学出版社,1995.
    杨金燕,杨肖娥,何振立,等.土壤中铅的吸附-解吸行为研究进展[J].生态环境,2005,14(1):102-107.
    杨仁斌,曾清如,周细红,等.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应[J].农业环境保护,2000,19(3):152-155.
    杨元根,Paterson E,Campbell C.重金属Cu的土壤微生物毒性研究[J].土壤通报,2002,33(2):137-141.
    郁达,沈宗根,张恒泽,等.汞对萝卜种子发芽及幼苗某些生理特性的影响[J].西北植物学报,2004,24(2):231-236.
    袁可能.植物营养元素的土壤化学[M].科学出版社,1983.
    岳振华,张富强,胡瑞芝,等.菜园土中重金属和氟的迁移积累及蔬菜对重金属的富集作用[J].湖南农学院学报,1992,18(4):929-936.
    赵凤亮,郑桂萍,曾宪国,等.不同盘土及草炭配比对水稻秧苗素质的影响[J].黑龙江八一农垦大学学报,2007,19(6):30-33.
    赵世杰,刘华山,董新纯主编.植物生理学实验指导[M].中国农业科技出版社,1998.
    张桂山,贾小明,马晓航,等.山东棕壤重金属污染土壤酶活性的预警研究[J].植物营养与肥料学报,2004,10(3):272-276.
    张国军,邱栋梁,刘星辉.Cu对植物毒害研究进展[J].福建农林大学学报(自然科学版),2004,33(3):289-293.
    张惠文,张倩茹,周启星,等.乙草胺及铜离子复合施用对黑土农田生态系统土著微生物的急性毒性效应[J].农业环境科学学报,2003,22(2):129-133.
    张民,龚子同.我国菜园土壤中某些重金属元素的含量与分布[J].土壤学报,1996,33(1):85-93.
    朱嬿婉,沈壬水,钱钦文.土壤中金属元素的五个组成的连续提取法[J].土壤,1989,3:163-166.
    周启星.复合污染生态学[M].北京:中国环境科学出版社,1995.
    周礼恺,张志明,曹承锦,等.土壤的重金属污染与土壤酶活性[J].环境科学学报,1985,5(2):176-183.
    周以富,董亚英.几种重金属土壤污染及其防治的研究进展[J].环境科学动态,2003,(1):15-17.
    Aharoni C, Sparks D L, Levinson S. Kinetics of soil chemical reactions: relationships between empirical equations and diffusion models [J]. Soil Sci Soc Am J, 1991, 55: 1307-1313.
    Alef K, Nannipieri P (eds). Methods in Applied Soil Microbiology and Biochemistry [M]. London: Academic Press, 1995, 100-104.
    Alexander M. Aging, bioavailabiity, and overestimation of risk from environmental pollutants [J]. Environ Sci Technol, 2000, 34: 4259-4264.
    Al-Sewailem M S, Khale E M, Mashhady A S. Retention of copper by desert sands coated with ferric hydroxides [J]. Geoderma, 1999, 89: 249-258.
    Aoyama M and Itaya S. Effects of copper on the decomposition of plant residues, microbial biomass, and beta-glucosidase activity in soils [J]. Soil Sci Plant Nutr, 1993, 39: 557-566.
    Aoyama M and Itaya S. Effects of copper on the metabolism of 14C–labeled glucose in soil In relation to amendment with organic materials [J]. Soil Sci Plant Nutr, 1995, 41: 245-252.
    Aoyama M and Nagumo T. Factors affecting microbial biomass and dehydrogenase activity in apple orchard soils with heavy metal accumulation [J]. Soil Sci Plant Nutr, 1996, 42: 821-831.
    Atanassova I D. Adsorption and desorption of Cu at high equilibrium concentrations by soil and clay samples from Bulgaria [J]. Environ Pollut, 1995, 87: 17-21.
    Baath E, Diaz-Ravina M, Frostegard A, et al. Effect of metal-rich sludge amendment on the soil microbial community [J]. Appl Environ Microbiol, 1998, 64 (1): 238-245.
    Baath E, Arnebrant K, Nordgren A. Microbial biomass and ATPin smelter pollured forest humus [J]. Bull Environ Contam Toxicol, 1991, 47: 278-282.
    Baath E. Effects of heavy metal in soil on microbial processes and populations [J]. Water Air Soil Poll, 1989, 47: 189-215.
    Baker D E. Copper in Heavy Metals in Soils [M]. (Dr. Alloway B J., ed ). Blackie & Sons Ltd. London., 1990, 151-176.
    Balasoiu C F, Zagury G J, Deschenes L. Partitioning and speciation of chromium, copper, and arsenic in CCA-contaminated soils: influence of soil composition [J]. The Science of the Total Environment, 2001, 280: 239-255.
    Bardgett R D and Saggar S. Effects of heavy metal contamination on the short-term decomposition of labelled C-14 glucose in a pasture soil [J]. Soil Biol Biochem, 1994, 26 (6): 727-733.
    Bardgett R D and Speir T W. Impact of pasture contamination by copper, chromium, and arsenic timber preservative on soil microbial properties and nematodes [J]. Biol Fertil Soils, l994, 18: 71-79.
    Basta N T and Tabatabai M A. Effect of cropping systems on adsorption of metals by soils.Ⅱ. Effect of pH [J]. Soil Sci, 1992, 153: 195-204.
    Bataillard P, Cambier P, Picot C. Short-term transformation of lead and cadmium compounds in soil after contamination [J]. Eur J Soil Sci, 2003, 54: 365-376.
    Belyaeva O N, Haynes R J, Birukova O A. Barley yield and soil microbial and enzyme activities as affected by contamination of two soils with lead, zinc or copper [J]. Biol Fertil Soils, 2005, 41: 85-94.
    Bertoni J C, Holanda F S R, Czrvalho J G, et al. Effect of copper on growth of flooded rice and accuracy of the extractor DTPA in predicting copper availability [J]. Ciencia-e-Agrotecnologia, 2000, 24 (1): 62-73.
    Besnard E, Chenu C, Robert M. Influence of organic amendments on copper distribution Among particle-size and density fractions in Champagne vineyard soils [J]. Environ Pollut, 2001, 112: 329-337.
    Bogomolov D M, Chen S K, Parmelee R W, et al. An ecosystem approach to soil toxicity testing: a study of copper contamination in laboratory soil microcosms [J]. Appl Soil Ecol, 1996, 4: 95-105.
    Bolan N S, Khan M A, Donaldson J, et al. Distribution and bioavailability of copper in farm effluent [J]. Sci Total Environ, 2003, 309: 225-236.
    Brookes P C. Effects of metal toxicity microbial biomass [J]. Jounal of Soil Science on the size of the soil, 1984, 35: 341-346.
    Brookes P C and McGrath S P. Adenylate energy charge in metal contaminated soil [J]. SoilBiol Biochem, 1987, 19: 219-220.
    Brookes P C, McGrath S P, Heijnen C. Metal residues in soils previously treated with sewage-sludge and their effects on growth and nitrogen fixation by blue-green algae [J]. Soil Biol Biochem, 1986, 18: 345-353.
    Brun L A, Maillet J, Hinsinger P, et al. Evaluation of copper availability to plants in c opper-contaminated vineyard soils [J]. Environ Pollut, 2001, 111: 293-302.
    Brun L A, Maillet J, Richarte J, et al. Relationships between extractable copper, soil properties and copper uptake by wild plants in vineyard soils [J]. Environ Pollut, 1998, 102: 151-161.
    Carbonell G, Pablos MV, Garcia P, et al. Rapid and cost-effective multiparameter toxicity tests for soil Microorganisms [J]. Sci total Environ, 2000, 247: 143-150.
    Cavallaro N and McBride M B. Zinc and copper sorption and fixation by an acid soil clay: effect of selective dissolutions [J]. Soil Sci Soc Am J, 1984, 48: 1050-1054.
    Chander K, Dyckmans J, Joergensen R G, et al. Different sources of heavy metals and their long-term effects on soil microbial properties [J]. Biol Fertil Soils, 2001, 34: 241-247.
    Chander K and Brookes P C. Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty clay loam U K soil [J]. Soil Biol Biochem, 1991a, 23: 927-932.
    Chander K and Brookes P C. Is the dehydrogenase assay invalid as a method to estimate microbial activity in copper-contaminated soils [J]. Soil Biol Biochem, 1991b, 23: 909-915.
    Chander K and Brookes P C. Residual effects of zinc, copper and nickel in sewage sluge on microbial biomass in sandy Ioam [J]. Soil Biol Biochem, 1993, 25: 1231-1239.
    Chander K and Brookes P C. Microbial biomass dynamics following addition of metal enriched sewage sludges to a sandy loam [J]. Soil Biol Biochem, 1995, 27: 1409-1421.
    Chatterjee J and Chatterjee C. Phytotoxicity of cobalt, chromium and copper in cauliflower [J]. Environ Pollut, 2000, 109: 69-74.
    Colpaert J V and Van Assche J A. Heavy metal tolerance in some ectomycorrhizal fungi [J]. Funct Ecol, 1987, 1: 415-421.
    DalilinS and Witter E. Where's the limit? Changes in the microbiological properties ofagricultural soils at low levels of metal contamination [J]. Soil Biol Biochem, 1997, 29: 1405-1415.
    Dar G H and Mishra M M. Influence of cadmium on carbon and nitrogen mineralization in sewage sludge amended soils [J]. Environ Pollut, 1994, 84: 285-290.
    Deluisa A, Giandon P, Aichener M, et al. Copper pollution in Italian vineyard soils [J]. Commun Soil Sci Plant Analy, 1996, 27: 1537-1548.
    Dumestre A, Sauve S, McBride M, et al. Copper speciation and microbial activity in long-term contaminated soils [J]. Arch Environ Cont Toxicol, 1999, 36: 124-131.
    Edwards C A, Subler S, Chen S K. A microcosm system for evaluating the effects of pesticides on dynamic soil processes and soil organisms [J]. Proc Brighton Crop Protection Conf. -Pests and Diseases-1994, 9C-4, 1994, 1301-1306.
    Eric S, et a1. Detection of shifts in microbial community structure and diversity in soil caused by copper contamination using amplified ribosomal DNA restriction analysis [J]. FEMS Microbiology Ecology, 1997, 23: 249.
    Fernando C. Role of rice shoot vacuoles in copper toxicity regulation [J]. J Exper Botany, 1998, 39 (3): 197-201.
    Fernndez Albors A, Prez Cid B, Fernndez Gmez E, et al. Comparison between Sequential Extraction Procedures and Single Extractions for Metal Partitioning in Sewage SludgeSamples [J]. Analyst, 2000, (125): 1353-1357.
    Flemming C A and Trevors J T. Copper toxicity and chemistry in the environment: A review [J]. Water Air Soil Poll, 1989, 18: 143-158.
    Flieaebach A, Martens R, Reber H H. Soil microbial biomass and microbial activity in soils treated with heavy-metal contaminated sewage-sludge [J]. Soil Biol Biochem, 1994, 26 (9): 1201-1205.
    Flores-Velez L, Ducaroir J, Jaunet A M, et al. Study of the distribution of copper in an acid sandy vineyard soil by three different methods [J]. Eur J Soil Sci, 1996, 47: 523-532.
    Food and Drug Administration. Seed Germination and Root Elongation [S], Environmental Assessment Technical Assistance Document 406, Center for Food Safety and Applied Nutrition, Center for Veterinary Medicine, Washington D. C., 1987.
    Forstner U. Metal pollution in Aquatic Environment (Second Edition) [M]. Berlin: Springer-Verlag, 1981.
    Fotovat A and Naidu R. Changes in composition of soil aqueous phase influence chemistry of indigenous heavy metals in alkaline sodic and acidic soils [J]. Geoderma, 1998, 84: 213-234.
    Fuji M.,Takeda T, Uchida K. The latest status of resistance to Strobilurin type action fungicides in Japan, In: Proceedings of Brighton crop protection conference-pests and disease [J].Brit crop prot council, 2000, 421-426.
    Gadd G M. Interactions of fungi with toxic metals [J]. Tansley Review No 47. New Phytologist, 1993, 124: 25-60.
    Geiger G, Brandl H, Furrer G, et al. The effect of copper on the activity of cellulose and β-glucosidase in the presence of montmorillonite or Al-montmorillonite [J]. Soil Biol Biochem 1998a, 30: 1537-1544.
    Geiger G, Livingston M P, Funk F, et al.β-glucosidase activity in the presence of Copper and goethite [J]. Eur J Soil Sci, 1998b, 49: 17-23.
    Ghorbani N R, Salehrastin N, Moeini A. Heavy metals affect the microbial populations and their activities [J]. Proc 17th World Congr Soil Sci, 2002, 2234: 1-11.
    Giller K E, Witter E, McGrath SP. Toxicity of heavy metals to micro-organisms and microbial processes in agricultural soils [J]. Soil Biol Biochem, 1998, 30: 1389-1414.
    Hemida S K and Omar S A. Microbial populations and enzyme activity in soil treated with heavy metals [J]. Water Air Soil Pollut, 1997, 95: 13-22.
    Heuer B and Nadler A. Physiological response of potato plants to soil salinity and water deficit [J]. Plant Science, 1998, 137: 43-51.
    Hirst J M, Riche H H, Bascomb C L. Copper accumulation in the soils of apple orchards near Wisbech [J] . Plant Pathology, 1961, 10: 105-108.
    Holm P E, Christensen T H, Tjell J C, et al. Heavy metal in the environment: speciation of cadmium and zinc with application to soil solution [J]. J Environ Qual, 1995, 24: 183-190.
    Huang C P and Lin C. Adsorption from Aqueous Soilutions [M], in Tewari P H (ed), Plenum Press, New York, 1981.
    Huang P M and Bethelin J. Environmental impact of soil component interactions. Vol2: metals, other inorganics and microbial activities [M]. Florida USA: CRC Press Inc, 1995:367-384.
    Huang Q and Shindo H. Effects of copper on the activity and kinetics of free and immobilized acid phosphatase [J].Soil Biol Biochem, 2000, 32: 1885-1892.
    Huysman F, Verstraete W, Brookes P C. Effect of manuring practices and increased copper concentrations on soil microbial populations [J]. Soil Biol Biochem, 1994, 26, 103-110.
    Insam H, Hutchinson T C, Reber H H. Effects of heavy metal stress on the metabolic quotient of the soil microflora [J]. Soil Biol Biochem, 1996, 28: 691-694.
    International Organization for Standardization (ISO). Soil quality-Determination of the effects of pollutants on soil flora. Part1: method for the measurement of inhibition of root growth [Z]. Sweden: ISO, 1993, 11269-1.
    International Organization for Standardization (ISO). Soil quality-Determination of the effects of pollutants on soil flora. Part2: Effects of chemicals on the emergence and growth of higher plants [C]. Sweden: ISO, 1995, 11269-2.
    Jackson A P and Alloway B J. The bioavailability of cadmium to lettuce and cabbage in soils previously treated with sewage sludge [J]. Plant Soil, 1991, 132:179-186.
    Jasiewicz C and Antonkiewicz J. The influence of soil contamination with heavy metals on the soil chemical properties, chemical composition of helianthus tuberosus L [J]. Folia Univ Agric Stein 211, Agricultura, 2000, 84: 141-146.
    Jenkinson D S and Ladd J N. Microbial biomass in soil: Measurement and turnover [M], in: Soil Biochemistry, Paul, E A and Ladd, J N (eds) Marcel Dekker INC. New York, 1981, 415-471.
    John Carins and Collaborators. Biological Monitoring in Water Pollution [M]. Pergamon Press, 1982.
    Kalbitz K and Wennrich R. Mobilization of heavy metals and arsenic in polluted wetland soils and its dependence on dissolved organic mater [J]. Sci Total Environ, 1998, 209: 27-39.
    Kandeler E, Kampichler C, Horak O. Influence of heavy metals on the functional diversity of soil microbial communities [J]. Biol Fertil Soils, 1997, 23 (3): 299-306.
    Kandeler E. Soil microbial processes and Testacea as indicators of heavy metal pollution [J]. Zeitshrift fur Pflanzenemahrung and Bodenkunde, 1992, 155: 319-322.
    Khan M, Scullion J. Effect of soil microbial responses to metal contaminateion [J]. Environ Pollut, 2000, 110: 115-125.
    Kiaer C, Pedersen N, Elmeganrd N. Effects of soil copper on black bindweed (Fallopia convowulus) in the laboratory and in the field [J]. Arch Environ Contamn Toxicol, 1998, 35: 14-19.
    Kipopoulou A M. A comparison of five bioassays to monitor toxicity during bioremediation of pentachlorophenol-contaminated soil [J]. Water Air Soil Poll, 1999, 110: 157-169.
    Kncel L, Keles Y, Ustun A S. Interactive effects of temperature and heavy metal stree on the growth and some biochemical compounds in wheat seedlings [J]. Envrion Pollut, 2000, 107: 315-320.
    Kuo S and Baker A S. Sorption of copper, Zinc, and cadmium by some acid soils [J].Soil Sci Soc Am J, 1980, 44: 969-974.
    Kuperman R G and Carreiro M M. Soil heavy metal concentration, microbial biomass and enzyme activities in a contaminated grass land ecosystem [J]. Soil Biol Biochem, 1997, 29 (2): 179.
    Leita L and Nobili M D. Bioavailability and effects of heavy metals on soil microbial biomass survival during laboratory incubation [J]. Biol Fertil Soils, 1995, 19: 103-108.
    Lepp N W. Patterns of soil copper contamination and temporal changes in vegetation in the vicinity of a copper rod rolling factory [J]. Environ Pollut, 1997, 95 (3): 363-369.
    Leep N W. Copper. In: Leep N W ed. Effect of Heavy Metal Pollution on plants [M]. VolⅠ: Effects of Trace Metal on Plant Function. London and New Jersy: Applied Science Pubilisher, 1981: 111-143.
    Lehman R M and Mills A L. Field evidence for copper mobilization by dissolved organic matter [J]. Water Research, 1994, 28 (12): 2487-2489.
    Lindsay W L and Norvell W A. Decelopment of a DTPA soil test for zinc, iron, manganese and copper [J]. Soil Sci Soc Am J, 1978, 42: 421-428.
    Lock K and Janssen C R. Multi-generation toxicity of zinc, cadmium, copper and lead to the potworm Enchytraeus albidus [J]. Environ Pollut, 2002, 117 (1): 89-92.
    Lu An X, Zhang Sh Zh, Shan X Q. Time effect on the fractionation of heavy metals in soils [J]. Geoderma, 2005, 125: 225-234.
    Luo Y, Jiang X, Wu L, et al. Accumulation and chemical fractionation of Cu in a paddy soil irrigated with Cu-rich wastewater [J]. Geoderma, 2003, 115: 113-120.
    Ma L Q and Rao G N. Chemical fractionation of Cd, Cu, Ni and Zn in contaminated soils [J]. J Environ Qual, 1997, 26: 259-264.
    Ma Y B and Uren N C. Application of a new fractionatin scheme for heavy metals in soils [J]. Communication in Soil Science and Plant Analysis, 1997, 26: 3291-3303.
    Maiz I, Arambarri I, Garcia R, et al. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis [J]. Envrion Pollut, 2000, 110:3-9
    Martínez C E and Motto H L. Solubility of lead, zinc and copper added to mineral soils [J]. Environ Pollut, 2000, 107: 153-158.
    Mathur S P, Belanger A, Sanderson R B, et al. The influence of variations in soil copper on the yield and nutrition of spinach grown in microplots on the organic soils [J]. Commun in Soil Sci Plant Anal, 1984, 15 (6): 695-706.
    Mcbride M B, Tyler LD, Hovde D A. Cadimum adsorption by soils and uptake by plants as affected by soil chemical [J]. Soil Sci Soc Am J, 1981, 45: 739-744.
    McDanicl P A and Buol S W. Manganese distribution in acid soils of the North Carolina Piedmont [J]. Soil Sci Soc Am J, 1991, 55: 152-156.
    Mclaren R G and Crawford D V. Studies on soil copperⅠ. The fractionation of copper in soils [J]. J Soil Sci, 1973, 24: 172-181.
    Mclaren R G and Crawford D V. Studies on soil copperⅢ. Isotopically exchangeable copper in soils [J].J Soil Sci, 1974, 25 (1): 111-119.
    Mclaughlin M J. Ageing of metals in soils changes bioavailability [J]. Environ Risk Assess, 2001, 4: 1-6.
    McGregor R G, Blowes D W, Jambor J L, et al. The solidphase controls on the mobility of heavy metals at the copper clifftailings area, Sudbury, Ontario, Canada [J]. J Contam Hydrol, 1998, 3: 247-271.
    McGrath S P and Cegarra J. Chemical extractability of heavy metals during and after long-term applications of sewage sludge to soil [J]. Soil Sci, 1992, 43: 313-321.
    Mehlich A. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant [J]. Soil SciPlant Nutr, 1984, 15: 1409-1416.
    Msaky J J and Calvet R. Adsorption Behavior of Copper and Zinc in sols: Influence of pH on Adsorption Characteristics [J]. Soil Science, 2000, 150 (2): 513-522.
    Mulder J and Stein A. The Solubility of Aluminum in Acidic Forest Soils: Long-term Changes due to Acid Deposition [J]. Geochim Cosmochim Acta, 1994, 58: 85-94.
    Nag P. Heavy metal effects in plant tissue involving chlorophyII, chlorlphyllase, hill reaction activity and gel delectrophoretic patterns of soluble proteins [J]. Indinan J Exp Biol, 1981, 19: 702-706.
    Nannipieri P. The potential use of soil enzymes as indicators of productivity, sustainability and pollution [M]. In: Pankhurst CE, Doube BM, Gupta VVSR, Grace PR (eds) Soil biota: management in sustainable farming systems. CSIRO, Victoria Australia, 1994: 238-244.
    Nargis A Banu, Balwant Singh, Les Copeland. Influence of copper on soil microbial biomass and biodiversity in some NSW soils [J]. CDROM, 2006, 1-9.
    Narwal R P and Singh B R. Effect of organic materials on partitioning, extractability and plant uptake of metals in an alum shale soil [J]. Water Air Soil Poll, 1998, 103: 405-421.
    Nigam R, Srivastava S, Prakash S, et al. Cadmium mobilization and plant availability the impact of organic acids commonly exuded from roots [J]. Plant and Soil, 2001, 230: 107-113.
    Nyamangara J. Use of sequential extraction to evaluate zinc and copper in a soil amended with sewage sludge and inorganic metal salts [J]. Agr Ecosyst Environ, 1998, 69: 135-141.
    Nordgren A, Baath E, Soderstrom B. Evaluation of soil respiration characteristics to assess heavy metal effects on soil microorganisms using glutamic acid as a substrate [J]. Soil Biol Biochem, 1988, 20: 949-954.
    OECD (Organization for Economic Cooperation and Development). OECD guidelines for testing of chemicals [S]. Paris, France: European Committee, 1984, 208-209.
    Ortiz O and Alcaniz J P. Respiration potential of microbial biomass in a calcareous soil treated with sewage sludge [J]. Gemicrobiology Journal, 1993, 11: 333-340.
    Patsikka E and Aro E M. Increase in the quantum yield of photoinhibiton contributes to copper toxicity in vivo [J]. Plant Physiol, 1998, 117 (2): 629-627.
    Peggy Gunkel, Estelle Roth, Bernard Fabre. Copper distribution in chemical soil fractions andrelationships with maize crop yield [J]. Environ Chem Lett, 2003, 1: 92-97.
    Plant J A and Raiswell R. In:ⅠThornton (Ed), Principles of Environmental Geochemistry in Applied Environmental Geochemistry [C], Academic Press, London, 1993.
    Post R D and Beeby A N. Microbial biomass in suburban roadside soils: estimates based on extracted microbial C and ATP [J]. Soil Biol Biochem, 1993, 25: 199-204.
    Qiao X L, Lro Y M, Christie P, et al. Chemical speciation and extractability of Zn, Cu and Cd in two contrasting biosolids-amended clay soils [J]. Chemosphere, 2003, 823-829.
    Quevauviller P. Operationall defined extraction procedures for soil and sediment analysis.Ⅰ. Standardization [J]. Trends Anal Chem, 1998, 17: 289-298.
    Rafael Clemente, Angeles Escolar, Pilar Bernal M. Heavy metals fractionation and organic matter mineralization in contaminated calcareous soil amended with organic materials [J]. Bioresource Technology, 2005, 1-8.
    Reuther W and Smith P F. Effects of high copper content of sandy soil on growth of citrus seedlings [J]. Soil Sci, 1953, 72: 219-224.
    Romkens P F A M, Bouwman L A, Boon G T. Effect of plant growth on copper solubility and speciation in soil solution samples [J]. Environ Pollut, 1999, 106: 315-321.
    Ross S M. Retention, transformation and mobility of toxic metals in soils [C]. In: Ross S M (ed.), Toxic Metals in Soil-Plant Systems. John Wiley and Sons Ltd, Chichester, 1994, 63-152.
    Ross S M and Kaye K J. The meaning of metal toxicity in soil-plant systems [C]. In: Ross SM (ed) Toxic metals in soil-plant systems. John Wiley and Sons, New York, NY, 1994, 27-61.
    Sahuquillo A, Rigol A, Rauret G. Overview of the use of leaching/extraction tests for risk assessment of trace metals in contaminated soils and sediments [J]. Trends in Anal Chem, 2003, 22 (3): 152-159.
    Sakal R, Singh A P, Singh B P, et al. Evaluation of some chemical extractions for predicting response of wheat grown in pots to copper in sub-Hlicuolayan soils [J]. J Agric Sci (UK), 1984, 102 (3): 659-666.
    Sauve S, McBride M B, Norvell W A, et al. Copper solubility and speciation of in situ contaminated soils: effects of copper level, pH and organic matter [J]. Water Air Soil Poll,1997, 100: 122-149.
    SAS Institute. SAS/STAT User's guide: Statistics [Z]. Version 8, 1st ed. SAS Inst., Cary, NC, USA, 1999.
    Schramel O, Michalke B, Ketrup A. Study of the copper distribution in contaminated soils of hop fields by single and sequential extraction procedures [J]. The Sci Total Environ, 2000, 263: 11-22.
    Shuman L M. Fractionation Method for Soil Microelements [J]. Soil Sci, 1985, 140: 11-22.
    Shuman L M. Zinc, manganese and copper in soil fractions [J]. Soil Sci, 1979, 127: 10-17.
    Siciliano Steven D and Gong P. Assessment of 2, 4, 6-trinitrotoluene toxicity in field soils by pollution-induced community tolerance, denaturing gradient gel electrophoresis, and seed germination assay [J]. Environ toxicol Chem, 2000, 19 (8): 2154-2160.
    Sims J T and Kline J S. Chemical fractionation and plant uptake of heavy metal in soils amended with co-composed sewage sludge [J]. J Envrion Qual, 1991, 20: 387-395.
    Sims J L and Patrick W H Jr. The distribution of micronutrient cations in soil under conditions of varying redox potential and pH [J]. Soil Sci Soc Am J, 1978, 42: 258-262.
    Smith D, Fityus S and Allman M (Eds). Heavy metals in soils: sources, chemical reactions and forms [M]. In‘Geo Environment 2001’, 2002, 77-93.
    Solovyov A G. The methods of heavy metal definition [M]. In: Mineev VG (ed) Practical work for agrochemistry (in Russian). Moscow University Press, Moscow, 1990, 113-114.
    Speir T W and Ross D J. Assessment of the feasibility of using CCA treated and boric acid treated sawdust as soil amendment. Soil biochemical and biological properties [J]. Plant Soil, 1992, 142: 249-258.
    Speir T W and Ketles H A. A simple kinetic approach to derive the ecological dose value, ED 50, for the assessment of Cr toxicity to soil biological properties [J]. Soil Biol Biochem, 1995, 27: 801-810.
    Sposito G, Lund L J, Chang A C. Trace metal chemistry in arid-zone field soils amended with sewage sludge: I Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases [J]. Soil Sci Soc Am J, 1982, 46: 260-264.
    Tabatabau MA and Fu M. Extraction of enzymes from soils [A]. In: Stozky G, Bollag M (eds). Soil Biochemistry [C]. New York: Marcel Dekker, 1992, 7: 197-227.
    Tabatabai M A. Effect of trace elements on urease activity in soils [J]. Soil Boil Biochem, 1977, 9: 9-13.
    Tao S, Chen Y J, Xu F L, et al. Changes of copper speciation in maize rhizosphere soil [J]. Environ Pollut, 2003, 122: 447-454.
    Tessier A, Campbell P G C, Bisson M. Sequential extraction procedure for the speciation of particulate trace metals [J]. Anal Chem, 1979, 51 (7): 844-851.
    Teisseire H and Guy V. Copper induced changes in antioxidant enzymes activities in fronds of duckweed (Lemna minor) [J]. Plant Sci, 2000, 153: 65-72.
    Tyler G, Balsberg Pahlsson A M, Bengtsson G,Baath E, et al. Heavy metal ecology of terrestrial plants, microorganisms and invertebrates [J]. Water Air Soil Poll, 1989, 47: 189-215.
    Ure A M, Quevauviller P H,Muntau H, et al. Speciation of heavy metals in solids and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities [J]. Int J Environ Anal Chem, 1993, 51: 35-51.
    U. S. Environmental Protection Agency. Seed Germination/ Root Elongation Toxicity Impact Tests [S], EG-12, Office of Toxic Substances, Washington D.C , 1982.
    Wang W Ch. Literature Review on Higher Plants for Toxicity Testing [J]. Water Air Soil Poll, 1991, 59: 381-400.
    Weissenhorn I, Leyval C, Berthelin J. Bioavailability of heavy metals and abundance of arbuscular mycorrhiza in a soil polluted by atmospheric deposition from a smelter [J]. Biol Fertil Soils, 1995, 19: 22-28.
    Yu S, He Z L, Huang C Y, et al. Copper fractionation and extractability in two contaminated variable charge soils [J]. Geoderma, 2004, 123: 163-175.
    Zhou H N and Thompson M L. Copper-binding ability of dissolved organic matter derived from anaerobically digested biosolids [J]. J Environ Qual, 1999, 28 (3): 939-944.
    Zhu B and Alva A K. Distribution of trace metals in soils sandy soils under citrus production [J]. Soil Sci Soc Am J, 1993, 57: 350-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700