冬青苦丁茶多酚和多糖的提取、分离纯化、结构与抗氧化活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苦丁茶是一种纯天然植物代用茶,富含三萜及其皂苷类、黄酮、氨基酸等活性物质,具有抗氧化、降脂、抗炎杀菌、减肥、降血压等多种药理功能。在我国,主要的苦丁茶是利用冬青科树叶加工而成的苦丁茶和利用木犀科树叶加工而成的苦丁茶,而前者主要有苦丁茶冬青和大叶冬青。近年来,已有人对冬青苦丁茶的化学成分和药理作用作了一些研究,但研究多集中在粗提物药理作用及其机制的研究上,化学成分研究仅限于三萜及其皂苷类、黄酮类的研究。因此,本研究以苦丁茶冬青苦丁茶和大叶冬青苦丁茶(两者通称为冬青苦丁茶)为原料,较为系统地研究其多酚类物质的测定方法、提取、纯化、结构鉴定和抗氧化活性,同时采取热水提取与醇沉制备冬青苦丁茶多糖,利用层析技术对其进行分离纯化,并对冬青苦丁茶粗多糖及其纯化组分的基本理化性质、体外抗氧化活性进行分析。
     1.冬青苦丁茶多酚含量的测定及其抗氧化活性
     以绿原酸为标准品,建立了测定冬青苦丁茶中多酚含量的Folin-Ciocalteu比色法。结果表明,苦丁茶提取液在Folin-Ciocalteu试剂3.0 ml、饱和Na2CO3溶液4.5ml、反应温度30℃、反应时间30 min的条件下,测定其747nm处的吸光值,多酚浓度在20.0~100.0 mg/L范围内与吸光值呈良好的线性关系;稳定性、精密度、重现性和回收率实验的相对标准偏差为0.887~1.416%;与酒石酸亚铁比色法的测定结果无显著差异。
     苦丁茶冬青苦丁茶热水提取物(粗提物)经不同的有机溶剂分部萃取,得到氯仿萃取物、乙酸乙酯萃取物、正丁醇萃取物及萃取剩余物,然后采用Folin-Ciocalteu比色法测定粗提物和各萃取物的多酚含量,同时应用DPPH法、TEAC法和FRAP法分别测定粗提物和各萃取物的自由基清除能力和还原Fe3+能力。结果表明,苦丁茶提取物具有较高的多酚含量和较强的抗氧化能力,DPPH法和FRAP法测定各提取物抗氧化能力的结果为乙酸乙酯萃取物>正丁醇萃取物>粗提物>萃取剩余物>氯仿萃取物,TEAC法测定结果为乙酸乙酯萃取物>正丁醇萃取物>粗提物>氯仿萃取物>萃取剩余物;多酚含量与抗氧化能力之间、所用抗氧化测定方法之间均存在较好的相关性。
     比较了苦丁茶冬青苦丁茶和大叶冬青苦丁茶提取液中多酚、黄酮的含量及体外抗氧化能力,结果表明多酚含量较高的苦丁茶冬青苦丁茶比黄酮含量高的大叶冬青苦丁茶具有较高的体外抗氧化能力。对五种体外抗氧化活性评价方法之间的相关性进行了分析,结果表明各抗氧化方法间相关性良好(R>0.8478),尤以DPPH法与ABTS法的相关性最高(R 0.9967)。
     2.冬青苦丁茶多酚提取条件的优化
     提取溶剂甲醇、乙醇和水对苦丁茶多酚的提取有显著的影响,提取物的多酚含量随提取溶剂的不同而不同,甲醇、乙醇和水三者之间提取物多酚含量差异显著(P<0.05),这三者中乙醇的提取效果最好。
     选择乙醇浓度、提取温度和提取时间3个因素分别进行实验,比较提取物的多酚含量,确定了各因素在CCD实验中的取值中心点,即乙醇浓度、提取温度和提取时间分别是70%、70℃和60 min。在单因素实验基础上,以提取物的多酚含量和清除DPPH自由基能力IC50值为响应值,利用Design-Expert软件对乙醇浓度、提取温度及提取时间3个参数进行三因素三水平的CCD实验,对3个参数的实验组合进行优化。获得的最优提取条件为:乙醇浓度70.5%、提取温度73.9℃和提取时间61.2 mmin的条件下可以得到最高的多酚含量(235.24 mg CHA/gDW);乙醇浓度70.2%、提取温度70.6℃和提取时间60.4 min时可以获得最大的DPPH自由基清除能力(IC50,480.87μg/mL)。可以看出,两组优化条件基本一致,说明可以用相同的提取条件获得最优的多酚含量和抗氧化能力的苦丁茶提取物。
     用水为提取溶剂时,提取温度和提取时间2个因素对苦丁茶多酚的提取有显著的影响。通过实验优化,得到了苦丁茶多酚的最优提取条件为:提取温度91.2℃和时间36.1 min,提取物总酚含量达198.45 mg CHA/gDW;提取温度92.2℃和35.7 min,提取物清除DPPH自由基能力最强(IC50,744.74μg/mL)。同样,两组优化条件基本一致,说明以水为提取溶剂时可以用相同的提取条件获得最优的总多酚含量和抗氧化能力的苦丁茶提取物。
     选用5次优化的提取条件和5次随机设定的提取条件,对模型方程的适用性进行验证。结果表明,验证性实验的实验值与模型方程的预测值间存在很好的一致性,说明优化出的提取条件是切实可行的。
     3.苦丁茶冬青苦丁茶中多酚的分离纯化与结构解析
     利用HPLC-DAD分析了冬青苦丁茶、女贞苦丁茶与绿茶(雨花茶)的多酚类化合物组成,结果表明它们的色谱峰图呈现明显的不一致,这说明苦丁茶的主要化学成分可能不同于绿茶,苦丁茶冬青苦丁茶和女贞苦丁茶的组成可能也不一样。
     通过HPLC-MS知HPLC-DAD分析,结合茶叶儿茶素[(-)-EC、(-)-ECG、(-)-EGC知(-)-EGCG]、没食子酸、咖啡碱、茶叶碱和可可碱的标准样叠加分析验证,绿茶的主要多酚类成分为没食子酸、没食子酰基奎尼酸、EC、(-)-EGC、(-)-EGCG。根据苦丁茶冬青苦丁茶的HPLC-MS分析结果与相关参考文献,推测其主要多酚类化合物为绿原酸及其衍生物,即3-咖啡酰基奎尼酸、绿原酸、4-咖啡酰基奎尼酸、3,4-二咖啡酰基奎尼酸、3,5-二咖啡酰基奎尼酸和4,5-二咖啡酰基奎尼酸。而根据女贞苦丁茶的HPLC-MS分析结果,认为女贞苦丁茶的主要酚类化合物为苯乙醇苷类成分,即紫茎女贞苷A、Ligurobustoside N、紫茎女贞苷C、紫茎女贞苷B和Osmanthuside B6。
     利用半制备型HPLC从苦丁茶冬青苦丁茶中分离纯化得到5种单体化合物,通过MS和NMR分析结合]3PLC-DAD、HPLC-MS的分析结果,将5种单体化合物分别鉴定为羟基酪醇葡萄糖苷(hydroxytyrosol glucoside)、绿原酸、4,5-0-二咖啡酰奎尼酸、3,5-O-二咖啡酰奎尼酸和3,4-O-二咖啡酰奎尼酸,其中化合物1是首次从苦丁茶冬青苦丁茶中分离得到。
     4.大叶冬青苦丁茶多糖提取、纯化与抗氧化活性
     大叶冬青苦丁茶经热水提取、脱色、醇沉、干燥,得到大叶冬青苦丁茶粗多糖(ILPS).粗ILPS经DEAE-52纤维素层析柱分离得到四个多糖组分,即ILPS-1、ILPS-2、ILPS-3知ILPS-4.红外光谱分析表明粗ILPS及其纯化组分均是多糖类物质,粗ILPS与各纯化组分的蛋白质、糖醛酸和硫酸基含量存在很大的差异,粗ILPS. ILPS-1、ILPS-2知ILPS-3主要由鼠李糖、阿拉伯糖和半乳糖等组成。
     采用化学法分别测定了粗ILPS及其纯化组分的体外清除自由基(DPPH-O2-、·OH)能力、还原能力以及螯合金属能力。结果表明,大叶冬青苦丁茶多糖具有较强的体外抗氧化活性,并且抗氧化能力与多糖浓度之间存在良好的相关性。
Kudingchahas, one kind of herbal tea, is rich in alkaloid, flavonoids, and amino acids, resulting in many beneficial functions such as cardiovascular, antioxidant, antiobesity, antidiabetic, anti-inflammatory, neuroprotective and hepatoprotective effects. In China, the most common kudingcha categories consumed are from 2 genera in two families, i.e., the genus Ilex in the family Aquifoliaceae and the genus Ligustrum in the family Oleaceae. In genus Ilex, the leaves of Ilex kudingcha and Ilex latifolia have often been used as the materials for production of kudingcha. Recently, there are some reports about its chemical compositions and pharmaceutical functions. However, much attention has been paid on the biological functions, mechanism and some bioactive compounds such as flavonoids, triterpenes and triterpenoid saponins in crude extracts. Therefore, the first purpose of the present work was to study the determination, extraction, purification, identification and antioxidant activity of polyphenols in kudingcha made from Ilex kudingcha C.J. Tseng or Ilex latifolia. The second one was to investigate the extraction, purification, preliminary characterization and antioxidant activity of polysaccharides of kudingcha made from I. latifolia.
     1. Determination of the total polyphenol content and antioxidant activity of I. kudingcha
     A quantitative method for the determination of the total content of polyphenols (TPC) in kudincha was studied by Folin-Ciocalteu colorimetry (FC method) with chlorogenic acid as standard. The results showed that the TPC of kudincha could be well calculated according to their colorimetric absorption at 747 nm by applying Folin-Ciocalteu reagent 3.0 ml and saturated Na2CO34.5 ml at 30℃for 30 min, and the linear range of standard curve was 20.0~100.0 mg/L. Stability, precision, repetition and recovery rate were in the range of 0.887~1.416% by RSD (relative standard deviation). There are not any differences for the results obtained by FC method and ferrous tartrate colourimetry.
     The hot water extract (crude extract) of kudingcha made from I. kudincha C.J. Tseng and its four fractions of chloroform, ethyl acetate, n-butanol, and water were prepared. The TPC and the antioxidant activities of the extracts were determined by Folin-Ciocalteu method and DPPH assay, FRAP assay, and TEAC assay, respectively. The results showed that kudingcha extracts contained high TPC and showed potent antioxidant activity. The antioxidant activities of crude extract and its fractions decreased in the order of ethyl acetate fraction>butanol fraction> crude extract> water fraction> chloroform fraction according to the DPPH assay and FRAP assay, which were the same with the exception of the rank order of water fraction and chloroform fraction obtained from TEAC assay. Satisfactory correlations between TPC and antioxidant activity and between measuring methods of antioxidant activity were observed. It suggests that the polyphenols in the extracts are largely responsible for the antioxidant activities.
     The contents of polyphenol and flavonoid and the antioxidant activities in vitro of kudingcha crude extracts between I. latifolia and I. kudingcha C.J. Tseng were determined. The results showed that the crude extract of kudingcha from I. kudingcha C.J. Tseng with higher TPC showed higher antioxidant activity than that of I, latifolia with higher flavonoid content. In addition, the correlations between evaluation methods for antioxidant activities were good (R>0.8478), especially that between DPPH assay and ABTS assay (R 0.9967).
     2. Optimization of extraction conditions for phenol antioxidants from kudingcha
     The TPC of extract varied greatly with the solvents used (methanol, ethanol and water). Statistical analysis showed that significant differences were existed among ethanol, methanol and water (P<0.05) as solvent. It has demonstrated that ethanol solution was the most effective in extracting phenolic compounds from kudingcha.
     The effects of three factors of ethanol concentration, extraction temperature and time on the extraction of polyphenols were investigated to determine the appropriate experimental ranges for central composite design. As results, ethanol concentration 70%, extraction temperature 70℃and extraction time 60 min were chosen as the central points. Based on results of single-factor experiments, Design-Expert 7.1.3 software was then employed to determine the optimal combination of extraction variables for the extraction of polyphenolic antioxidants with the total polyphenol content and IC50 of scavenging activity on DPPH free radical as the response values. Through optimization, the optimal extraction conditions with ethanol solution as solvent were as follows:ethanol concentration 70.5%, extraction temperature 73.9℃and time 61.2 min for TPC (235.24 mg chlorogenic acid/g); ethanol concentration 70.2%, extraction temperature 70.6℃and time 60.4 min for potent scavenging activity on DPPH free radical (IC50480.87μg/mL). While for water as a solvent, the optimal conditions were extraction temperature 91.2℃and time 35.7 min for TPC (198.45 mg chlorogenic acid/g) and extraction temperature 92.2℃and time 35.7 min for potent DPPH free radical scavenging activity (744.74μg/mL). Similar parameters were obtained for extraction with higher TPC and lower IC50 of scavenging activity on DPPH free radical when using either ethanol or water as solvent. The results suggested that the same optimal conditions could be used to get kudingcha extract with higher TPC and lower IC50 value of scavenging activity on DPPH free radical with ethanol or water as solvent.
     In order to validate the adequacy of the model equations, ten verification experiments were carried out under various extraction conditions (five of which were the optimized conditions, while the other five were randomly chosen). The results indicated that the experimental values were in good agreement with the predicted ones, and also suggested that the regression models were accurate and adequate for the extraction of polyphenol antioxidants from kudingcha.
     3. Isolation and structure elucidation of phenolic compounds in kudingcha
     The polyphenolic substances in kudincha and green tea (Yuhua greent tea) were firstly analyzed by high-performance liquid chromatography with diode-array detector (HPLC-DAD). It was found that the polyphenolic substances in kudincha might be quite different from those in green tea made from Camellia sinensis L. In addition, the polyphenolic substances in kudincha made from I. Kudincha C.J. Tseng might be quite different quite from those in kudingcha made from Oleaceae.
     The main phenolic compounds in green tea were gallic acid, galloylquinic acid, EC, EGC, ECG and EGCG through the analysis of HPLC-DAD and HPLC-mass spectroscopy combined with verification experiments of standard compounds in tea. In similar manner, caffeoylquinic acid (CQA) derivatives such as 3-CQA,4-CQA,5-CQA (chlorogenic acid), 3,4-diCQA,3,5-diCQA, and 4,5-diCQA were suggested for the main phenolic compounds of kudingcha made from I. Kudincha C.J. Tseng, while ligupurpuroside A, ligurobustoside N, ligupurpuroside B, ligupurpuroside B and osmanthuside B6 for kudingcha made from Oleaceae.
     Five compounds were isolated from the extract of kudingcha made from I. Kudincha C.J. Tseng by semi-preparative HPLC. They were characterized as hydroxytyrosol glucoside,5-CQA,3,4-diCQA,3,5-diCQA, and 4,5-diCQA, respectively, by HPLC-DAD, HPLC-MS and NMR.
     4. Extraction, purification and antioxidant activity of polysaccharides from kudingcha made from I. latifolia
     Kudingcha made from I. latifolia was defatted with 85% ethanol, and then extracted with hot water, decolored by S-8 macroporous resin, precipitated by ethanol, and dried to afford crude polysaccharide (ILPS). The crude ILPS was purified by DEAE-52 cellulose anion-exchange chromatography, resulting in four purified polysaccharides as ILPS-1, ILPS-2, ILPS-3 and ILPS-4. Furthermore, the crude and purified ILPS were preliminary characterized by GC and FT-IR. As results, it has been demonstrated that the crude ILPS and its purified fractions were polysaccharides by FT-IR analysis. Differences in the contents of protein, uronic acid and sulfate were found for crude ILPS and its purified fractions. And rhamnose, arabinose and galactose were found the main monosaccharide compositions for crudeILPS, ILPS-1, ILPS-2 and ILPS-3. Finally, the antioxidant activities in vitro of the crude ILPS and its purified fractions were evaluated by determinations of scavenging activities on DPPH free radicals, superoxide anion radicals (O2.), hydroxyl radicals (.OH), ferric reducing-antioxidant power and chelating capacity. The results indicated that ILPS exhibited a strong antioxidant activity, and the antioxidant activity was significantly correlated with its concentration.
引文
[1]陈兴琰,陈国本,陈用.皋卢茶—苦登茶的考证[J].湖南农学院学报,1984,(2):47-54.
    [2]陈兴琰.中国皋卢(苦丁)茶的源流及其真伪考[J].农业考古,1992,(2):214~218.
    [3]江苏中医学院.中药大辞典[M].上海:上海人民出版社,1977,1288-1295.
    [4]赵学敏.本草纲目拾遗(第二版)[M].上海:商务印书馆,1983,226.
    [5]陈杖洲.苦丁茶的开发及其利用[J].中国茶叶加工,1998,(4):29-31.
    [6]童华荣,高爱红,袁海波,等.女贞苦丁茶挥发油成分分析[J].植物资源与环境学报,2004,13(1):53-55.
    [7]刘国民.中国木犀科代茶植物的多样性与开发状况[J].贵州科学,2003,21:69~77.
    [8]鄢东海,郑文佳,李祥明.贵州苦丁茶资源的考察[J].中国茶叶,1997,(1):37.
    [9]张道贵,鄢东海.退耕还林中苦丁茶的开发前景及驯化栽培[J].贵州农业科学,2004,(1):85-87.
    [10]贺震旦,刘玉青,杨崇仁.云南昭通产苦丁茶的配糖体成分[J].云南植物研究,1992,14(3):328-336.
    [11]张灿坤.苦丁茶的原植物及商品调查[J].中药材,1994,17(3):14-15.
    [12]郁建平.贵州苦丁茶植物资源及化学成分分析[J].植物资源与环境,1997,6(2):22~25.
    [13]刘瑾,丁平.冬青属药用植物资源、化学成分及药理作用研究进展[J].广州中医药大学学报,2008,25(3):277~280.
    [14]刘四君,程齐来,李洪亮.冬青属药用植物研究进展[J].湖北农业科学,2009,48(10):2594~ 2597.
    [15]俸宇星,陈书坤,赵瑞峰,等.中国冬青属苦丁茶名实辨证[J].植物分类学报,1998,36(4):353~358.
    [16]何彦峰.我国冬青属植物繁殖技术及应用[J].园林绿化,2010,(3):50~52.
    [17]曹健康,方乐金.大叶冬青资源的开发利用与发展前景[J].资源开发与市场,2008,24(2):157-159.
    [18]http://news.xinhuanet.com/food/2005-04/25/content_2873740.htm
    [19]刘国民.海南岛野生苦丁茶树的发现及其植物学特征特性的观察[J].海南大学学报自然科学版,1997,15(2):129~133.
    [20]欧阳明安,汪汉卿,杨崇仁.新三萜及其皂苷化学结构的NMR研究[J].波谱学杂志,1996,13(3):231~238.
    [21]欧阳明安,汪汉卿,苏军华,等.苦丁茶化学成分的结构研究[J].天然产物研究与开发,1997,9(3):19-23.
    [22]刘韶,秦勇,杜方麓.苦丁茶化学成分研究[J].中国中药杂志,2003,28(9):834-836.
    [23]Keiichi N, Toshio M, Hirashi N. Triterpenoid saponins from Ilex kudinhcha [J]. Journal of Natural Product,1999,62(8):1128-1133.
    [23]Quyang M A, Yang C Q, Chen Z L, et al. Triterpenes and triterpenoid glycosides from the leaves of Ilex kudincha [J]. Phytochemistry,1996,41 (3):871-877.
    [24]Ouyang M A, Wang H Q, Liu Y Q, et al. Triterpenoid saponins from the leaves of Ilex latifolia [J]. Phytochemistry,1997,45 (7):1501-1505.
    [25]李维林,吴菊兰,任冰如,等.枸骨的化学成分[J].植物资源与环境学报,2003,12(2):1-5.
    [26]杨雁芳,阎玉凝.中药枸骨叶的化学成分研究[J].中国中医药信息杂志,2004,9(4):33~34.
    [27]欧阳明安,腾荣伟,王德祖,等.三萜大叶冬青甙Ⅰ和苦丁茶冬青甙K[J].波谱学杂志,2001,18(2):155~160.
    [28]Quyang M A,Wang H Q, Chen Z L, et al. Triterpenoid glycosides from Ilex kudincha [J]. Phytochemistry,1996,43 (2):443-445.
    [29]Ouyang M A, Liu Y Q, Wang H Q, et al. Triterpenoid saponins from Ilex latifolia [J]. Phytochemistry,1998,49 (8):2483-2486.
    [30]Keiichi N, Toshiyuki F, ToshioM, et al. Activity-guided isolation of triterpenoid acyl CoA cholesteryl acyl transfease (ACAT) inhibitors from Ilex kudincha [J]. Journal of Natural Product, 1999,62 (9):1061-1064.
    [31]唐茜,单虹丽,杨安.四川苦丁茶化学成分的初步研究[J].四川农业大学学报,2003,21(3):237-240.
    [32]王小平,李凌.苦丁茶中28种元素含量分析及镉浸出率研究[J].微量元素与健康研究,2005,22(3):25~28.
    [33]梁月荣,徐月荣,胡月龄,等.苦丁茶化学成分研究:多酚类与咖啡碱和Vc含量[J].浙江农业大学学报,1992,18(2):41-44.
    [34]刘祖生,徐月荣,梁月荣,等.苦丁茶化学成分研究-黄酮类化合物的HPLC分离鉴定[J].浙江大学学报,1992,18(5):66-69.
    [35]潘慧娟,应奇才.苦丁茶中黄酮类化合物的提取、鉴定和含量分析[J].杭州医学高等专科学校学报,2003,24(2):72~74.
    [36]杨雁芳,阎玉凝.中药枸骨叶的化学成分研究[J].中国中医药信息杂志,2002,9(4):33.
    [37]李建法,胡六江,吕金红,等.苦丁茶黄酮类化合物的提取与分析[J].浙江林业科技,2005,25(1):31.
    [38]黄雪梅,蒙大平,荣延平.广西苦丁茶嫩叶和老叶中槲皮素和山柰素的含量测定[J].中国现代应用药学杂志,2005,22(5):383.
    [39]杨远庆,朱冬雪.贵州苦丁茶化学成分研究[J].贵州农业科学,1996,24(3):31-33.
    [40]王新,陆慧宁,林少琨.苦丁茶冬青叶多糖的提取及含量测定[J].时珍国医国药,2006,17(10):1977-1979.
    [41]杨小生,赵超,周欣,等.广西苦丁茶的挥发油成分[J].云南植物研究所,2002,24(3):406-408.
    [42]熊波,陆慧宁,刘岚,等.苦丁茶冬青挥发油成分的GC-MS分析[J].分析测试学报,2003,22(4):67-69.
    [43]刘兴宽,郁建平,肖云鹏.贵州苦丁茶原植物粗壮女贞挥发油成分分析[J].山地农业生物学报,2003,22(4):329-331.
    [44]毋福海,宋粉云,曾艳红,等.苦丁茶挥发油化学成分的GC-MS分析[J].广东药学,2004,14(3):3-5.
    [45]黄林芳,万德光.川产苦丁茶的挥发油成分分析[J].天然产物研究与开发,2005,17(6):6~8.
    [46]纳智.西双版纳苦丁茶挥发油的化学成分[J].植物资源与环境学报,2007,16(2):75-77.
    [47]刘祖生,梁月荣.苦丁茶化学成份研究:游离氨基酸分析[J].浙江农业大学学报,1991,17(1):71-74.
    [48]郁建平,万晴娇.贵州苦丁茶化学成份研究(I):氨基酸、维生素、微量元素等成分分析[J].贵州农学院学报,1996,15(4):60~64.
    [49]赵思东,胡春水,熊格生,等.冬青苦丁茶氨基酸分析[J].中南林学院学报,1998,18(2):73-76.
    [50]何炜,屠幼英,胡丹竹,顾志蕾,吴汉平,王宏航.浙江省大叶冬青苦丁茶化学成分的分析 [J].浙江农业科学,2006,(1):44~46.
    [51]李远志,李鸿武.苦丁茶的保健作用与开发[J].华南农业大学学报,1996,17(1):108~111.
    [52]许旋,罗一帆,卢忠.不同部位苦丁茶叶的微量元素和黄酮含量的测定[J].微量元素与健康研究,2000,17(2):32-33.
    [53]罗一帆,许旋.不同方法炒制的苦丁茶微量元素和黄酮溶出量的测定[J].中国民族民间医药杂志,2000,(6):358~360.
    [54]林琼,许旋.不同季节苦丁茶叶的微量元素和黄酮含量的测定[J].中国民族民间医药杂志,2005,(4):240~242.
    [55]吴良,杜兵兵,罗盛旭,等.海南苦丁茶和绿茶叶中微量元素溶出率的比较分析[J].微量元素与健康研究,2008,25(3):39~41.
    [56]林潮平.苦丁茶微量金属元素的初级形态分析[J].暨南大学学报(自然科学版),1996,17(1):64-67.
    [57]马鸿雁,许凤兰,刘玉明.苦丁茶与常用茶中微量元素分析[J].四川大学学报(自然科学学报),2002,39(4):770-771.
    [58]潘慧娟.我国部分地区苦丁茶中微量元素含量的比较研究[J].茶叶,2008,34(4):223~224.
    [59]陈薇,王恒山,黄世稳,等.大叶苦丁茶抗氧化成分及抗氧化性能研究(Ⅰ)[J].广西植物,2002,22(5):463-466.
    [60]周才琼,李娟,赵燕,等.苦丁茶对NO2和OH清除作用的体外试验研究[J].西南农业大学学报自然科学版,2006,28(2):175-178.
    [61]王新,陆慧宁,林少琨.苦丁茶冬青叶化学成分及药理作用研究进展[J].天然产物研究与开发,2005,17:366~370.
    [62]杨彪,龙盛京.苦丁茶提取物抗氧化作用的研究[J].广西民族学院学报自然科学版,2000,6:108-110.
    [63]李晓储,蒋继宏,方德兰,高甜惠,曹小迎,黄利斌.大叶冬青叶若干生化指标测定及抗菌活性研究[J].扬州大学学报(农业与生命科学版),2006,27:91-94.
    [64]Liu L, Sun Y(共同第一作者),Laura T, Liang X, Ye H, Zeng X. Determination of polyphenolic content and antioxidant activity of kudincha made from Ilex kudingcha C.J.Tseng [J]. Food Chemistry,2009,112,35-42.
    [65]朱莉芬,李美珠,钟伟新.苦丁茶的心血管药理作用研究[J].中药材,1994,17(3):37-40.
    [66]胡维安,陈洁文.毛冬青甲素对家兔希氏束电图的影响[J].广州中医药大学学报,1991,8(2):203.
    [67]王志琪,田育望,杜方麓,等.苦丁茶皂苷类物质对家兔离体胸主动脉条影响的实验研究[J].湖南中医学院学报,2002,22(2):29.
    [68]杜武勋,于志强,刘梅,等.苦丁降压液治疗高血压病的临床研究[J].天津中医学院学报,2001,20(1):13.
    [69]秦文娟,吴秀娥,福山爱保,等.苦丁茶化学成分的研究II[J].中草药,1988,19(11):6-8.
    [70]Qin W J, Wu X, Zhao J J, et al. Triterpenoid glycosides from leaves of Ilex conuta [J]. Phytochemistry,1986,25 (4):913-916.
    [71]Tsutomu Nakanishi, Hiroko Teral, Masao Nasu, et al. Two triterpenoid glycosides from leaves of Ilex conuta [J]. Phytochemistry,1982,21 (4):1373-1377.
    [72]潘惠娟,廖志银,应奇才,等.苦丁茶大叶冬青的降血脂作用研究[J].茶叶科学,2004,24(1):49-52.
    [73]潘惠娟.苦丁茶大叶冬青对小鼠血清脂质水平的影响[J].杭州师范学院学报(自然科学版),2005,4(1):50~52.
    [74]潘惠娟,王超英,方志敏.苦丁茶对大鼠高脂血症及脂肪肝形成的影响[J].浙江中医杂志,2003,9(1):404~405.
    [75]申梅淑,张淑芹,郭新民,等.苦丁茶对大鼠血脂和载脂蛋白的影响[J].中国林副特产,2002,63(4):7.
    [76]牟利辉.江西婺源大叶冬青苦丁茶治疗高血压的临床疗效对比观察[J].现代诊断与治疗,2005,16(4):223.
    [77]陈一,李开双,谢堂贵.苦丁茶冬青叶的降压作用研究[J].中草药,1995,26:250~252.
    [78]黄镇才.苦丁茶治疗高血压病35例观察[J].中国中医药信息杂志,1997,(4):25.
    [79]刘彬,许宏大[J].苦丁茶降血脂的实验及临床研究[J].护理研究,2005,19(1):21~22.
    [80]黄林芳,万德光.川产苦丁茶的减肥作用的实验研究[J].成都中医药大学学报,2004,27(3):49-51.
    [81]黄煌,黄晓敏,李洁,欧录明,岳赛.苦丁茶抗菌效能的实验研究[J].衡阳医学院学报,1999,27(2):123-124.
    [82]吴周和,邹沛,徐燕[J].苦瓜和苦丁茶的抑菌作用及其袋泡茶的研制[J].饮料工业,2003,6(5):11-13.
    [83]董艳,乔建成,张晓丽,等.苦丁茶药效学实验研究[J].牡丹江医学院学报,2001,22(1):7-9.
    [84]邢莹莹,岑颖洲,王一飞,等.瑶药枸骨叶不同溶剂组分体外抑菌活性比较[J].暨南大学学报(自然科学版),2004,25(1):119~121.
    [85]Muller K, Zieresis K, Paperd H. Ilex aquifolium, protection against enzymatic and non-enzymatic lipid peroxidation. Planta Medicine,1998,64 (6):536-540.
    [86]徐元秀,宋耕英,张鲁彤.中药苦丁茶对大鼠的抗生育作用[J].西安医学院学报,1984,5(4): 379-381.
    [87]魏成武,杨翠芝,任华能,等.枸骨抗生育作用[J].中药通报,1988,13(5):48~50.
    [88]屈立志,陆婷,鲁培基,等.苦丁茶对大鼠肾上腺素性高血糖的影响[J].中国新药与临床药理,1999,10(5):279~280.
    [89]陈凤美,李晓储,杨守辉,等.大叶冬青叶抗肿瘤活性初步研究[J].林业科技开发,2007,21(5):30-31.
    [90]董艳,白雪峰,石学魁,等.苦丁茶对小鼠免疫功能的影响[J].牡丹江医学院学报,2001,22(2):6-7.
    [91]孙延斌,王淑秋,于新慧,等.苦丁茶对小鼠免疫功能的调节研究[J].牡丹江医学院学报,2009,30(2):14-16.
    [92]于新慧,孙延斌,徐晓众.苦丁茶对免疫功能低下小鼠的实验研究[J].牡丹江医学院学报,2008,29(3):14-16.
    [93]林晨,谭玉波,张晶,等.枸骨叶不同溶媒萃取物对小鼠体外T淋巴细胞活化增殖的影响[J].暨南大学学报(医学版),2006,27(2):199-203.
    [94]曹健康,方乐金.大叶冬青资源的开发利用与发展前景[J].资源开发与市场,2008,24(2):157-159.
    [95]艾亚菲,黄志明,裴重华,庞素娟.乙醇法提取苦丁茶超细粉体中茶多酚的研究[J].广州食品工业科技,2004,20(2):35-36.
    [96]李建法,胡六江,吕金红,唐晶晶.苦丁茶黄酮类化合物的提取与分析[J].浙江林业科技,2005,25(1):31-34.
    [97]王登良,王盈峰,严玉琴.苦丁茶酶解浸提方法的研究[J].茶叶科学,2004,24(4):295~301.
    [98]毛莉娟,刘学文,冉旭.苦丁茶中黄酮的提取工艺[J].食品技术,2002,(11):18~19.
    [99]冉旭,刘学文,王文贤,陈畅.苦丁茶中总黄酮的微波辅助提取工艺研究[J].安徽农业科学,2008,36(21):9133~9134.
    [100]吴晓鹏,王一飞,刘秋英,郝静,杨珂,罗勇,贺震旦.苦丁茶多糖的提取分离纯化及部分理化性质研究[J].食品与发酵工业,2007,33:141-144.
    [101]吴晓鹏,王一飞,刘秋英,杨珂.苦丁茶多糖抗氧化活性研究[J].食品与发酵工业,2008,34:34-36.
    [102]何玲玲,王新.苦丁茶冬青叶多糖的提取与鉴定[J].沈阳化工学院学报,2006,(1):12~15.
    [103]何玲玲,陈尚东,兰丽艳.苦丁茶冬青叶多糖的组成分析[J].沈阳化工学院学报,2007,(3):68-70.
    [104]王新,何玲玲,刘彬.苦丁茶冬青叶多糖的分离纯化及其对羟自由基的清除作用[J].食品科学,2008,(6):37~40.
    [105]王新,何玲玲,孔玉梅,徐亮,刘彬.苦丁茶冬青叶多糖KPSⅢa的热分析研究[J].食品科学,2009,(9):44~46.
    [106]Sun Y, Hu Z, Zhang D, Zeng X. Extraction and antioxidant activities of polysaccharides from kudingcha made from Ilex Kudingcha C.J. Tseng [J]. Glycobiology,2009,19:1307-1308.
    [107]Thuong P T, Su N D, Ngoc T M, Hung T M, Dang NH, Thuan N D, Bae K, Oh W K. Antioxidant activity and principles of Vietnam bitter tea Ilex kudingcha [J]. Food Chemistry,2009,113:139-145.
    [108]Zhu F, Cai Y Z, Sun M, Ke J, Lu D, Corke H. Comparison of major phenolic constituents and in vitro antioxidant activity of diverse kudingcha genotypes from Ilex kudingcha, Ilex cornuta, and Ligustrum robustum [J]. Journal of Agricultural and Food Chemistry,2009,57:6082-6089.
    [1]张永田.苦丁茶的原植物[J].植物分类学报,1994,32(1):100.
    [2]邱以祥.中国苦丁茶资源及其开发利用[J].自然资源,1997,(4):63~68.
    [3]鄢东海.苦丁茶名称的演变、植物种类及保健价值[J].贵州农业科学,2007,35(1):114~116.
    [4]王新,陆慧宁,林少琨.苦丁茶冬青叶化学成分及药理作用研究进展[J].天然产物研究与开发,2005,17(3):366~370.
    [5]刘四君,程齐来,李洪亮.冬青属药用植物研究进展[J].湖北农业科学,2009,48(10):2594-2597.
    [6]刘瑾,丁平.冬青属药用植物资源、化学成分及药理作用研究进展[J].广州中医药大学学报,2008,25(3):277~280.
    [7]Shu L, Cheung K, Khor T, Chen C, Kong A. Phytochemicals:cancer chemoprevention and suppression of tumor onset and metastasis [J]. Cancer Metastasis Review,2010,29:483-502.
    [8]Korkina L G,De Luca C, Kostyuk V A, Pastore S. Plant polyphenols and tumors:from mechanisms to therapies, prevention, and protection against toxicity of anti-cancer treatments[J]. Current Medicinal Chemistry,2009,16 (30):3943-3965.
    [9]陈薇,王恒山,邓彦兴,钟代信.大叶苦丁茶成分提取及抗氧化性能研究[J].天然产物研究与开发,2002,14(4):24~28.
    [10]朱莉芬,李美珠,钟伟新,李爱华,罗集鹏,房志坚.苦丁茶的心血管药理作用研究[J].中药材,1994,17(3):37-40.
    [11]陈一,李开双,谢唐贵.苦丁茶冬青叶的降压作用研究[J].中草药,1995,26(5):250~252.
    [12]向华林,许宏大,田文艺,田洪.中国皋卢(苦丁)茶降脂作用的实验研究[J].中国中药杂志,1994,19(8):497~498.
    [13]王文杰.高锰酸钾滴定法测定茶多酚有关用剂的特性研究[J].福建茶叶,2002,(1):15~17.
    [14]王丽珠,吴棱,姚元根,夏继波.酒石酸亚铁分光光度法测定茶多酚[J].光谱实验室,1997,14(3):52-54.
    [15]郎惠云,廖晓玲,董发昕,谢志海.间接原子吸收法测定茶叶中茶多酚的含量[J].西北大学学报,2003,33(6):683~685.
    [16]杨雁芳,艾铁民.紫外分光光度法测定松果菊提取物中多酚[J].中草药,2005,36(11):1649-1650.
    [17]何炜,屠幼英,胡丹竹,顾志蕾,吴汉平,王宏航.浙江省大叶冬青苦丁茶化学成分的分析[J].浙江农业科学,2006,(1):44-46.
    [18]Shela G, Marina Z, Ratiporn H. Comparative content of total polyphenols and dietary fiber in tropical fruits and persimmon [J]. Journal of Nutritional Biochemistry,1999,10(6):367-371.
    [19]Silvina B L, Balz F. Relevance of apple polyphenols as antioxidants in human plasma:contrasting in vitro and in vivo effects [J]. Free Radical Biology and Medicine,2004,36 (2):201-211.
    [20]曹炜,索志荣Folin-Ciocalteu比色法测定蜂蜜中总酚酸的含量[J].食品与发酵工业,2003,29(12):80~82.
    [21]Singleton V L, Orthofer R, Lamuela-Raventos R M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent [J]. Methods in Enzymology,1999, 299:152-178.
    [22]吴萼,徐宁,温美娟.磷钼酸-磷钨酸盐比色法测定土壤中总酚酸含量[J].环境化学,2000,19(1):67-72.
    [23]严守雷,王清章,彭光华.藕节中总酚含量的福林法测定[J].华中农业大学学报,2003,22(4):412-414.
    [24]刘硕谦,刘仲华,黄建安.紫外分光光度法检测水皂角总多酚的含量[J].食品工业科技,2003,24(6):76-77.
    [25]Irene M H. Analysis of hydrolysable tannins [J]. Animal Feed Science and Technology,2001,91: 3-20.
    [26]Seifried H E, Anderson D E, Fisher E I, Milner J A. A review of the interaction among dietary antioxidants and reactive oxygen species [J]. Journal of Nutritional Biochemistry,2007,18:567-579.
    [27]Valko M, Leibfritz D, Moncol J, Cronin M T D, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease [J]. The International Journal of Biochemistry and Cell Biology,2007,39:44-84.
    [28]Luo D, Fang B. Structural identification of ginseng polysaccharides and testing of their antioxidant activities [J]. Carbohydrate Polymers,2008,72:376-381.
    [29]邵芳芳,尹卫平,梁菊.重要的植物多酚及其抗氧化性能的研究概况[J].西北药学杂志,2010,25(1):66~68.
    [30]Mates J M, Segura J A, Alonso F J, Marquez J. Natural antioxidants:therapeutic prospects for cancer and neurological diseases [J]. Mini-Reviews in Medicinal Chemistry,2009,9(10):1202-1214.
    [31]刘玉鹏,刘梅,刘俊英.30种中草药的抗氧化活性研究[J].烟台大学学报(自然科学与工程版),2000,13(1):70~73.
    [32]郭亚力,李聪,欧灵澄,等.3种分光光度法对天然抗氧化物质抗自由基性能的分析检测[J].分析实验室,2004,10(10):43~48.
    [33]Celik S E, Ozyurek M, Giiclu K, Apak R. Determination of antioxidants by a novel on-line HPLC-cupric reducing antioxidant capacity (CUPRAC) assay with post-column detection [J]. Analytica Chimica Acta,2010,674:79-88.
    [34].郭长江,韦京豫,杨继军.66种蔬菜、水果抗氧化活性的比较研究[J].营养学报,2003,25(2):203-207.
    [35]彭长连,陈少薇,林植芳,林桂珠.用清除有机自由基DPPH法评价植物抗氧化能力[J].生物化学与生物物理进展,2000,27(6):658~611.
    [36]徐贵华,胡玉霞,叶兴乾,刘东红.椪柑、温州蜜桔果皮中酚类物质组成及抗氧化能力研究[J].食品科学,2007,28(11):171-175.
    [37]杨锦华,李博,籍保平.我国常见食用和药用植物的抗氧化性研究[J].食品科学,2006,27(6):87-91.
    [38]Quttier-Deleu C, Gressier B, Vasseur J, et al. Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hull and flour [J]. Journal of Ethnopharmacology, 2000,72:35-42.
    [39]Leong L P, Shui G. An investigation of antioxidant capacity of fruits in Singapore markets [J]. Food Chemistry,2002,76:69-75.
    [40]Stratil P, Klejdus B, Kuban V. Determination of total content of phenolic compounds and their antioxidant activity in vegetables-evaluation of spectrophotometric methods [J]. Journal of Agricultural and Food Chemistry,2006,54:607-616.
    [41]曾小玲.马齿苋水提物对氧自由基清除作用的研究[J].湖南医科大学学报,1999,24(2):31-35
    [42]金鸣,蔡亚欣,李金荣,等.邻二氮菲-Fe2+氧化法检测H2O2/Fe2一产生的羟自由基[J].生物化学与生物物理学进展,1996,23(6):553~555.
    [43]Benzie I F, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power":the FRAP assay [J]. Journal of Analytical Biochemistry,1996,239 (1):70-76.
    [44]Oyaizu M. Studies on products of browning reactions:anti-oxidative activities of products of browning reaction prepared from glucose amine [J]. Japanese Journal of Nutrition,1986,4:307-315.
    [45]Hu F L, Lu R L, Huang B, Ming L. Free radical scavenging activity of extracts prepared from fresh leaves of selected Chinese medicinal plants [J]. Fitoterapia,2004,75:14-23.
    [46]Jin Z Q, Chen X. A simple reproducible model of free radical-injured isolated heart induced by 1,1-diphenyl-2-picryl-hydrazyl (DPPH) [J]. Journal of Pharmacological and Toxicological Methods, 1998,39:63-70.
    [47]Lien E J, Ren S J, Hoa B H, Wang, R B. Quantitative structure-activity relationship analysis of phenolic antioxidants [J]. Free Radical Biology and Medicine,1999,26:285-294.
    [48]Parejo I, Codina C, Petrakis C, Kefalas P. Evaluation of scavenging activity assessed by Co (Ⅱ)/EDTA-induced luminol chemiluminescence.and DPPH free radical assay [J]. Journal of Pharmacological and Toxicological Methods,2000,44:507-512.
    [49]Stratil P, Klejdus B, Kuban V. Determination of phenolic compounds and their antioxidant activity in fruits and cereals [J]. Talanta,2007,71:1741-1751.
    [50]朱本占.一种新型羟基自由基产生分子机理的研究[J].科学通报,2009,54(12):1673-1680.
    [51]吴青,黄娟,罗兰欣,等.15种中草药提取物抗氧化活性的研究[J].中国食品学报,2006,6(1):284-289.
    [52]欧仕益,张王景.酶解麦麸产品抗氧化活性研究[J].食品与机械,2005,21(6):17-19.
    [1]朱莉芬,李美珠,钟伟新,等.苦丁茶的心血管药理作用研究[J].中药材,1994,17(3):37~40.
    [2]陈一,李开双,谢唐贵.苦丁茶冬青叶的降压作用研究[J].中草药,1995,26(5):250~252.
    [3]向华林,许宏大,田文艺,等.中国皋卢(苦丁)茶降脂作用的实验研究[J].中国中药杂志,1994,19(8):497~498.
    [4]蒋建敏,王兵,许实波,等.苦丁茶的抗菌作用研究[J].中药药理与临床,2001,17(1):18~19.
    [5]沈强,司辉清,于洋.苦丁茶化学成分研究进展[J].茶业通报,2010,32(1):21~24.
    [6]艾亚菲,黄志明,裴重华,庞素娟.乙醇法提取苦丁茶超细粉体中茶多酚的研究[J].广州食品工业科技,2004,20(2):35~36.
    [7]刘志祥,韩磊,曾超珍.响应面法优化微波提取苦丁茶总黄酮的工艺研究[J].时珍国医国药,2009,20(5):1122~1124.
    [8]冉旭,刘学文,王文贤,陈畅.苦丁茶中总黄酮的微波辅助提取工艺研究[J].安徽农业科学,2008,36(21):9133~9134.
    [9]王登良,王盈峰,严玉琴.苦丁茶酶解浸提方法的研究[J].茶叶科学,2004,24(4):295~301.
    [10]Box G E P, Wilson K G. On the experimental attainment of optimum conditions [J]. Journal of Roy Statistical Society,1951,13:1-45.
    [11]Tan C H, Ghazali H M, Kuntom A, Tan C P, Ariffin A A. Extraction and physicochemical properties of low free fatty acid crude palm oil [J]. Food Chemistry,2009,113:645-650.
    [12]Sampaio P N, Calado C RC, Sousa L, Bressler D C, Pais M S, Fonseca L P. Optimization of the culture medium composition using response surface methodology for new recombinant cyprosin B production in bioreactor for cheese production [J] European Food Research and Technology,2010, 231:339-346.
    [13]刘洋,赵谋明,杨宁.响应面分析法优化仙人掌多糖提取工艺的研究[J].食品与机械,2006,22(6):42~45.
    [14]Ballard T S, Mallikarjunan P, Zhou K, O'Keefe S F. Optimizing the extraction of phenolic antioxidants from peanut skins using response surface methodology [J]. Journal of Agricultural and Food Chemistry,2009,57:3064-3072.
    [15]Hayata K, Hussain S, Abbas S, Farooq U, Ding B, Xia S, Jia C, Zhang X, Xia W. Optimized microwave-assisted extraction of phenolic acids from citrus mandarin peels and evaluation of antioxidant activity in vitro [J]. Separation and Purification Technology,2009,70:63-70.
    [16]熊建华,刘仲华.巴拉圭茶多酚的提取纯化及其对唾液淀粉酶活性的影响[J].湖南农业大学 学报,2006,32(3):313~315.
    [17]Demirekler P, Sumnu G, Sahin S. Optimization of bread baking in halogen lamp-microwave combination oven by response surface methodology [J] European Food Research and Technology, 2004,219:341-347.
    [18]Karvela E, Makris D P, Kalogeropoulos N, Karathanos V T, Kefalas P. Factorial design optimisation of grape (vitis vinifera) seed polyphenol extraction [J] European Food Research and Technology, 2009,229:731-742.
    [19]杨文雄,高彦祥.响应面法及其在食品工业中的应用[J].中国食品添加剂,2005,(2):68~71.
    [20]Qiao, D, Hu, B, Gan, D, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cwningii [J]. Carbohydrate Polymers,2009,76:422-429.
    [21]Leong L P, Shui G. An investigation of antioxidant capacity of fruits in Singapore markets [J]. Food Chemistry,2002,76:69-75.
    [22]Yu J, Ahmedna M, Goktepe I. Effects of processing methods and extraction solvents on concentration and antioxidant activity of peanut skin phenolics [J]. Food Chemistry,2005,90: 199-206.
    [23]Trabelsi N, Megdiche W, Ksouri R, Fallen H, Oueslati S, Soumaya B, Hajlaoui H, Abdelly C. Solvent effects on phenolic contents and biological activities of the halophyte Limoniastrum monopetalum leaves [J]. LWT-Food Science and Technology,2010,43:632-639.
    [24]Gonzalez-Montelongo R, Lobo M G, Gonzalez M. The effect of extraction temperature, time and number of steps on the antioxidant capacity of methanolic banana peel extracts [J]. Separation and Purification Technology,2010,71:347-355.
    [25]Pinelo M, Rubilar M, Jerez M, Sineiro J, Nunez M J. Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace [J]. Journal of Agricultural and Food Chemistry,2005,53:2111-2117.
    [26]Silva E M, Rogez H, Larondelle Y. Optimization of extraction of phenolics from Inga edulis leaves using response surface methodology [J]. Separation and Purification Technology,2007,55:381-387.
    [27]Vinogradov E V, Brade L, Brade H, Holst O. Structural and serological characterisation of the O-antigenic polysaccharide of the lipopolysaccharide from Acinetobacter baumannii strain 24 [J]. Carbohydrate Research,2003,338:2751-2756.
    [28]Pujari V, Chandra T S. Statistical optimization of medium components for enhanced riboflavin production by a UV-mutant of Eremothecium ashbyii [J]. Process Biochemistry,2000,36 (1-2): 31-37.
    [29]Narang S, Sahai V, Bisaria V S. Optimization of xylanase production by Melanocarpus albomyces IIS68 in solid state fermentation using response surface methodology [J]. Journal of Bioscience and Bioengineering,2001,91(4):425-427.
    [30]Dey G, Mitra A, Banerjee R, et al. Enhanced production of amylase by optimization of nutritional constituents using response surface methodology [J]. Biochemical Engineering Journal,2001,7(3): 227-231.
    [31]Kalil S J, Maugeri F, Rodrigues M I. Response surface analysis and simulation as a tool for bioprocess design and optimization [J]. Process Biochemistry,2000,35(6):539-550.
    [32]Muralidhar R V, Chirumamila R R, Marchant R, et al. A response surface approach for the comparison of lipase production by Candida cylindracea using two different carbon sources [J]. Biochemical Engineering Journal,2001,9(1):17-23.
    [1]王新,陆慧宁,林少琨.苦丁茶冬青叶化学成分及药理作用研究进展[J].天然产物研究与开发,2005,17:366~370.
    [2]刘四君,程齐来,李洪亮.冬青属药用植物研究进展[J].湖北农业科学,2009,48(10):2594-2597.
    [3]刘瑾,丁平.冬青属药用植物资源、化学成分及药理作用研究进展[J].广州中医药大学学报,2008,25(3):277~280.
    [4]Liang Y, Ma W, Lu J, Wu, Y. Comparison of chemical compositions of Ilex latifolia Thumb and Camellia sinensis L. [J]. Food Chemistry,2001,75:339-343
    [5]Negishi O, Negishi Y, Yamaguchi F, Sugahara, T. Deodorization with Ku-ding-cha containing a large amount of caffeoyl quinin acid derivatives [J]. Journal of Agricultural and Food Chemistry,2004, 52:5513-5518.
    [6]Liu L, Sun Y, Laura T, Liang X, Ye H, Zeng X. Determination of polyphenolic content and antioxidant activity of kudingcha made from Ilex kudingcha C.J. Tseng [J]. Food Chemistry,2009, 112:35-41.
    [7]Zhu F, Cai Y Z, Sun M, Ke J, Lu D, Corke H. Comparison of major phenolic constituents and in vitro antioxidant activity of diverse kudingcha genotypes from Ilex kudingcha, Ilex cornuta, and Ligustrum robustum [J]. Journal of Agricultural and Food Chemistry,2009,57:6082-6089.
    [8]Thuong P T, Su N D, Ngoc T M, Hung T M, Dang NH, Thuan N D, Bae K, Oh W K. Antioxidant activity and principles of Vietnam bitter tea Ilex kudingcha [J]. Food Chemistry,2009,113:139-145.
    [9]Korkina L G, De Luca C, Kostyuk V A, Pastore S. Plant polyphenols and tumors:from mechanisms to therapies, prevention, and protection against toxicity of anti-cancer treatments [J]. Current Medicinal Chemistry,2009,16 (30):3943-3965.
    [10]Yang C S, Wang X, Lu G, Picinich S C. Cancer prevention by tea:animal studies, molecular mechanisms and human relevance [J]. Nature Reviews Cancer,2009,9:429-439.
    [11]尹志娜.植物多酚分离提取方法和生物功能研究进展[J].生命科学仪器,2010,8(6):43-49.
    [12]Valls J, Millan S, Marti M P, Borras E, Arola L. Advanced separation methods of food anthocyanins, isoflavones and flavanols [J]. Journal of Chromatography A,2009,1216:7143-7172
    [13]Tsao R, Deng Z. Separation procedures for naturally occurring antioxidant phytochemicals[J]. Journal of Chromatography B,2004,812; 85-99.
    [14]Cakir A, Mavi A, Yildirim A, Duru M E, Harmandar M, Kazaz C. Isolation and characterization of antioxidant phenolic compounds from the aerial parts of Hypericum hyssopifolium L. by activity-guided fractionation [J]. Journal of Ethnopharmacology,2003,87:73-83.
    [15]Du Q, Zheng J, Xu Y. Composition of anthocyanins in mulberry and their antioxidant activity[J]. Journal of Food Composition and Analysis,2008,21:390-395.
    [16]He Z, Xia W, Chen J. Isolation and structure elucidation of phenolic compounds in Chinese olive (Canarium album L.) fruit [J]. European Food Research and Technology,2008,226:1191-1196.
    [17]Zhu X, Chen B, Ma M, Luo, X, Zhang, F, Yao, S, Wan, Z, Yang, D, Hang, H. Simultaneous analysis of theanine, chlorogenic acid, purine alkaloids and catechins in tea samples with the help of multi-dimension information of on-line high performance liquid chromatography/electrospray-mass spectrometry [J]. Journal of Pharmaceutical and Biomedical Analysis,2004,34:695-704
    [18]Rio D.D., Stewart A.J., Mullen W., Burns, J., Lean, M.E.J., Crozier, A. LC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea [J]. Journal of Agricultural and Food Chemistry,2004,52:2807-2815
    [19]Bing Hu, Lin Wang, Bei Zhou, Xin Zhang, Yi Sun, Hong Ye, Liyan Zhao, Qiuhui Hu, Guoxiang Wang, Xiaoxiong Zeng. Efficient procedure for isolating methylated catechins from green tea and effective simultaneous analysis of ten catechins, three purine alkaloids, and gallic acid in tea by high-performance liquid chromatography with diode array detector [J]. Journal of Chromatography A,2009,1216:3223-3231.
    [20]Nishitani E, Sagesaka Y M. Simultaneous determination of catechins, caffeine and other phenolicc ompounds in tea using new HPLC method [J]. Journal of Food Composition and Analysis,2004,17: 675-685.
    [21]Yagi K, Goto K, Nanjo, F. Identification of a major polyphenol and polyphenolic composition in Leaves of Camellia irrawadiensis [J]. Chemical and Pharmaceutical Bulletin,2009,57(11): 1284-1288.
    [22]Clifford M N, Johnston K L, Knight S, Kuhnert N. Hierarchical scheme for LC-MSn identification of chlorogenic acids [J]. Journal of Agricultural and Food Chemistry,2003,51:2900-2911.
    [23]Clifford M N, Knight S, Kuhnert N. Discriminating between the six isomers of dicaffeoylquinic acid by LC-MSn [J]. Journal of Agricultural and Food Chemistry,2005,53:3821-3832
    [24]Bravo L, Goya L, Lecumberri E. LC/MS characterization of phenolic constituents of mate(Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages [J]. Food Research International,2007,40:393-405.
    [25]Inbaraj B S, Lu H, Kao T H, Chen B H. Simultaneous determination of phenolic acids and flavonoids in Lycium barbarum Linnaeus by HPLC-DAD-ESI-MS [J]. Journal of Pharmaceutical and Biomedical Analysis,2010,51:549-556.
    [26]He Z D, Lau K M, But P P H, et al. Antioxidative glycosides from the leaves of Ligustrum robustum [J]. Jurnal of Natural Products,2003,66:851-854.
    [27]贺震旦,刘玉青,杨崇仁.云南昭通产苦丁茶的配糖体成分[J].云南植物研究,1992,14(3):328-336.
    [28]He Z D, Ueda S, Akaji M, Fujita T, Inoue K, Yang C R. Monoterpenoid and phenylethanoid glycosides from Ligustrum pedunculare [J]. Phytochemistry,1994,36:709-716.
    [29]Lau K M, He Z D, Dong D, Fung K P, But P P H. Anti-oxidative, anti-inflammatory and hepato-protective effects of Ligustrum robustum [J]. Journal of Ethnopharmacology,2002,83: 63-71.
    [30]Li L, Peng Y, Xu L, Wu-Lan T, Shi R, Xiao P. Chemical constituents from Ligustrum robustum B1 [J]. Biochemical Systematics and Ecology,2010,38:398-401.
    [31]She G M, Wang D, Zeng S F, Yang C R, Zhang Y J. New phenylethanoid glycosides and sugar esters from ku-ding-cha, a herbal tea produced from Ligustrum purpurascens [J]. Journal of Food Science,2008,73 (6):C476-C481.
    [32]Romero C, Brenes M, Garcia P,Garrido A. Hydroxytyrosol 4- -D-glucoside, and important phenolic compound in olive fruits and derived product [J]. Journal of Agricultural and Food Chemistry,2002,50:3835-3839
    [33]Savarese M, Marco E De, Sacchi R. Characterization of phenolic extracts from olives (Olea europaea cv. Pisciottana) by electrospray ionization mass spectrometry [J]. Food Chemistry,2007, 105:761-770.
    [34]Ryan D, Antolovich M, Herlt T, Prenzler P D, Shimon L, Robards K. Identification of phenolic compounds in tissues of the novel olive cultivar Hardy's Mammoth [J]. Journal of Agricultural and Food Chemistry,2002,50:6716-6724.
    [35]Yoshimoto, M, Yahara, S, Okuno, S, Islam, M S, Ishiguro, K, Yamakawa, O. Antimutagenicity of mono-, di-, and tricaffeoylquinic acid derivatives isolated from sweetpotato (Ipomoea batatas L.) leaf [J]. Bioscience Biotechnology Biochemistry,2002,66:2336-2341.
    [36]Pukalskas A, Venskutonis P R, Dijkgraaf I, van Beek T A. Isolation, identification and activity of natural antioxidants from costmary (Chrysanthemum balsamita) cultivated in Lithuania [J]. Food Chemistry,2010,122:804-811.
    [37]Islam M S, Yoshimoto M, Yahara S, Okuno S, Ishiguro K, Yamakawa O. Identification and characterization of foliar polyphenolic composition in sweetpotato (Ipomoea batatas L.) genotypes [J]. Journal of Agricultural and Food Chemistry,2002,50 (13):3718-3722.
    [38]Xu W, Liu L, Hu B, Sun Y, Ye H, Ma D, Zeng X. Antioxidant activity in vitro and polyphenol content of sweet potato (Ipomoea batatas L.) leaves of Pushu 53 [J]. Journal of Food Composition and Analysis,2010,23:599-604.
    [39]Leiss K A, Maltese F, Choi Y H, Verpoorte R, Klinkhamer P G L. Identification of chlorogenic acid as a resistance factor for thrips in Chrysanthemum [J]. Plant Physiology,2009,150:1567-1575.
    [40]Tong S, Yan J, Guan Y. Preparative separation of isomeric caffeoylquinic acids from Flos Lonicerae by pH-zone-refining counter-current chromatography [J]. Journal of Chromatography A, 2008,1212:48-53.
    [1]Laremore T N, Zhang F, Dordick J S, Liu J, Linhardt R J. Recent progress and applications in glycosaminoglycan and heparin research [J]. Current Opinion in Chemical Biology,2009,13: 633-640.
    [2]Zhang M, Cui S W, Cheung P C K, Wang Q. Antitumor polysaccharides from mushrooms:a review on their isolation process, structural characteristics and antitumor activity [J]. Trends in Food Science and Technology,2007,18:4-19.
    [3]Ooi V E, Liu F. Immunomodulation and anti-cancer activity of polysaccharide-protein complexes [J]. Current Medical Chemistry,2000,7 (7):715-729.
    [4]Moradali M F, Mostafavi H, Ghods S, Hedjaroude G A. Immunomodulating and anticancer agents in the realm of macromycetes fungi (macrofungi) [J]. International Immuriopharmacology,2007,7: 701-724.
    [5]易凤英,刘素纯,李佳莲,姜越君.茶多糖的提取方法及其生理功能研究进展[J].安徽农业科学,2010,38(6):2911-2913.
    [6]崔宏春,江和源,张建勇,寇小红,袁新跃,刘晓辉,高晴晴,江用文.茶多糖的结构研究进展[J].安徽农业科学,2009,37(1):200-203.
    [7]吴晓鹏,王一飞,刘秋英,郝静,杨珂,罗勇,贺震旦.苦丁茶多糖的提取分离纯化及部分理化性质研究[J].食品与发酵工业,2007,33:141-144.
    [8]吴晓鹏,王一飞,刘秋英,杨珂.苦丁茶多糖抗氧化活性研究[J].食品与发酵工业,2008,34:34-36.
    [9]何玲玲,王新.苦丁茶冬青叶多糖的提取与鉴定[J].沈阳化工学院学报,2006,(1):12~15.
    [10]何玲玲,陈尚东,兰丽艳.苦丁茶冬青叶多糖的组成分析[J].沈阳化工学院学报,2007,(3): 68-70.
    [11]王新,陆慧宁,林少琨.苦丁茶冬青叶多糖的提取及含量测定[J].时珍国医国药,2006,(10):1977-1979.
    [12]王新,何玲玲,刘彬.苦丁茶冬青叶多糖的分离纯化及其对羟自由基的清除作用[J].食品科学,2008,6:37~40.
    [13]王新,何玲玲,孔玉梅,徐亮,刘彬.苦丁茶冬青叶多糖KPSIIIa的热分析研究[J].食品科学,2009,9:44~46.
    [14]Sun Y, Hu Z, Zhang D, Zeng X. Extraction and Antioxidant Activities of Polysaccharides from Kudingcha Made from Ilex Kudingcha C.J. Tseng [J]. Glycobiology,2009,19:1307-1308.
    [15]Muramatsu H, Kogawa K, Tanaka M, et al. Superoxide dismutase in SAS human tongue carcinoma cell line is a facter defining invasiveness and cell motility [J]. Cancer Research,1995,55:6210-6214.
    [16]Serafini M, Bellocco R, Wolk A, et al. Total antioxidant potential of fruit and vegetables and risk of gastric cancer [J]. Gastroenterology,2002,123:985-991.
    [17]Di Matteo V, Cacchio M, Di Giulio C, et al. Role of serotonin (2C) receptors in the control of brain dopaminergic function [J]. Pharmacology, Biochemistry and Behavior,2002,71:727-734.
    [18]Ames B N, Shigenaga M K, Hagen T M. Oxidants, antioxidants, and the degenerative diseases of aging [J]. The Proceedings of the National Academy of Sciences USA,1993,90:7915-7922.
    [19]Liu J, Luo J G, Sun Y, Ye H, Lu Z X, Zeng X. A simple method for the simultaneous decoloration and deproteinization of crude levan extract from Paenibacillus polymyxa EJS-3 by macroporous resin [J]. Bioresource Technology,2010,101:6077-6083.
    [20]Sevag M G, Lackman D B, Smolens J. The isolation of components of streptococcal nucleoproteins in serologically active form [J]. Journal of Biological Chemistry,1938,124:425-436.
    [21]Ye H, Wang K, Zhou C, et al. Purification, anti-tumor and antioxidant activities in vitro of polysaccharides from the brown seaweed Sargassum pallidum [J]. Food Chemistry,2008,2:428-432.
    [22]Bradford M M. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Analytical Biochemistry,1976,72:248-254.
    [23]Blumenkrantz N, Asboe-Hansen G. New method for quantitative determination of uronic acids [J]. Analytical Biochemistry,1973,54:484-489.
    [24]Dodgson K S, Price R G. A note on the determination of the ester sulfate content of sulfate polysaccharides [J]. Biochemistry Journal,1962,84:106-110.
    [25]林恋竹,赵谋明.反应时间对DPPH法、ABTS-+法评价抗氧化性结果的影响[J].食品科学, 2010,31(5):63~67.
    [26]Qiao D, Ke C, Hu B, et al. Anti-oxidant activities of the polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2009,2:199-204.
    [27]Li X, Zhou A, Han Y. Anti-oxidation and anti-microorganism activities of purification polysaccharide from Lygodium japonicum in vitro [J]. Carbohydrate Polymers,2006,66 (1):34-42.
    [28]Yang X B, Gao X D, Han F, et al. Sulfation of a polysaccharide produced by a marine filamentous fungus Phoma herbarum YS4108 alters its antioxidant properties in vitro [J]. Biochimica et Biophysica Acta(BBA)- General Subjects,2005,1725 (1):120-127.
    [29]Qi H, Zhang Q, Zhao T, et al. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta) [J]. Bioorganic and Medicinal Chemistry Letters,2006,16 (9):2441-2445.
    [30]Benzie IFF, Strain JJ. The ferric reducing ability of plasma as a measure of "antioxidant power":the FRAP assay [J]. Analytical Biochemistry,1996,239:70-76.
    [31]Li S G, Zhang Y Q. Characterization and renal protective effect of a polysaccharide from Astragalus membranaceus [J]. Carbohydrate Polymers,2009,78:343-348.
    [32]Liu C, Li X, Li Y, et al. Structural characterisation and antimutagenic activity of a novel polysaccharide isolated from Sepiella maindroni ink [J]. Food Chemistry,2008,110(4):807-813.
    [33]Maciel J S, Chaves L S, Souza B W S, et al. Structural characterization of cold extracted fraction of soluble sulfated polysaccharide from red seaweed Gracilaria birdiae [J]. Carbohydrate Polymers, 2008,71 (4):559-565.
    [34]张惟杰.糖复合物生化研究技术[M].杭州:浙江大学出版社,1999,1-260.
    [35]Zhao M M, Yang N, Yang B, et al. Structural characterization of water-soluble polysaccharides from Opuntia monacantha cladodes in relation to their anti-glycated activities [J]. Food Chemistry, 2007,105:1480-1486.
    [36]Taso R, Deng Z Y. Seperation procedures for naturally occurring antioxidant phytochemicals [J]. Journal Chromatography B,2004,812:85-99.
    [37]Wickens A P. Aging and the free radical theory [J]. Respiration Physiology,2001,128:379-391.
    [38]金鸣,蔡亚欣,李金荣,等.邻二氮菲-Fe2+氧化法检测H2O2/Fe2+产生的羟自由基[J].生物化学与生物物理进展,1996,23(6):553~555.
    [39]黄小燕,孔祥峰,王德云,等.多糖硫酸化修饰和多糖硫酸酯的研究进展[J].天然产物研究与开发,2007,19(2):328~332.
    [42]诸葛健,赵振锋,方慧英.功能性多糖的构效关系[J].无锡轻工大学学报(食品与生物技术),2002,21(2):209~212.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700