新型超支化聚烯烃的制备、表征及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在乙烯聚合催化体系α-二亚胺镍配合物/MAO中加入ZnEt_2,通过链行走与链转移的竞争反应来控制所得聚合物的支化度及支链结构,合成了5种含有不同支化度的聚乙烯。聚合物的支化度从Ni/MAO/Zn=1/1000/0时的140个支链/1000个碳降低到Ni/MAO/Zn=1/1000/200时的97.0个支链/1000个碳,同时甲基的含量从88.5%升高到93.7%。通过改变催化体系中助催化剂的含量,合成了4种含有不同支化度的聚乙烯。结果表明,ZnEt_2对聚合物的支化度有较好的调控作用。同时ZnEt_2能显著提高催化剂活性,可能的原因是其能促进催化剂的再活化。
     仅从乙烯单体出发,利用α-二亚胺镍配合物/乙撑桥二氯茚锆/MAO/ZnEt_2体系催化乙烯聚合,合成了7种不同微结构的聚乙烯。所得聚合物的微结构分析表明,产物是线型-超支化多嵌段聚乙烯。其可能的聚合机理为:α-二亚胺镍配合物/MAO催化乙烯聚合,通过链行走生成超支化聚乙烯链段;乙撑桥二氯茚锆/MAO催化乙烯聚合生成线型聚乙烯链段;在链转移剂ZnEt_2协助下,通过链穿梭聚合制得了线型-超支化多嵌段聚乙烯。同时利用EPR研究了16种不同的催化体系,发现较高的MAO用量不利于乙烯聚合,其原因是α-二亚胺镍配合物能被MAO还原成无聚合活性的Ni(Ⅰ)物种。
     通过配位聚合和ATRP,合成了6种不同分子量的超支化.星型聚[乙烯-co-丙烯酸-2-(2-溴-异丁酰氧基)乙酯]-g-聚甲基丙烯酸特丁酯[P(E-co-BIEA)-g-P~tB_uMA]。经水解所得聚合物,制得了超支化-星型聚[乙烯-co-丙烯酸-2-(2-溴-异丁酰氧基)乙酯]-g-聚甲基丙烯酸[P(E-co-BIEA)-g-PMAA]。P(E-co-BIEA)-g-PMAA在水溶液中能形成单分子胶束,通过调节聚合物溶液的pH值,发现单分子胶束粒径在30~80nm间可逆变化,单分子胶束对pH值有很好的响应性。
     采用配位聚合和ATRP,合成了3种含有不同的聚丙烯酸二茂铁甲酰氧基乙酯链长的超支化.星型聚[乙烯-co-丙烯酸-2-(2-溴-异丁酰氧基)乙酯]-g-聚丙烯酸-二茂铁甲酰氧基乙酯[P(E-co-BIEA)-g-PFcEA];采用直接共聚法,合成了4种具有不同丙烯酸二茂铁甲酰氧基乙酯含量的超支化聚(乙烯-co-丙烯酸二茂铁甲酰氧基乙酯)[P(E-co-FcEA)]。通过CV和UV-Vis研究表明,P(E-co-BIEA)-g-PFcEA是一种理想的阴离子识别受体。另外,以P(E-co-FcEA)为前驱体,经自催化制得系列碳纳米材料。
     通过配位聚合、ATRP和开环聚合,合成了新型超支化-星型聚[乙烯-co-丙烯酸-2-(2-溴-异丁酰氧基)乙酯]-g-聚丙烯酸羟乙酯[P(E-co-BIEA)-g-PHEA]和超支化-星型聚[乙烯-co-丙烯酸-2-(2-溴-异丁酰氧基)乙酯]-g-聚丙烯酸羟乙酯-g-聚己内酯[P(E-CO-BIEA)-g-PHEA-g-PCL]。通过P(E-co-BIEA)-g-PHEA-g-PCL的DSC和偏光显微研究,并与聚己内酯比较,发现这类聚合物生成的结晶颗粒尺寸较小,且聚合物在乙醇溶液中能形成粒径在50~200nm之间的胶束。
Polyethylenes(5 kinds) with different branching density and composition were synthesized usingα-diimine nickel complex/MAO catalyst system in the presence of ZnEt_2.In polymerization process,the branching density and composition of polyethylene were controlled by the competitive reaction of chain walking and chain transfer.Polyethylene with 140.0 branches per 1000 carbons was produced when Ni/Al/Zn =1/1000/0,and among these branches,88.5%was methyl.However,the branching density of the polyethylene prepared when Ni/Al/Zn =1/1000/200 decreased to 97.0 branches per 1000 carbons and the methyl percentage increased to 93.7%.By varying the MAO concentration inα-diimine nickel complex/MAO,polyethylenes(4 kinds) with different branching density were obtained.The results indicated that ZnEt_2 showed high capability for adjusting the branching density of resultant polyethylene.Furthermore,α-diirnine nickel complex/MAO/ZnEt_2 afforded higher activity thanα-diimine nickel complex/MAO for ethylene polymerization and it was possible that ZnEt_2 facilitated the reactivation ofα-diimine nickel complex.
     Seven samples of polyethylenes with different microstructures were produced usingα-diimine nickel complex/ansa-ethylenebis-(1-η~5-indenyl) zirconium dichloride/MAO/ZnEt_2 alone from ethylene and the microstructures of resultant polymers indicated that the novel linear -hyperbranched multiblock polyethylene was successfully obtained.The possible mechanism was thatα-diimine nickel complex/MAO produced chain with hyperbranched architecture via chain walking,while ansa-ethylenebis-(1-η~5-indenyl) zirconium dichloride/MAO afforded linear chain. Then chain transfer agent(ZnEt_2) facilitated chains shuttling between two kinds of active metal centres,as a result,the novel multiblock polyethylene was synthesized by chain shuttling polymerization.In addition,EPR signals of 16 types of the catalyst system suggested that excess MAO might undermine the activity of catalyst system,the possible reason was thatα-diimine nickel complex was distinctly reduced into Ni(I) by MAO and Ni(I) showed no activity in ethylene polymerization.
     Six kinds of hyperbranched-star poly[ethylene-co-2-(2-bromoisobutyryloxy) ethyl acrylate]- g-poly(tert-butyl methacrylate)[P(E-co-BIEA)-g-P~tB_uMA]with different molecular weight were prepared via the combining strategy of coordination polymerization and atom transfer radical polymerization,then cleaving P(E-co-BIEA)-g-P~tB_uMA afforded poly[ethylene-co-2-(2-bromoiso butyryloxy) ethyl acrylate]-g-poly(methacrylic acid)[P(E-co-BIEA)-g-PMAA].Mono-molecular micelles evidently formed in the P(E-co-BIEA)-g-PMAA solution using water as solvent and the reversible variation of the micelle size in the range of 30~80nm was exclusively attributed to variation of pH value of the polymer solution.
     Three kinds of hyperbranched-star poly[ethylene-co-2-(2-bromoisobutyryloxy) ethyl acrylate] -g-poly(ferrocenyloxy ethyl acrylate)([P(E-co-BIEA)-g-PFcEA]) with different PFcEA chain lengths were prepared via coordination polymerization and atom transfer radical polymerization. In addition,four kinds of hyperbranched poly(ethylene-co-ferrocenyloxy ethyl acrylate)[P(E-co-FcEA)] containing different FcEA content were synthesized with direct copolymerization of ethylene with FcEA.The investigation of P(E-co-BIEA)-g-PFcEA in CH_2Cl_2 via CV and UV-Vis indicated that P(E-co-BIEA)-g-PFcEA in CH2C12 was an appropriate receptor for anion recognition.Furthermore,a series of carbon nanomaterials were successfully synthesized with P(E-co-FcEA) as precursor via self-catalysis.
     The novel hyperbranched-star poly[ethylene-co-2-(2-bromoisobutyryloxy) ethyl acrylate]-g -poly(hydroxyl ethylacrylate)[P(E-co-BIEA)-g-PHEA]and poly[ethylene-co-2-(2-bromoiso butyryloxy) ethyl acrylate]-g-poly(hydroxyl ethylacrylate)-g-poly(ε-caprolactone)[P(E-co-BIEA) -g-PHEA-g-PCL]were successfully synthesized via coordination polymerization,atom transfer radical polymerization and ring-opening polymerization.The DSC curves and the polarized optical images of P(E-co-BIEA)-g-PHEA-g-PCL indicated that the crystal size of P(E-co-BIEA) -g-PHEA-g-PCL was much smaller than that of poly(ε-caprolactone).Furthermore,the rnicelles with the size of 50~200nm were effectively obtained from P(E-co-BIEA)-g-PHEA -g-PCL solution using ethanol as solvent.
引文
[1].Galli P.,Vacellio G.Polyolefins:The most promising large-volume materials for the 21st century.J.Polym.Sci.Pol.Chem.2004,42,396-415.
    [2].Sun T.X.,Wang L.,Dong X.C.and Wang W.An insight into the chain-propagation mechanism of propylene polymerization catalyzed by traditional Ti-based Ziegler-Natta catalysts inview of recently developed catalysts.Design.Monomers.Polym.2006,9,117-127.
    [3].Boffa L.S.,Novak B.M,Copolymerization of polar monomers with olefins using transition-metal complexes.Chem.Rev:2000,100,1479-93.
    [4].Chung T.C.Synthesis of functional polyolefin copolymers with graft and block structures.Prog.Polym.Sci.2002,27,39-85.
    [5].胡友良,乔金梁,吕立新。聚烯烃功能化及改性-科学与技术,北京:化学工业出版社,2006.
    [6].Aggarwa S.L.,Sweeting O.J.Polyethylene:preparation,structure,and properties.Chem.Rev.1957,57,665-742.
    [7].Ziegler K.,Holzkamp E.,Breil H.,Martin H.Polymerisation von(A|¨)thylen und and eren olefine.Angew.Chem.1955,67,426-427.
    [8].Ziegler K.,Holzkamp E.,Breil H.,Martin H.Das m(u|¨)lheimer normaldruck-poly(a|¨)thylen -verfahren.Angew.Chem.1955,67,541-547.
    [9].Natta G.Une nouvelle classe de polymeres d'-olefines ayant une regularite de structure exceptionnelle.J.Polym.Sci.1955,16,143-154.
    [10].Andresen A.,Cordes H.G.,Herwig J.,Kaminsky W.,Merk R.,Mottweiler R,Pein J.,Sinn H.,Vollmer H.J.Halogen-free soluble Ziegler catalysts for the polymerization of ethylene.Control of molecular weight by choice of temperature,Angew.Chem.Int.Edit.1976,15,630-632.
    [11].Sinn H.,Kaminsky W.,Woldt H.J."Living polymers" with Ziegler-Natta-catalysts of high productivity.Angew.Chem.Int.Edit.1980,95,396-402.
    [12].Wild F.R.,Zsolnai L.,Huttner G.,Brintzinger H.ansa-Metallocene derivatives:Ⅳ.Synthesis and molecular structures of chiral ansa-titanocene derivatives with bridged tetrahydroindenyl ligands.J.Organomet.Chem.1982,232,233-247.
    [13].Ewen J.A.Mechanisms of stereochemical control in propylene polymerizations with soluble Group 4B metallocene/methylalumoxane catalysts.J.Am.Chem.Soc.1984,106,6355-6364.
    [14].Kaminsky W.,Kulper K,Brintizinger H.H,Wild F.Polymerization of propene and butene with a chiral zirconocene and methylaluminoxane as cocatalyst.Angew.Chem.Int.Edit.1985,97,507-508.
    [15].Kim Y.,Han Y.,Lee M.H.New half-metallocene catalysts generation polyethylene with bimodal molecular weight distribution and syndiotactic polystyrene.Macromol.Rapid Commun.2001,22,573-578.
    [16].Donner M.,Fernandes M.,Kaminsky,W.Synthesis of Copolymers with sterically hindered and Polar monomers.Macromol.Syrup.2006,236,193-202.
    [17].Bruzaud S.L.,Cramail H.,Duvignac L.,Defieux A.Co-Chloro-a-olefins as co-and termonomers for the synthesis of functional polyolefins.Macromol.Chem.Phys.1997,198,291-303.
    [18].Boffa L.S.Copolymerization of polar monomers with olefins using transition-metal complexes.Chem.Rev.2000,100,1479-1493.
    [19].Johnson L.K.,Killian C.M.,Brookhart M.New Pd(I1)-and Ni(I1)-Based Catalysts for polymerization of ethylene and a-olefins.J.Am.Chem.Soc.1995,117,6414-6415.
    [20].Wang C.M.,Friedrich S.,Younkin T.R.,Li R.T.,Grubbs R.H.,Bansleben.D.A.,Day M.W.Neutral nickel(Ⅱ)-based catalysts for ethylene polymerization.Organometallics 1998,17,3149-3151.
    [21].Gibson V.C.,Spitzmesser S.K.Advances in non-Metallocene olefin polymerization catalysis.Chem.Rev.2003,103,283-315.
    [22].Ittel S.D.,Johnson L.K.,Brookhart M.Late-Metal Catalysts for Ethylene Homo-and Copolymerization.Chem.Rev.2000,100,1169-1203.
    [23].Domskia G.J.,Rosea J.M.,Coatesa G.W.,Boligb A.D.,Brookhart M.Living alkene polymerization:New methods for the precisionsynthesis of polyolefins.Prog.Polym.Sci.2007,32,30-92.
    [24].Chien J.C.,Fernandes S.,Correia S.G.,3 Rausch M.D.,Dickson L.C.,Marques M.M.Polymerization of olefins and polar monomers catalyzed by bis(imino)Ni(Ⅱ)/dibutylmagnesium/alkylaluminium halide systems.Polym.Int.2002,55,729-737.
    [25].Zhu F.G.,Xu.W.,Liu X.X,Lin S.G.Synthesis of branched polyethylene by ethylene homopoly-merization with a novel(α-Diimine)nickel complex in the presence of methylaluminoxane.J.Polym.Sci.Pol.Chem.2002,84,1123-1132.
    [26].George J.P.,Britovsek S.P.,Hoarau B.O.,Vernon C.,Gibson D.F.,White J.P.,Williams D.J.The role of bulky substituents in the polymerization of ethylene using late transition metal catalysts:a comparative study of nickel and iron catalyst systems.Inorganica.Chimica.Acta.2003,345,279-291.
    [27].Kogut E.,Zeller A.,Warren T.H.,Strassner T.Structure and dynamics of neutral β-H agostic nickel alkyls:A combined experimental and theoretical study.J.Am.Chem.Soc.2004,126,11984-11994.
    [28].Liu W.J.and Brookhart M.Mechanistic studies of palladium(Ⅱ)-α-diimine-catalyzed polymerizations of cis-and trans-2-butenes.Organometallics 2004,23,6099-6107.
    [29].Tobisch S.,Bogel H.,Taube R.Mechanistic studies of the 1,4-polymerization of butadiene according to the(?)-allyl-insertion mechanism.2.Density functional study of the C-C bond formation reaction in cationic and neutral(η~3-Crotyl)(η~2-/η~4-butadiene)nickel(Ⅱ) complexes[Ni(C_4H_7)(C_4H_6)]~+,[Ni(C_4H_7)(C_4H_6)L]~+(L) C_2H_4,PH_3),and [Ni(C_4H_7)(C_4H_6)X](X~-)I~-).Organometallics 1998,17,1177-1196.
    [30].McCord E.F.,McLain S.J.,Nelson L T.J.,Ittel S.D.,Tempel D.,Killian C.M.,Johnson.L.K.,Brookhart M.~(13)C NMR analysis of α-olefin enchainment in Poly(α-olefins)produced with nickel and palladium α-diimine catalysts.Macromolecules 2007,40,410-420.
    [31].Leatherman M.D.,Brookhart M.Ni(Ⅱ)-Catalyzed polymerization of trans-2-butene.Macromolecules 2001,34,2748-2750.
    [32].Endo K.,Kondo Y.Polymerization of 2-pentene with Ni(Ⅱ) α-diimine complex/MMAO catalyst and structure of the polymer.J.Polym.Sci.Pol.Chem.2008,46,2858-2863.
    [33].Simona L.C.,Souzaa R.F.,Soaresb J.B.P.,Maulera R.S.Effect of molecular structure on dynamic mechanical properties of polyethylene obtained with nickel-diimine catalysts.Polymer 2001,42,4885-4892.
    [34].Fahad A.,Ye Z.,Zhu.S.Ethylene polymerization with homogeneous nickel-diimine catalysts:effects of catalyst structure and polymerization conditions on catalyst activity and polymer properties.Polymer 2004,45,6823-6829.
    [35].Li L.D.,Jeon M,Kim S.Y.Synthesis,characterization and ethylene polymerisation of 9,10-phenanthrenequinone-based nickel(Ⅱ)-a-diimine complexes.J.Mol.Catala-Chem.2009,303,110-116.
    [36].Gates D.P.,Steven A.S.,Enrique O.,Christopher M.K.,Lynda K.J.,Peter S.W.,Brookhart M.Synthesis of branched polyethylene using(α-diimine) nickel(Ⅱ) catalysts:Influence of temperature,ethylene pressure,and ligand structure on polymer properties.Macromolecules 2000,33,2320-2334.
    [37].Peruch F.,Cramail H.,Deffieux A.Kinetic and UV-visible spectroscopic studies of hex-1-ene polymerization initiated by an α-diimine-[N,N]nickel dibromide/MAO catalytic system.Macromoleeules 1999,32,7977-7983.
    [38].Rose J.M.,Cherian A.E.,Coates G.W.Living Polymerization of α-olefins with an α-diimine Ni(Ⅱ) catalyst:Formation of well-Defined ethylene-propylene copolymers through controlled chain-Walking.J.Am.Chem.Soc.2006,128,4186-4187.
    [39].Fernandes S.,Soares A.,Lemos F,Lemos M.,Joa6 F.M.,Rausch M.D.,Chien J.,Marques M.M.Copolymerization of ethylene/unsaturated alcohols using nickel catalysts:effect of the ligand on the activity and comonomer incorporation.J.Oroganomet.Chem.2005,690,895-909.
    [40].Zou H.,Hu S.,Huang H.H.,Zhu F.,Wu Q.Synthesis of bimodal molecular weight distribution polyethylene with a-diimine nickel(Ⅱ) complexes containing unsym-substituted aryl groups in the presence of methylaluminoxane.Eur.Polym.J.2007,43,3882-3891.
    [41].邹昊.不对称α-二亚胺镍或锌催化剂乙烯均聚合及乙烯/环戊烯共聚合研究.中山大学,2007,4.
    [42].Popeney C.,Guan Z.Ligand electronic effects on late transition metal polymerization catalysts.Organometallics 2005,24,1145-1155.
    [43].Liu H.R.,Gomes P.T.,Costa S.I.,Duarte M.T,,Branquinho R.,Fernandes A.C.,Chien J.C W.,Singh R.P.,Marques M.M.Highly active new α-diimine nickel catalyst for the polymerization of α-olefin.J.Organometillic.Chem.2005,690,1314-1323.
    [44].Meinhard D.,Wegner M.,Kipiani G.,Hearley A.,Reuter P.,Fischer S.,Marti O.,Rieger B.New Nickel(Ⅱ) diimine complexes and the control of polyethylene microstructure by catalyst design.J.Am.Chem.Soc.2007,129,9182-9191.
    [45]. Camacho D.H., Salo E.V., Guan Z., and Ziller J.W. Nickel (II) and palladium(II) complexes with an alkane-bridged macrocyclic ligand: Synthesis, characterization, and polymerization tests. Organometallics 2005,24,4933-4939.
    
    [46]. Camacho D.H., Salo E.V., Ziller J.W., Guan Z. Cyclophane-based highly active late- transition-metal catalysts for ethylene polymerization. Angew. Chem. Int. Edit. 2004, 43, 1821-1825.
    [47]. Camacho D.H., Salo E.V., Guan Z. Synthesis and structure of m-terphenyl-based cyclophanes with nitrogen intra-annular functional groups. Org. Lett. 2004, 6, 865 -868.
    [48]. Leung D.H., Ziller J.W., Guan Z. Axial Donating Ligands: A new strategy for late transition metal olefin polymerization catalysis. J. Am. Chem. Soc. 2008, 130, 7538-7539.
    [49]. Stapleton R.A., Chai J., Nuanthanom A., Flisak Z., Nele M., Ziegler T., Rinaldi P.L., Soares J.B.P., and Collins S. Synthesis of low density poly(ethylene) using nicke iminophosphonamide complexes. Macromolecule 2007, 40, 2993-3004.
    [50]. Michalak A., Ziegler T. A Comparison of Ni- and Pd-Diimine complexes as catalysts for ethylene/Methyl acrylate copolymerization. A static and dynamic density functional theory study. Organometallics 2003, 22, 2660-2669.
    [51]. Zhang J., Gao H., Ke.Z., Bao F., Zhu F., Wu Q. Investigation of 1-hexene isomerization and oligomerization catalyzed with β-diketiminato Ni(II) bromide complexes/ methylaluminoxane system. J.Mol. Catala-Chem. 2005, 231, 27-34.
    [52]. Zhang J., Ke Z., Bao F., Long J., Gao H., Zhu F., Wu Q. Ethylene polymerization and oligomerization catalyzed by bulky P-diketiminato Ni (II) and α-diimine Ni(II) complexes/methylaluminoxane systems. J.Mol. Catala-Chem .2006, 249, 31-39.
    [53]. Younkin T.R., Connor E.F., Henderson J.I., Friedrich S.K., Grubbs R.H., Bansleben D.A. Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms , Science 2000, 287, 460-462.
    [54]. Lee B.Y., Bazan G.C., Vela J., Komon Z.J.A., Bu X. α-Iminocarboxamidato -nickel(II) ethylene polymerization catalysts. J. Am. Chem. Soc. 2001, 123, 5352-5353.
    [55]. Jenkins J. C, Brookhart M. A Mechanistic Investigation of the Polymerization of ethylene catalyzed by neutral Ni (II) complexes derived from bulky anilinotropone ligands. J. Am. Chem. Soc. 2004, 126, 5827-5842.
    [56]. Hicks F.A., Jenkins J.C., Brookhart M. Synthesis and ethylene polymerization activity of a series of 2-anilinotropone-based neutral Nickel(II) catalysts. Organometallics 2003, 22, 3533-3545.
    [57]. Hicks F.A., Brookhart M. A Highly active anilinotropone-based neutral nickel (II) catalyst for ethylene polymerization. Organometallics 2001, 20, 3217-3219.
    [58]. Jenkins J.C., Brookhart M. A highly active anilinoperinaphthenone-based neutral nickel (II) catalyst for ethylene polymerization. Organometallics 2003, 22, 250-256.
    [59]. Inigo G.S., Wehrmann P., Caroline R., Mecking S.Substituent Effects in (k~2-N, O)-salicylaldiminato nickel (II)-methyl pyridine polymerization catalysts: Terphenyls controlling polyethylene microstructures. Organometallics 2007, 26, 2348-2362.
    [60]. Wehrmann P., Mecking S. Highly active binuclear neutral nickel(II) catalysts affording high molecular weight polyethylene. Organometallics 2008, 27, 1399-1408.
    [61]. Zhang L., Brookhart M., White P.S. Synthesis, characterization, and ethylene polymerization activities of neutral nickel (II) complexes derived from anilino-substituted enone eigands bearing trifluoromethyl and trifluoroacetyl substituents. Organometallics 2006, 25, 1868-1874.
    [62]. Brasse M., Campora J., Alvarez E. Nickel 2-iminopyridine N-oxide (pymNox) complexes: cationic counterparts of salicylaldiminate-based neutral ethylene polymerization catalysts. Organometallics 2008, 27, 4711-4723.
    [63]. Zhang D., Jin G.X. Bimetallic nickel complexes of trimethyl phenyl linked salicylal dimine ligands: Synthesis, structure and their ethylene polymerization behaviors. Inorg.Chem.Commun. 2006, 9, 1322-1325.
    [64]. Wang W.H., Jin G.X. Binuclear neutral nickel complexes bearing bis(bidentate) salicylaldiminato ligands: Synthesis, structure and ethylene polymerization behavior. Inorg. Chem. Commun. 2006, 9, 548-550.
    [65]. Champouret Y.D.M., Fawcett J., Nodes W.J., Singh K., Solan G.A. Spacially confined M_2 centers (M= Fe, Co, Ni, Zn) on a sterically bulky binucleating support: Synthesis, structures and ethylene oligomerization studies. Inorg. Chem. 2006,45, 9890- 9900.
    [66]. Chen Q., Yu J., Huang J. Arene-bridged salicylaldimine-based binuclear neutral nickel(II) complexes: Synthesis and ethylene polymerization activities. Organometallics 2007, 26, 617-625.
    [67]. Zhang D., Jin G.X. Novel, Highly active binuclear 2,5-Disubstituted amino-p- benzoquinone-nickel (II) ethylene polymerization catalysts. Organometallics 2003, 22, 2851-2854.
    [68]. Carlini C, Macinai A, Masi F. Ethylene polymerization by bis (salicyl-aldiminate) nickel (II)/aluminoxane catalysts. J. Polym. Sci. Pol. Chem. 2004, 42, 2534 -2543.
    [69]. Guan Z., Marshall W.J. Synthesis of new phosphine imine ligands and their effects on the thermal stability of late-transition-metal olefin polymerization catalysts. Organometallics 2002,21,3580-3586.
    [70]. Flapper J., Kooijiman H., Lutz M., Spek A.L.Nickel and palladium complexes of pyridine -phosphine ligands as ethane oligomerization catalyst. Organometallics 2009, 28, 1180-1192.
    [71]. Chen H.P., Liu Y.H., Peng S.M., Liu S.T. New bulky phosphinopyridine ligands. Palladium and nickel complexes for the catalytic polymerization and oligomerization of ethylene. Organometallics 2003, 22, 4893-4899.
    [72]. Daugulis O., Brookhart M. Polymerization of Ethylene with Cationic Palladium and Nickel Catalysts Containing Bulky Nonenolizable Imine-Phosphine Ligands. Organometallics 2002, 21, 5926-5934.
    [73]. Kei W., Appeal R., Gruppe K.F. A new 1,3-diphosphaallylnickel complex for the polymerization of ethylene. Angew chem. Int Edit. 1987, 26, 1012-1013.
    [74]. Ikeda S., Ohhata F., Miyoshi M., Tanaka R., Minami T., Ozawa F, Masaaki Y. Synthesis and reactions of palladium and platinum complexes bearing diphosphinidenecyclobutene ligands: A thermally stable catalyst for ethylene polymerization. Angew chem. Int Edit. 2000,39,4512-4513.
    [75]. Cooley N.A., Green S.M., Wass D.F. Nickel ethylene polymerization catalysts based on phosphorus ligands. Organometallics 2001, 20, 4769-4771.
    [76]. Lavanant L., Rodrigues A.S., Kirillov E., Carpentier J.F., Jordan R.F. Synthesis, structures, dynamics, and ethylene polymerization activity of nickel complexes containing an ortho-methoxy-aryl diphosphine ligand. Organometallics 2008, 27, 2107-2117.
    [77]. Dennett J.N.L., Gillon A.L., Heslop K., Hyett D.J., Fleming J.S., Emma L.J., Orpen A.G., Pringle P.G., Wass D.F. Diphosphine complexes of nickel (II) are efficient catalysts for the polymerization and oligomerization of ethylene: steric activation and ligand backbone effects. Organometallics 2004, 23, 6077-6079.
    [78]. Held A., Bauers F.M., Mecking S. Coordination polymerization of ethylene in water by Pd(II) and Ni(II) catalysts. Chem. Commun. 2000, 301-302.
    [79]. Soula R., Novat C., Tomov A., Spitz R., Claverie J., Drujon X., Malinge J., Saudemont T. Catalytic polymerization of ethylene in emulsion. Macromolecules 2001, 34, 2022-2026.
    [80]. Soula R., Broyer J. P., Llauro M. F., Tomov A., Spitz R., Claverie J., Drujon X., Malinge J., Saudemont T. Very active neutral P,O-chelated nickel catalysts for ethylene polymerization. Macromolecules 2001, 34, 2438-2442.
    [81]. Tomov A., Broyer J.P., Spitz R. Emulsion polymerization of ethylene in water medium catalysed by organotranstion metal complexes. Macromol Symp. 2000, 150, 53-58.
    [82]. Vela J., Lief G.R., Shen Z., Jord R.F. Ethylene polymerization by palladium alkyl complexes containing bis(aryl)phosphino-toluenesulfonate ligands. Organometallics 2007, 26, 6624-6635.
    [83]. Noda S., Kochi T., Nozaki K. Synthesis of allylnickel complexes with phosphine sulfonate ligands and their application for olefin polymerization without activators. Organometallics 2009, 28, 656-658.
    [84]. Zhou X., Bontemps S., Jordan R.F. Base-free phosphine -sulfonate nickel benzyl complexes. Organometallics 2008, 27,4820-4824.
    [85]. Wang J., Ye Z., Zhu S. Topology-engineered hyperbranched high-molecular- weight polyethylenes as lubricant viscosity-index improvers of high shear stability. Ind. Eng. Chem. Res. 2007, 46, 1174-1178.
    [86]. Guan Z. Control of Polymer Topology by chain-walking catalysts. Chem. Eur. J. 2002, 83086-3092
    [87]. Gottfried A.C., Brookhart M. Living and block copolymerization of ethylene and α-olefins using palladium (II)- α-diimine catalysts. Macromolecules 2003, 36, 3085-3100.
    [88]. Bomfim J.S., Dias M.L., Filgueiras C, Peruch F., Deffieux A. The effect of polymerization temperature on the structure and properties of poly (1-hexene) and poly(1-decene) prepared with a Ni(II)-diimine catalyst. Catal. Today. 2008, 133,879-885.
    [89]. Gao H., Ke Z., Pei L., Song K, Wu Q. Drastic ligand electronic effect on anilidoeimino nickel catalysts toward ethylene polymerization. Polymer 2007,48, 7249-7254.
    [90]. Simona L C., Williams C. P., Soares J. B.P., Souza R. F. Kinetic investigation of ethylene polymerization catalyzed by nickel-diimine catalysts. J. Mol. Catal. A-Chem. 2001, 165, 55-66.
    [91]. Merna J., Cihla J., Kucera M., Deffieux A., Cramail. H. Polymerization of hex-1-ene initiated by diimine complexes of nickel and palladium. Eur.Polym. J. 2005, 41, 303-312.
    [92]. Hong D.S., Jeong D.W., Cho H.Y., Cui L., Tarte N.H., Woo S.I. Poisoning effect of CO on ethylene polymerization with Ni (II)-diimine/MAO. Polymer 2006, 47, 184-192.
    [93]. Santos J.P., Castier M., Melo P.A. Polymerization of 1-hexene using a-diimine nickel catalysts: Stochastic simulation of branch distribution. Polymer 2007, 48, 5152-5160.
    [94]. Lo D.P., Ray W.H. Dynamic modeling of polyethylene grade transitions in fluidized bed reactors employing nickel-diimine catalysts. Ind. Eng. Chem. Res. 2006,45, 993-1008.
    [95]. Bauers F.M., Mecking S. Aqueous homo- and copolymerization of ethylene by neutral nickel (II) complexes. Macromolecules 2001, 34, 1165-1171.
    [96]. Schnetmann I.G., Korthals B., Mecking S. Water-soluble salicylaldiminato Ni (II)-methyl complexes: Enhanced dissociative activation for ethylene polymerization with unprecedented nanoparticle formation. J. Am. Chem. Soc. 2006, 128, 7708-7709.
    [97]. Wehrmann P., Zuideveld M., Thomann R., Mecking S. Copolymerization of ethylene with 1-butene and norbornene to higher molecular weight copolymers in aqueous emulsion. Macromolecules 2006, 39, 5995-6002.
    [98]. Bauers F.M., Mecking S. High molecular mass polyethylene aqueous latexes by catalytic polymerization. Angew. Chem. Int. Ed. 2001,40, 3020-3022.
    [99]. Vries T.J., Kemmere M.F., Keurentjes J.T. Characterization of polyethylenes produced in supercritical carbon dioxide by a late-transition-metal catalyst. Macromolecules 2004, 37, 4241-4246.
    [100]. Wehrmann P., Mecking S. Aqueous Dispersions of polypropylene and poly (1-butene) with variable microstructures formed with neutral nickel (II) complexes. Macromolecules 2006, 39, 5963-5964.
    [101]. DeKock R.L., Hristov I.H., Anderson G.D., Schnetmann I. G., Mecking S., and Ziegler T. Possible side reactions due to water in emulsion polymerization by late transition metal complexes II: Deactivation of the catalyst by a wacker-type reaction. Organometallics 2005, 24, 2679-2687.
    [102]. Szabo M.J., Jordan R.F., Michalak A., Piers W.E., Weiss T., Yang S.Y., Ziegler T. Polar copolymerization by a palladium-diimine-based catalyst. Influence of the catalyst charge and polar substituent on catalyst poisoning and polymerization activity. A eensity functional theory study. Organometallics 2004, 23, 5565-5572.
    [103]. Johnson L. K., Mecking S., Brookhart M. Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium (II) catalysts. J. Am. Chem. Soc. 1996, 118,267-268.
    [104]. Mecking S., Johnson L.K., Wang L., Brookhart M. Mechanistic studies of the palladium-catalyzed copolymerization of ethylene and α-olefins with methyl acrylate. J. Am. Chem. Soc. 1998, 120, 888-899.
    [105]. Chen G., Ma X. S., Guan Z. Synthesis of functional olefin copolymers with controllable topologies using a chain-walking catalyst. J. Am. Chem. Soc. 2003, 125, 6697-6704.
    [106]. Takeuchi D., Anada K., Osakada K. Copolymerization of ethylene with methylenecycl -opropanes promoted by cobalt and nickel complexes. Bull. Chem. Soc. Jpn. 2005, 78, 1868-1878.
    [107]. Li W., Zhang X., Meetsma A., Hessen B.Palladium-catalyzed copolymerization of ethene with acrolein dimethyl acetal: Catalyst action and deactivation. J. Am. Chem. Soc. 2004, 126, 12246-12247.
    [108]. Wang J., Ye Z., Joly H. Synthesis and characterization of hyperbranched polyethylenes tethered with polyhedral oligomeric silsesquioxane (POSS) nanoparticles by chain Walking ethylene copolymerization with acryloisobutyl-POSS. Macromolecules 2007,40, 6150-6163.
    [109]. Luo S., Jordan R.F. Copolymerization of silyl vinyl ethers with olefins by (α-diimine) PdR~+. J. Am. Chem. Soc. 2006, 128, 12072-12073.
    [110]. Chen C., Luo S., and Jordan R.F. Multiple insertion of a silyl vinyl ether by (α-Diimine) PdMe+ species. J. Am. Chem. Soc. 2008, 130, 12892-12893.
    [111]. Wang J., Zhang K., Ye Z. One-Pot Synthesis of Hyperbranched polyethylenes tethered with polymerizable methacryloyl groups via selective ethylene copolymerization with heterobifunctional comonomers by chain walking Pd-diimine catalysis. Macromolecules 2008,41,2290-2293.
    [112]. Wang J., Ye Z., Zhu S. Synthesis and characterization of hyperbranched polyethylenes containing cross-linking structures by chain walking copolymerization of ethylene with diacrylate comonomer. Polymer 2008,49, 3382-3392.
    [113]. Okada T., Park S., Takeuchi D., Osakada K. Pd-catalyzed polymerization of dienes that involves chain-walking isomerization of the growing polymer end: Synthesis of polymers composed of polymethylene and five-membered-ring units. Angew. Chem. Int. Ed. 2007, 46,6141-6143.
    [114]. Xiang P., Ye Z.B., Morgan S., Xia X.W., Liu W. Tuning polyethylene chain topology via ring incorporation in chain walking ethylene polymerization. Macromolecules 2009, 42. 2313-2316.
    [115]. Warwel S., Wiege B., Fehling E., Kunz M. Copolymerization of ethylene with x-unsaturated fatty acid methyl esters using a cationic palladium complex. Macromol. Chem. Phys. 2001, 202, 849-855.
    [116]. Meneghetti S.P., Kress J., Lutz P.J. Structural investigation of poly(olefin)s and copolymers of ethylene with polar monomers prepared under various reaction conditions in the presence of palladium catalysts. Macromol. Chem. Phys. 2000, 201, 1823-1832.
    [117]. Tian G, Boone H. W., Novak B. M. Neutral palladium complexes as catalysts for olefin-Methyl acrylate copolymerization. Macromolecules 2001, 34, 7656-7663.
    [118]. Azoulay J.D., Itigaki K., Wu G., Bazan G.C. Influence of steric and electronic perturbations on the polymerization activities of α-iminocarboxamide nickel complexes. Organometallics 2008, 27, 2273-2280.
    [119]. Diamanti S.J, Ghosh P, Shimizu F, Bazan G.C. Ethylene homopolymerization andcopolymerization with functionalized 5-norbornen-2-yl monomers by a novel nickel catalyst system. Macromolecules 2003, 36, 9731-9735.
    [120]. Gibson V. C., Tomov A. Functionalised polyolefin synthesis using [P,O]Ni catalysts. Chem. Commun. 2001, 1964-1965.
    [121]. Soula R., Saillard B., Spitz R., Claverie J. Catalytic copolymerization of ethylene and polar and nonpolar α-olefins in emulsion. Macromolecules 2002, 35, 1513-1523.
    [122]. Weng W., Shen Z., Jordan R. F. Weng W., Shen .Z., Richard F. J. Copolymerization of ethylene and vinyl fluoride by (Phosphine-Sulfonate) Pd (Me)(py) catalysts J. Am. Chem. Soc. 2007, 129, 15450-15451.
    [123]. Luo S., Vela J., Lief G.R., Jordan R.F. Copolymerization of ethylene and alkyl vinyl ethers by a (Phosphinesulfonate) PdMe catalyst. J. Am. Chem. Soc. 2007, 129, 8946-8947.
    [124]. Kochi T., Noda S., Yoshimura K., Nozak K. Formation of linear copolymers of ethylene and acrylonitrile catalyzed by phosphine sulfonate palladium complexes. J. Am. Chem. Soc. 2007, 129,8948-8949.
    [125]. Guironnet D., Roesle P., Runzi T., Schnetmann I. G., Mecking S. Insertion polymerization of acrylate. J. Am. Chem. Soc. 2009, 131, 422-423.
    [126]. Skupov K. M., Piche L., Claverie J. P. Linear polyethylene with tunable surface properties by catalytic copolymerization of ethylene with N-vinyl-2-pyrrolidinone and N-isopropylacrylamide. Macromolecules 2008,41, 2309-2310.
    [127]. Chen G., Huynh D., Feigner P.L., Guan Z. Tandem chain walking polymerization and atom transfer radical polymerization for efficient synthesis of dendritic nanoparticles for bioconjugation. J. Am. Chem. Soc. 2006, 128,4298-4302.
    [128]. Chen G., Feigner P.L., Guan Z. Efficient catalytic synthesis of dendritic polymers having internal fluorescence labels for bioconjugation. Biomacromolecules 2008, 9, 1745-1754.
    [129]. Zhang K., Wang J., Subramanian R., Ye Z., Lu. J., Yu Q. Chain walking ethylene copolymerization with an ATRP inimer for one-pot synthesis of hyperbranched polyethylenes tethered with ATRP initiating sites. Macromol. Rapid Comm. 2007, 28, 2185-2191.
    [130]. Schneider Y., Azoulay J. D., Coffin R.C., Bazan G. C. New Polyethylene macroinitiators and their subsequent grafting by atom transfer radical polymerization. J. Am. Chem. Soc. 2008, 130,10464-10465.
    [131]. Zhang Y., Ye Z. Covalent surface grafting of branched polyethylenes on silica nanoparticles by surface-initiated ethylene "living" polymerization with immobilized Pd -diimine catalysts. Macromolecules 2008,41, 6331-6338.
    [132]. Hong S C, Jia S, Teodorescu M., Kowalewski T, Matyjaszewski K, Gottfried A.C. Polyolefin graft copolymers via living polymerization techniques: preparation of poly (nbutyl acrylate)-graft-polyethylene through the combination of Pd-mediated living olefin polymerization and atom transfer radical polymerization. J. Polym. Sci.Pol.Chem. 2002, 40, 2736-49.
    [133]. Chen G., Guan Z. Transition metal-catalyzed one-pot synthesis of water-soluble dendritic molecular nanocarriers. J. Am. Chem. Soc. 2004, 126, 2662-2663.
    [134]. Killian C.M., Tempel D.J., Johnson L.K, Brookhart M. Living polymerization of α-olefins using Ni (II)-α-diimine catalysts. Synthesis of new block polymers based on a-olefins. J. Am. Chem. Soc. 1996, 118, 11664-11665.
    [135]. Cherian A E., Rose J.M., Lobkovsky E.B., Coates G.W. A C2-symmetric, living a-diimine Ni (II) catalyst: regioblock copolymers from propylene. J. Am. Chem. Soc. 2005, 127, 13770-13771.
    [136]. Rose J M., Deplace F., Lynd N.A., Wang Z., Hotta A., Lobkovsky E. B., Kramer E. J. Coates G.W. C_2-Symmetric Ni (II) α-diimines featuring cumyl-derived ligands: Synthesis of improved elastomeric regioblock polypropylenes. Macromolecules 2008, 41, 9548-9555.
    [137]. Diamanti S J., Khanna V., Hotta A., Yamakawa D., Shimizu F., Kramer E.J. Synthesis of block copolymer segments containing different ratios of ethylene and 5-norbornen-2-yl acetate. J. Am. Chem. Soc. 2004, 126, 10528-10529.
    [138]. Zhang K., Ye Z., Subramanian R. Synthesis of block copolymers of ethylene with styrene and n-butyl acrylate via a tandem strategy combining ethylene "living" polymerization catalyzed by a functionalized Pd-diimine catalyst with atom transfer radical polymerization. Macromolecules 2008,41, 640-649.
    [139]. Zhang K., Ye Z., Subramanian R. A trinuclear Pd-diimine catalyst for "core-first" Synthesis of three-arm star polyethylenes via ethylene "living" polymerization. Macromolecules 2009, 42, 2313-2316.
    [140]. Britovsek G.J., Cohen S A., Gbison V.C., Meurs M.V. Iron catalyzed polyethylene chain growth on zinc: A study of the factors delineating chain transfer versus catalyzed chain growth in zinc and related metal alkyl system. J. Am. Chem. Soc. 2004, 126, 10701-10712.
    [141]. Kuhlman R.L., Wenzel T.T. Investigations of chain shuttling olefin polymerization using deuterium labeling. Macromolecules 2008, 41, 4090-4094.
    [142]. Zhang W, Sita L.R. Highly efficient, living coordinative chain-transfer polymerization of propene with ZnEt_2: practical production of ultrahigh to very low molecular weight amorphous atactic polypropenes of extremely narrow polydispersity. J. Am. Chem. Soc. 2008, 130, 442-443.
    [143]. Arriola D.J., Carnahan E.M., Hustad P.D., Kuhlman R.L., Wenzel T.T. Catalytic production of olefin block copolymers via chain shuttling polymerization. Science 2006, 312,714-719.
    [144]. Hustad P.D., Kuhlman R.L., Carnahan E.M., Wenzel T.T., Arriola DJ. An exploration of the effects of reversibility in chain transfer to metal in olefin polymerization.Macromolecules 2008,41,4081-4089.
    [145].Alfano F.,Boone H.W.,Busico V.,Cipullo R.,Stevens J.C.Polypropylene "chain shuttling" at enantiomorphous and enantiopure catalytic species:Direct and quantitative evidence from polymer microstructure.Macromolecule 2007,40,7736-7738.
    [146].潘祖仁.高分子化学(第三版).北京:化学工业出版社,2002年.
    [147].焦书科.烯烃配位聚合理论与实践.北京:化学工业出版社,2004年.
    [148].Kojoh S,Matsugi T,Saito J,Mitani M,Fujita T,Kashiwa N.New monodisperse ethylene propylene copolymers and a block copolymer created by a titanium complex having fluorine-containing phenoxy-imine chelate ligands.Chem.Lett.2001,822-823.
    [149].Tian J.,Hustad P.D,Coates G.W.A new catalyst for highly syndiospecific living olefin polymerization:homopolymers and block copolymers from ethylene and propylene.J.Am.Chem.Soc.2001,123,5134-5135.
    [150].Furuyama R.,Mitani M.,Mohri J.,Mori R.,Tanaka H.,Fujita T.Ethylene/higher α-olefin copolymerization behavior of fluorinated bis(phenoxy-imine)titanium complexes with methylalumoxane:Synthesis of new polyethylene-based block copolymers.Macromolecules 2005,38,1546-1552.
    [151].Heuer B.and Kaminsky W.Alternating ethene/propene copolymers by C1-symmetric metallocene/MAO catalysts.Macromolecules 2005,38,3054-3059.
    [152].Beach D.L,Kiss Y.Y Dual functional catalysis for ethylene polymerization to branched polyethylene.Ⅰ.Evaluation of catalytic systems.J.Polym.Sci.Pol.Chem.1984,22,3027-3042.
    [153].Kiss Y.Y.,Beach D.Dual-functional catalysis for ethylene polymerization to branched polyethylene.Ⅱ.Kinetics of ethylene polymerization with a mixed homogeneous -heterogeneous Ziegler-Natta catalyst system.J.Polym.Sci.Pol.Chem.1986,24,1069-1084.
    [154].Peruch F.,Cramail H.,Deffieux A.Kinetic and UV-visible spectroscopic studies of hex-1-ene polymerization initiated by an α-diimine-[N,N]nickel dibromide/MAO catalytic system.Macromolecules 1999,32,7977-7983.
    [155].Maldanis R.J.,Wood J.S.,Chandrasekaran W.A.,Rausch M.D.,Chien J.C.The formation and polymerization behavior of Ni(Ⅱ)α-diimine complexes using various aluminium activators.J.Organomer.Chem.2002,645,158-167.
    [156].董晓臣.茂锆和复合载体Ziegler-Natta催化剂催化烯烃聚合的研究.浙江大学博士学位文,2006,12.
    [157].D'Agnillo L.,Soare J.B.,Penlidis A.Effect of operating conditions on the molecular weight distribution of polyethylene synthesized by soluble metallocene/methylaluminoxane catalysts.Macromol.Chem.Phys.1998,199,955-962.
    [158].Leatherman M.D.,Svejda S.A.,Johnson L.K.,and Brookhart M.Mechanistic studies of nickel(Ⅱ) alkyl agostic cations and alkyl ethylene complexes:Investigations of chain propagation and isomerization in(α-diimine) Ni(Ⅱ)-catalyzed ethylene polymerization.J.Am.Chem.Soc.2003,125,3068-3081.
    [159].张普玉.茂金属/含硼化合物催化剂体系催化烯烃聚合的研究.浙江大学博士学位文,2002.6.
    [160].Galland G.B.,Souza R.F.,Mautler R.S.,Nunes F.E ~(13)C NMR determination of the composition of linear low-density polyethylene obtained with[η~3-eethally-nikel-diimine PF_6 complex.Macromolecules 1999,32,1620-1625.
    [161].Lindeman L.P.,Adams J.Q.Carbon-~(13)nuclear magnetic resonance spectrometry chemical shifts for the paraffins through C9.Ana.Chem.1971,43,1245-1252.
    [162].Yang.H.X.Synthesis of novel aluminoxanes and their cocatalytic performances in the ethylene polymerization catalyzed by late transition metal complexes.Doctoral dissertation of Zhejiang University,2003,6.
    [163].Hansen E.W.,Blom R.,Bade O.M.NMR Characterization of polyethylene with emphasis on internal consistency of peak intensities and estimation of uncertainties in derived branch distribution numbers.Polymer 1997,38,1169-1203.
    [164].Cotts P.M.,Guan Z.,McCord E.,McLain S.Novel branching topology in polyethylenes As revealed by light scattering and ~(13)C NMR Macromolecules 2000,33,6945-6952.
    [165].Meurs M.,Britovsek G.J.P.,Gibson V.C.,Cohen S.A polyethylene chain growth on zinc catalyzed by olefin polymerization catalysts:A comparative investigation of highly active catalyst systems across the transition series.J.Am.Chem.Soc.2005,127,9913-9923.
    [166].Koo C.M.,Wu L.F.,Lim L.S.,Mahanthappa M.K.,Hillmyer M.A.,Bates F.S.Microstructure and mechanical properties of semicrystalline-rubbery-semicrystalline triblock copolymers.Macromolecules 2005,38,6090-6098.
    [167].Dietrich U.,Hackmann M.,Rieger B.,Klinga M.,Leskelal M.Control of stereoerror formation with high-activity "dual-side" zirconocene catalysts:A novel strategy to design the properties of thermoplastic elastic polypropenes.J.Am.Chem.Soc.1999,121,4348-4355.
    [168].Furuyama R.,Mitani M.,Mohri J.,Mori R.,Tanaka H.,Fujita T.Ethylene/higher α-olefin copolymerization behavior of fluorinated bis(phenoxy-imine)titanium complexes with methylalumoxane:Synthesis of new polyethylene-based block copolymers.Macromolecules 2005,38,1546-1552.
    [169].Makio H.,Kashiwa N.,Fujita T.FI Catalysts:A new family of high performance catalysts for olefin polymerization.Adv.Synth.Catal.2002,344,477-493.
    [170].Hustad P.D.,Kuhlman R.L.,Arriola D.J.,Carnahan E.M.Wenzel T.T.Continuous production of ethylene-based diblock copolymers using coordinative chain transfer polymerization.Macromolecules 2007,40,7061-7064.
    [171].Meurs M.,Britovsek G.J.P.,Gibson V.C.,Cohen S.A polyethylene chain growth on zinc catalyzed by olefin polymerization catalysts:A comparative investigation of highly active catalyst systems across the transition series.J.Am.Chem.Soc.2005,127,9913-9923.
    [172].Wang L.,Zhang P.Y.,Feng L.,Ji B.E,Yuan Y.L.,Pan J.,Ye C.Y.,Jiang S.,Feng L.X.EPR Studies on vanadocene/socatalyst systems for ethylene polymerization.J.Appl.Polym.Sci.2001,79,1188-1194.
    [173].Wang L.,Feng L.X.,Yang S.L.Studies on VOCl_3/MgCl_2/NaY/Al_2Et_3Cl_3 complex support catalysts for the copolymerization of ethylene and propylene.J.Appl.Polym.Sci.1994,54,1403-1409.
    [174].Choo H.,Kevan L.Catalytic Study of ethylene dimerization on Ni(Ⅱ)-exchanged clinoptilolite.J.Phys.Chem.B.2001,105,6353-6360.
    [175].Ommen J.G.,Van R.Gellengs P.J.An NMR and EPR-investigation of the catalystic system Ni(acac)_2,C_3H_4,(i-Bu)_3Al for the polymerizaion of propadiene.J.Mol.Catal.1981,13,313-321.
    [176].菅盘铭,李邵侠,王秋莹.Ni/γ-Al_2O_3催化剂上丙烯与Ni离子的相互作用.扬州大学学报.2001,4,22-26.
    [177].Michalak A.,Ziegler T.Polymerization of ethylene catalyzed by a nickel(+2)anilino-tropone-based catalyst:DFT and stochastic studies on the elementary reactions and the mechanism of polyethylene branching.Organometallics 2003,22,2069-2079.
    [178].Musaev D.G.,Froese R.D.J.,Morokuma K.Molecular orbital and IMOMM studies of the chain transfer mechanisms of the diimine-M(Ⅱ)-catalyzed(M=Ni,Pd) ethylene polymerization Reaction.Organometallics 1998,17,1850-1860.
    [179].Rapoport N.Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery.Prog.Polym.Sci.2007,32,962-990.
    [180].Dimitrova I.,Trzebickab B.,Axel H.E.Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities.Prog.Polym.Sci.2007,32,1275-1343.
    [181].Filippov S.,Hruby M.,Konak C.,Mackova H.,Spirkova M.,Stepanek P.Novel pH-responsive nanoparticles.Langmuir 2008,24,9295-9301.
    [182].Wu D.C.,Liu Y.,He C.B.Thermal-and pH-responsive degradable polymers.Macromolecules 2008,41,18-20.
    [183].Li Y.L,Du W.J.,Sun G.R.,Wooley K.L.pH-Responsive shell cross-linked nanoparticles with hydrolytically labile cross-links.Macromolecules 2008,41,6605-6607.
    [184].Liu S.Y.,Weaver J.V.M.,Tang Y.Q.,Billingham N.C.,Armes S.P.,Tribe K.Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers.Macromolecules 2002,35,6121-6131.
    [185].Guo A.,Liu G.J.,Tao J.Star polymers and nanospheres from cross-linkable diblock copolymers.Macromolecules 1996,29,2487-2493.
    [186].Connal L.A.,Li Q.,Quinn J.E,Tjipto E.,Caruso E,Qiao G.G.pH-Responsive poly (acrylic acid) core cross-linked star polymers:MorpHology transitions in solution and multilayer thin films.Macromolecules 2008,41,2620-2626.
    [187].Gillies E.R.,Jonsson T.B.,Frechet J.M.J.Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers.J.Am.Chem.Soc.2004,126,11936-11943.
    [188].Riilke R.E.,Ernsting J.M.,Spelt A.L.,Elsevier C.J.,Leeuwelqs R.W.,Vrieze K.NMR study on the coordination behavior of dissymmetric terdentate trinitrogen ligands on methylpalladium(I1) compounds.Inorg.Chem.1993,32,5769-5778.
    [189].Tempel D.J.,Johnson L.K.,HuffL.,White P.S.,Brookhart M.Mechanistic studies of Pd (Ⅱ)-α-diimine-catalyzed olefin polymerizations.J.Am.Chem.Soc.2000,122,6686-6700.
    [190].Matyjaszewski K.,Xia J.H.Atom transfer radical polymerization.Chem.Rev.2001,101,2921-2990.
    [191]. Beer P.D., Gale P.A. Anion recognition and sensing: the state of art and future perspectives. Angew.Chem.Int.Ed. 2001,40, 486-516.
    [192]. Beer P.D., Bayly S.R. Anion sensing by metal-based receptors. Top. Curr. Chem. 2005, 255, 125-162.
    [193]. Beer P.D., Cadman J. Electrochemical and optical sensing of anions by transition metal based receptors. Chem. Rev. 2000, 205, 131-155.
    [194]. Bennion H., Juggins S., Anderson N. J., Predicting epilimnetic phosphorus concentrations using an improved diatom-based transfer function and its application to lake eutrophication management. Environ. Sci. Technol. 1996, 30, 2004-2007.
    [195]. Sessler J.L., Cho Do.G., Lynch V., Diindolylquinoxalines: effective indole-based receptors for phosphate anion. J.Am.Chem.Soc. 2006, 128, 16518-16519.
    [196]. Hay B.P., Firman T.K., Moyer B.A, Structural design criteria for anion hosts: Strategies for achieving anion shape recognition through the complementary placement of urea donor groups. J. Am. Chem. Soc. 2005, 127, 1810-1819.
    [197]. Daniel M.C., Ruiz J., Blais J.C., Daro N., Astruc D. Synthesis of five generations of redox-stable pentamethylamidoferrocenyl dendrimers and comparison of amidoferrocenyl and pentamethylamido ferrocenyl dendrimers as electrochemical exoreceptors for the selective recognition of H_2PO_4~-, HSO_4~-, and adenosine 5'-triphosphate (ATP) anions: stereoelectronic and hydrophobic roles of cyclopentaqdienyl permethylation. Chem. Eur. J. 2003,9,4371-4379.
    [198]. Gonzalez B., Alonso B., Losada J., Garcia-Armada M.P., Casado C.M. Aza-crown ethers attached to dendrimers through amidoferrocenyl units. Organometallics 2006, 25, 3558-3561.
    [199]. Miyaji H., Collinson S.R., Prokes I., Tucker J.H.R., A ditopic ferrocene receptor for anions and cations that functions as a chromogenic molecular switch. Chem. Commun. 2003, 64-65.
    [200]. Ot'on. F., T'arraga. A., Espinosa. A., Velasco. M.D., Molina. P., Heteroditopic ferrocene-based ureas as receptors for anions and cations. Dalton Trans. 2006, 3685-3692.
    [201]. Reynes O., Bucher C., Moutet J.C., Royal G., Aman E.S., Ungureau E.M., Electro -chemical sensing of anions by redox-active receptors built on the ferrocenyl cyclam framework. J. Electroanal. Chem. 2005, 580, 291-299.
    [202]. Beer P.D., Graydon A.R., Johnson A.O.M., Smith D.K. Neutral ferrocenoyl receptors for the selective recognition and sensing of anionic guests. Inorg. Chem., 1997, 36, 2112-2118.
    [203]. Fan E., Vanarman S.A., Kincaid S., Hamilton A.D., Molecular recognition: hydrogen bonding receptors that function in highly competitive solvents. J. Am. Chem. Soc, 1993, 115,369-370.
    [204]. Zhang S., Echegoyen L. Selective anion sensing by a tris-amide CTV derivative: ~1H NMR titration, self-assembled monolayers, and impedance spectroscopy. J. Am. Chem. Soc. 2005,127,2006-2011.
    [205]. Reynes O., Bucher C., Moutet J.C., Royal G., Aman E.S. Redox sensing of anions in pure aqueous environment by ferrocene-containing 4,4 A-bipyridinium-based receptors and polymer films. Chem. Commun. 2004,428-429.
    [206]. Bernhardt P.V., Creevey N.L. Electrochemical anion recognition with ferrocene functionalized macrocycles. J. Chem. Soc. Dalton Trans. 2004, 914-920.
    [207]. Astruc D., Daniel M.C., Ruiz J. Dendrimers and gold nanoparticles as exo-receptors sensing biologically important anions. Chem. Commun. 2004, 2637-2649.
    [208]. Ruiz J., Jesus M., Medel R., Daniel M.C., Blais J.C., Astruc D. Redox-robust pentamethylamidoferrocenyl metallodendrimers that cleanly and selectively recognize the H_2PO_4~- anion. Chem. Commun. 2003, 464-465.
    [209]. Ornelas C, Aranzaes J.R., Cloutet E., Alves S., Astruc D., Click assembly of 1,2,3-triazole-linked dendrimers, including ferrocenyl dendrimers, which sense both oxo anions and metal cations. Angew. Chem. Int. Ed. 2006, 45, 1-6.
    [210]. Diane L., David S., Smith K. Anion binding at the core of branched ferrocene derivatives. Polyhedron 2003, 22, 763-768.
    [211]. Vale'rio C., Fillaut J. L., Ruiz J., Guittard J., Blais J.C., Astruc D. The dendritic effect in molecular recognition: Ferrocene dendrimers and their use as supramolecular redox sensors for the recognition of small inorganic anions. J. Am. Chem. Soc. 1997, 119, 2588-2589.
    [212]. Teddy M.K., Syed B.Q. Ferrocenylethynylbenzenes as precursors to in situ synthesis of carbon nanotube and Fe nanoparticle compositions. Chem. Mater. 2004, 16, 1091-1097.
    [213]. Benito A.M., Maniette Y., Munoz E., Martinez M.T. Carbon nanotubes production by catalytic pyrolysis of benzene.Carbon 1998,36,681-683.
    [214].Lu J.Q.,Kopley T.E.,Moll N.,Roitman D.,Chamberkin D.,Fu Q.,Liu J.,Russell T.P.,Rider D.A.,Manner I.,Winnik M.A.High-quality single-walled carbon nanotubes with small diameter,controlled density,and ordered locations using a polyferrocenylsilane block copolymer catalyst precursor.Chem.Mater.2005,17,2227-2231.
    [215].Hindering C.,Keles Y.,Stockli T.,Knapp H.,Acros T.D.,Oelhafen P.,Korczagin I.,Hempenius M.,Vancso G.,Pugin R.,Heinzelmann H.Oranometallic block copolymers as catalyst precursors for templated carbon nanotube growth.Adv.Mater.2004,16,14876-14879.
    [216].陈涛.二茂铁基线性和支化聚合物的合成、自组装以及性能研究.浙江大学博士论文.2006.1.
    [217].邓立波.新型二茂铁基化合物的合成及其在阴离子识别中的应用.浙江大学硕士学位论文.2007.6.
    [218].Bard A.J.,Faulkner L.R.Electrochemical Methods,John Wiley & Sons Inc.,New York,1980.
    [219].谭巧华.含氮及超支化二茂铁基化合物的合成、电化学行为及在阴离子识别中的应用研究.浙江大学硕士学位论文.2008.6.
    [220].Scholl M.,Kadlecova Z.,Klok H.A.Dendritic and hyperbranched polyamides.Prog.Polym.Sci.2009,34,24-61.
    [221].Woo D.J.,Selimb K.M.K.,Lee C.H.,Kang I.K.,Bioinspired application of dendrimers:From bio-mimicry to biomedical applications.Prog.Polym.Sci.2009,34,1-23.
    [222].Hadjichristidis N.,Hermis I.,Pitsikalisa M.,Mays J.Macromolecular architectures by living and controlled/living polymerizations.Prog.Polym.Sci.2006,31,1068-1132.
    [223].Hedrick J.I.,MagbitangT.,Connor E.F.Appplication of complex macromolecutar architectures for advanced microelectronic materials.Chem-Euro.J.2002,8,3308-3319.
    [224].Hcise A.,Hedrick J.I.,Frollsas M.Novel starlike poly(methyl methacrylate)s by controlled dendritic free radical initiation.Macromolecule 1999,32,231-234.
    [225].Heise A.,Trolsas M.,Hedrick J.I.Investigation of the initiation behavior of a dendritic 12-arm initiator in atom transferradical polymerization.Macromolecules 2001,34,3798-3801.
    [226].Heise A.,Hedrick J.I.,Frank C.W.Starlike block copolymers with amphiphilic arms as models for unimolecular micelles.J.Am.Chem.Soc,1999,121,8647-8648.
    [227].Vasilenko N.G.,Rebrov E.A.,Muzafarov A.M.Preparation of multiarm star polymers with polylithiated carbosilane dendrimers.Macromol.Chem.Physi.1998,199,889-895.
    [228].Yang Q.,Wang L.,Xiang W.D.,Zhou J.E,Deng L.B.,Li J.H.Preparation of core-shell carbon black nanoparticles and their crystallization-induced orientation.Eur.Polym.J.2007,43,1718-1723.
    [229].杨强.聚合物接枝碳黑的制备、表征及性能的研究.浙江大学博士学位论文,2007.7.
    [230].Robinson K.L.,Khan M.A.,Paz Banez M.V.,Wang X.S.,Armes S.P.Controlled polymerization of 2-hydroxyethyl methacrylate by ATRP at ambient temperature.Macromolecules 2001,34,3155-3158.
    [231].Lee H.I.,Jakubowski W.,Matyjaszewski K.,Yu S.,Sheiko S.Cylindrical core-shell brushes prepared by a combination of ROP and ATRP.Macromolecules 2006,39,4983-4989.
    [232].Storey R.F.,Sherman J.W.Kinetics and mechanism of the stannous octoate-catalyzed bulk polymerization of ε-caprolactone.Macromolecules 2002,35,1504-1512.
    [233].Kowalski A.,Duda A.Penczek S.Kinetics and mechanism of cyclic esters polymerization initiated with tin(Ⅱ) octoate,polymerization of ε-caprolactone.Macromol.Rapid Commun.1998,19,567-572.
    [234].Buffa F.,Hu H.,Resasco D.E.Side-wall functionalization of single-walled carbon nanotubes with 4-hydroxymethylaniline followed by polymerization of ε-caprolactone.Macromolecules 2005,38,8258-8263.
    [235].Du Y.J.,Lemstra P.J.,Nijenhuis A.J.,Vanaert H.A.M.,Bastiaansen C.ABA type copolymers of lactide with poly(ethylene glycol).Kinetic,mechanistic,and model studies.Macromolecules 1995,28,2124-2132.
    [236].Wu T.M.,Chen E.C.Crystallization behavior of poly(ε-caprolactone)/multiwalled carbon nanotube composites.J.Polym.Sci.Polym.Phys.2005,44,598-606.
    [237].Wu T.M.,Cheng J.C.Morphology and electrical properties of carbon-black-filled poly (ε-caprolactone)/poly(vinyl butyral) nanocomposites.J.Appl.Polym.Sci.2003,88,1022-1031.
    [238].Priftis D.,Petzetakis N.,Sakellariou G.,Pitsikalis M.,Baskaran D.,Mays J.W.,Hadjichristidis N.Surface-initiated titanium-mediated coordination polymerization from catalyst-functionalized single and multiwalled carbon nanotubes.Macromolecules 2009,42,3340-3346.
    [239].Monteil V.,Stumbaum J.,Thomann R.,Mecking S.Silica/polyethylene nanocomposite particles from catalytic emulsion polymerization.Macromolecules 2006,39,2056-2062.
    [240].Yuan W.Z.,Yuan J.Y,Zhang F.B,Xie X.U.Syntheses,characterization,and in vitro degradation of ethyl cellulose-graft-poly(E-caprolactone)-block-poly(L-lactide)copolymers by sequential ring-opening polymerization.Biomacromolecules 2007,8,1101-1108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700