薦草及其根际对模拟湿地中芘污染的降解机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以黄浦江湿地的典型植物藨草为修复植物,以芘为目标污染物,通过模拟实验考察了芘污染对藨草生长参数和酶活性的影响、芘污染及藨草种植对土壤酶活性和微生物群落结构的影响,阐明了藨草对芘污染的修复效果。并结合蛋白质组学的研究方法,揭示了藨草对芘污染响应的分子机制。主要研究结果与结论如下:
     (1)藨草的种植能够提高芘的去除率,80天藨草处理后去除率可高达70%。芘的毒性效应在一定程度上阻碍了藨草的生长。芘浓度在10~40mg·kg-1之间时,能够降低藨草体内过氧化氢酶(CAT)活性,之后随芘浓度升高,CAT活性也随之升高。藨草生长早期,随芘浓度升高,秆过氧化物酶(POD)活性先受到抑制,而后被激发;而生长茂盛期,则经历激发—抑制—激发的过程。随着芘浓度的升高,藨草超氧化物歧化酶(SOD)的活性逐渐下降。藨草秆CAT的活性大于根部,而POD和SOD的活性则是根部大于秆。在藨草生长的三个不同阶段,三种酶活性均表现出显著性差异。
     (2)芘对土壤CAT的影响表现为低浓度促进,高浓度抑制,且在藨草生长茂盛期和繁殖期,根际土壤和非根际土壤CAT活性远远高于空白土壤。在藨草繁殖期,芘对POD的活性有一定的抑制作用。在5~20mg kg-1的芘污染浓度范围内,藨草生长茂盛期的空白土壤和非根际土壤以及藨草繁殖期的根际土壤多酚氧化酶(PPO)活性与芘浓度呈显著正相关。芘浓度与土壤脱氢酶(DHA)活性显著负相关,且根际和非根际土壤中DHA活性高于未种植物的空白土壤。藨草生长阶段是四种土壤酶活性的主要影响因素,芘浓度及其与藨草生长阶段的交互作用对四种土壤酶活性的影响则与酶的种类和土壤的处理方式有关。
     (3)较高浓度的芘能够减少某些细菌、真菌和放线菌的数量,但是能在一定程度上增加芘降解菌的数量。土壤pH值和有机质是影响微生物生长的重要参数。
     (4)受芘污染后,土壤微生物的生物量均有不同程度的降低,而藨草的种植缓解了这种负面效应。不同微生物对芘污染的耐受性不同,细菌比真菌的耐受性强,革兰氏阳性菌比革兰氏阴性菌的耐受性强。藨草的引入可以刺激真菌、革兰氏阴性菌和好氧菌的生长。另外,主成分分析(PCA)显示不同芘浓度下微生物群落结构存在一定的差异。
     (5)经芘处理后,藨草秆共发现37个具有显著差异的蛋白点,其中13个蛋白点的表达量是下调的,24个蛋白点的表达量是上调的;根部共发现55个具有显著差异的蛋白点,其中36个蛋白点的表达量是下调的,19个蛋白点的表达量是上调的。根据蛋白点表达量差异分析结果,将秆和根部差异较大的蛋白点进行质谱鉴定,结果在秆和根部样品中分别有17个和7个蛋白质得到了可靠的鉴定。
     (6)将鉴定出的蛋白质进行功能分类,秆差异蛋白质包括:光合作用、防御、能量和物质代谢、辅酶代谢和蛋白质代谢相关蛋白质,其中参与光合作用的蛋白质占鉴定出的蛋白质的70%以上。而根部的蛋白质包括:胁迫反应、防御、能量和物质代谢以及蛋白质修饰相关的蛋白。芘胁迫严重影响了藨草秆的光合作用,同时对秆和根部的多个代谢过程、蛋白质合成及信号传递等产生影响。
Scirpus triqueter, a dominant species in wetland of Huangpu River, was firstly used asphytoremediation plant. Pyrene was used as objective contaminant. The objectives of thisstudy were:(1) to estimate the dissipation ratios of pyrene in the presence of S. triqueter;(2)to ascertain the growth parameters and physiological response of S. triqueter after pyrenetreatment;(3) to study the changes of the soil enzymes in different parts of the soils afterpyrene treatment at the presence of S. triqueter;(4) to investigate the response of themicrobial communities to pyrene and S. triqueter;(5) finally, to elucidate the molecularmechanism of S. triqueter in response to pyrene by using proteomic method. The majorfindings are summarized as follow:
     (1) The dissipation ratios of pyrene were enhanced at the presence of S. triqueter, thedissipation ratio was up to70%after80-day treatment. Pyrene contaminated soil inhibited thegrowth of S. triqueter.10-40mg·kg–1of pyrene could reduce activities of catalase (CAT), andthen the activities would increase with increasing pyrene concentration. At the early growthstage of S. triqueter, the peroxidase (POD) activity of shoot was inhibited at first, and thenwas stimulated with increasing pyrene concentration; however, the activity experienced theprocess of stimulation-inhibition-stimulation at the vigorous stage. The activity of superoxidedismutase (SOD) declined with increasing pyrene concentration. Activity of CAT in shootwas higher than that in root, while the activities of POD and SOD in root were higher thanthose in shoot. Enzyme activities exhibited significant differences in different growth stages.
     (2) The CAT activities of soils were promoted at lower pyrene concentrations and wereinhibited at higher pyrene concentrations; CAT activities in the rhizospheric soils increasedgreatly compared to those in the bulk and unplanted soils at the vigorous and reproductivestage of S. triqueter. The activities of POD in soils were inhibited by prene at the reproductivestage of S. triqueter. When the concentration range of pyrene was from5to20mg·kg–1, thepolyphenoloxidase (PPO) activities of bulk and unplanted soils at the vigorous stage andthose of rhizospheric soils at the reproductive stage were significantly positively related topyrene. However, the dehydrogenase (DHA) activities of soils were significantly negativelyrelated to pyrene; moreover, PPO activities in the rhizospheric soils were higher than those in the bulk and unplanted soils. The growth stage of S. triqueter was the main impact factor tothe activities of soil enzymes; the effects of pyrene concentration and the interactionsbetween growth stages and pyrene concentration on the activities of soil enzymes dependedon the type of enzyme and soil handling.
     (3) High pyrene concentration reduced the populations of some bacteria, fungi andactinomyces, but increased pyrene-tolerant bacteria abundance. It is important that S.triqueter is favorable for the growth of microorganisms. The pH and organic matter of soilwere important parameters to the growth of microorganism.
     (4) The biomass of soil microbes declined after pyrene treatment, however, the biomassincreased at the presence of S. triqueter. Bacteria were more tolerant to pyrene than fungi;while Gram-positive bacteria showed a greater tolerance than Gram-negative bacteria. Theintroduction of S. triqueter was benefit to fungi, Gram-negative bacteria and aerobic bacteria.Additionally, there was discrimination in microbial community structure under the stress ofpyrene from the principal component analysis (PCA).
     (5) After treated by pyrene, a total of37protein spots from culm showed significantchanges, among which, the expression levels of13protein spots were downregulated,24protein spots were upregulated. A total of55protein spots from root showed significantchanges, and36protein spots were downregulated,19protein spots were upregulated.Protein spots which were significantly regulated by pyrene were identified by massspectrometry. A total of17and7proteins were successfully identified in shoot and root,respectively.
     (6) The identified proteins were grouped according to functional categories. Proteins inshoot included: photosynthesis related protein, defense related protein, energy and materialmetabolism related protein, coenzyme metabolism related protein and protein metabolismrelated protein. Proteins involved in photosynthesis accounted for more than70%of theidentified proteins of shoot. The proteins in root included: stress response related proteins,defense related protein, energy and material metabolism related protein and proteinmodification related protein. Pyrene affected the photosynthesis of S. triqueter seriously,simultaneously, had an impact on the multiple metabolic processes, protein synthesis andsignal transduction.
引文
[1] Agarie S, Shimoda T, Shimizu Y, et al. Salt tolerance, salt accumulation, and ionic homeostasis in anepidermal bladder-cell-less mutant of the common ice plant Mesembryanthemum crystallinum[J].Journal of Experimental Botany,2007,58(8):1957-1967.
    [2] Agrawal GK and Rakwal R. Rice proteomics: A cornerstone for cereal food crop proteomes[J]. MassSpectrometry Reviews,2006,25(1):1-53.
    [3] Agrawal GK, Yonekura M, Iwahashi Y, et al. System, trends and perspectives of proteomics in dicotplants: Part III: Unraveling the proteomes influenced by the environment, and at the levels of functionand genetic relationships[J]. Journal of Chromatography B,2005,815(1–2):137-145.
    [4] Aken BV, Correa PA and Schnoor JL. Phytoremediation of Polychlorinated Biphenyls: New Trends andPromises[J]. Environmental Science&Technology,2010,44(8):2767-2776.
    [5] Alaà G, Valeria DO and Nicola S. Phytotoxicity assay of selected plants to Pyrene contaminated soil.201019th World Congress of Soil Science, Soil Solutions for a Changing World2010;74-77.
    [6] Ali GM and Komatsu S. Proteomic analysis of rice leaf sheath during drought stress[J]. Journal ofProteome Research,2006,5(2):396-403.
    [7] Alkio M, Tabuchi TM, Wang XC, et al. Stress responses to polycyclic aromatic hydrocarbons inArabidopsis include growth inhibition and hypersensitive response-like symptoms[J]. Journal ofExperimental Botany,2005,56(421):2983-2994.
    [8] Amir S, Abouelwafa R, Meddich A, et al. PLFAs of the microbial communities in composting mixturesof agro-industry sludge with different proportions of household waste[J]. InternationalBiodeterioration&Biodegradation,2010,64(7):614-621.
    [9] Andaluz S, López-Millán A-F, De las Rivas J, et al. Proteomic profiles of thylakoid membranes andchanges in response to iron deficiency[J]. Photosynthesis research,2006,89(2-3):141-155.
    [10] Andreoni V, Cavalca L, Rao MA, et al. Bacterial communities and enzyme activities of PAHs pollutedsoils[J]. Chemosphere,2004,57(5):401-412.
    [11] Antizar-Ladislao B, Lopez-Real J and Beck A. Bioremediation of Polycyclic Aromatic Hydrocarbon(PAH)-Contaminated Waste Using Composting Approaches[J]. Critical Reviews in EnvironmentalScience and Technology,2004,34(3):249-289.
    [12] Antizar-Ladislao B, Spanova K, Beck AJ, et al. Microbial community structure changes duringbioremediation of PAHs in an aged coal-tar contaminated soil by in-vessel composting[J].International Biodeterioration&Biodegradation,2008,61(4):357-364.
    [13] Aranjuelo I, Molero G, Erice G, et al. Plant physiology and proteomics reveals the leaf response todrought in alfalfa (Medicago sativa L.)[J]. Journal of Experimental Botany,2011,62(1):111-123.
    [14] Baath E, Frostegard A and Fritze H. Soil Bacterial Biomass, Activity, Phospholipid Fatty Acid Pattern,and pH Tolerance in an Area Polluted with Alkaline Dust Deposition[J]. Appl Environ Microbiol,1992,58(12):4026-4031.
    [15] Baldyga B, Wieczorek J, Smoczy ski S, et al. Pea plant response to anthracene present in soil[J].Polish Journal of Environmental Studies,2005,14(4):397-401.
    [16] Bandehagh A, Salekdeh GH, Toorchi M, et al. Comparative proteomic analysis of canola leaves undersalinity stress[J]. Proteomics,2011,11(10):1965-1975.
    [17] Baran S, Bielińska JE and Oleszczuk P. Enzymatic activity in an airfield soil polluted with polycyclicaromatic hydrocarbons[J]. Geoderma,2004,118(3–4):221-232.
    [18] Blomqvist, Lisa A, Ryberg, et al. Proteomic analysis of the etioplast inner membranes of wheatTriticum aestivum by two-dimensional electrophoresis and mass spectrometry[J]. PhysiologiaPlantarum,2006,128(2):368-381.
    [19] Bolwell GP. Role of active oxygen species and NO in plant defence responses[J]. Curr Opin PlantBiol,1999,2(4):287-294.
    [20] Bossio DA and Scow KM. Impacts of carbon and flooding on soil microbial communities:Phospholipid fatty acid profiles and substrate utilization patterns[J]. Microbial Ecology,1998,35(3):265-278.
    [21] Boyajian GE and Carreira LH. Phytoremediation: a clean transition from laboratory tomarketplace?[J]. Nature Biotechnology,1997,15:127-128.
    [22] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding[J]. Analytical Biochemistry,1976,72(1–2):248-254.
    [23] Brookes PC. The use of microbial parameters in monitoring soil pollution by heavy metals[J]. Biologyand Fertility of Soils,1995,19:269-279.
    [24] Byss M, Elhottova D, Triska J, et al. Fungal bioremediation of the creosote-contaminated soil:Influence of Pleurotus ostreatus and Irpex lacteus on polycyclic aromatic hydrocarbons removal andsoil microbial community composition in the laboratory-scale study[J]. Chemosphere,2008,73(9):1518-1523.
    [25] Byss M, Triska J and Elhottova D. GC-MS-MS analysis of bacterial fatty acids in heavilycreosote-contaminated soil samples[J]. Analytical and Bioanalytical Chemistry,2007,387(4):1573-1577.
    [26] Calabrese EJ and Blain RB. Hormesis and plant biology[J]. Environmental Pollution,2009,157(1):42-48.
    [27] Calderón FJ, Jackson LE, Scow KM, et al. Microbial responses to simulated tillage in cultivated anduncultivated soils[J]. Soil Biology and Biochemistry,2000,32(11–12):1547-1559.
    [28] Candiano G, Bruschi M, Musante L, et al. Blue silver: a very sensitive colloidal Coomassie G-250staining for proteome analysis[J]. Electrophoresis,2004,25(9):1327-1333.
    [29] Cheema SA, Khan MI, Shen CF, et al. Degradation of phenanthrene and pyrene in spiked soils bysingle and combined plants cultivation[J]. Journal of Hazardous Materials,2010,177(1-3):384-389.
    [30] Chen R, Weng Q, Huang Z, et al. Analysis of resistance-related proteins in rice against brownplanthopper by two-dimensional electrophoresis[J]. Acta Botanica Sinica,2002,44(4):427-432.
    [31] Chen RQ, Binder BM, Garrett WM, et al. Proteomic responses in Arabidopsis thaliana seedlingstreated with ethylene[J]. Molecular Biosystems,2011a,7(9):2637-2650.
    [32] Chen Y, Pang Q, Dai S, et al. Proteomic identification of differentially expressed proteins inArabidopsis in response to methyl jasmonate[J]. Journal of Plant Physiology,2011b,168(10):995-1008.
    [33] Chen Y, Wang C, Wang Z, et al. Assessment of contamination and genotoxicity of soil irrigated withwastewater[J]. Plant and Soil,2004,261:189-196.
    [34] Chen YZ, Pang QY, Dai SJ, et al. Proteomic identification of differentially expressed proteins inArabidopsis in response to methyl jasmonate[J]. Journal of Plant Physiology,2011c,168(10):995-1008.
    [35] Cheng L-J and Cheng T-S. Oxidative effects and metabolic changes following exposure of greaterduckweed (Spirodela polyrhiza) to diethyl phthalate[J]. Aquatic Toxicology,2012,109(0):166-175.
    [36] Chini A, Fonseca S, Chico JM, et al. The ZIM domain mediates homo-and heteromeric interactionsbetween Arabidopsis JAZ proteins[J]. The Plant Journal,2009,59(1):77-87.
    [37] Cofield N, Banks MK and Schwab AP. Lability of polycyclic aromatic hydrocarbons in therhizosphere[J]. Chemosphere,2008,70(9):1644-1652.
    [38] Corgié SC, Beguiristain T and Leyval C. Spatial distribution of bacterial communities andphenanthrene degradation by the rhizosphere of Lolium perenne L.[J]. Applied and EnvironmentalMicrobiology,2004,70(6):3552-3557.
    [39] Coumans JVF, Poljak A, Raftery MJ, et al. Analysis of cotton (Gossypium hirsutum) root proteomesduring a compatible interaction with the black root rot fungus Thielaviopsis basicola[J]. Proteomics,2009,9(2):335-349.
    [40] Crowe JD and Olsson S. Induction of laccase activity in Rhizoctonia solani by antagonisticPseudomonas fluorescens strains and a range of chemical treatments[J]. Applied and EnvironmentalMicrobiology,2001,67(5):2088-2094.
    [41] Dietz KJ, Jacob S, Oelze ML, et al. The function of peroxiredoxins in plant organelle redoxmetabolism[J]. Journal of Experimental Botany,2006,57(8):1697-1709.
    [42] Doran JW and Zeiss MR. Soil health and sustainability: managing the biotic component of soilquality[J]. Applied Soil Ecology,2000,15(1):3-11.
    [43] Drijber RA, Doran JW, Parkhurst AM, et al. Changes in soil microbial community structure withtillage under long-term wheat-fallow management[J]. Soil Biology and Biochemistry,2000,32(10):1419-1430.
    [44] Droppo IG, Ross N, Skafel M, et al. Biostabilization of cohesive sediment beds in a freshwaterwave-dominated environment[J]. Limnology and Oceanography,2007,52(2):577-589.
    [45] Dunkley TPJ, Hester S, Shadforth IP, et al. Mapping the Arabidopsis organelle proteome[J].Proceedings of the National Academy of Sciences,2006,103(17):6518-6523.
    [46] Durand TC, Sergeant K, Renaut J, et al. Poplar under drought: Comparison of leaf and cambialproteomic responses[J]. Journal of Proteomics,2011,74(8):1396-1410.
    [47] Euliss K, Ho CH, Schwab AP, et al. Greenhouse and field assessment of phytoremediation forpetroleum contaminants in a riparian zone[J]. Bioresource Technology,2008,99(6):1961-1971.
    [48] Fan S, Li P, Gong Z, et al. Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativaL.)[J]. Chemosphere,2008,71(8):1593-1598.
    [49] Frankenberger WT and Johanson JB. Influence of crude oil and refined petroleum products on soildehydrogenase activity[J]. Journal of Environmental Quality,1982,11:602-607.
    [50] Friend PL, Ciavola S, Capprucci S, et al. Bio-dependent bed parameters as a proxy tool for sedimentstability in mixed habitat interstitial areas[J]. Continental Shelf Research,2003,23:1899-1917.
    [51] Frostegard A, Tunlid A and Baath E. Phospholipid Fatty Acid composition, biomass, and activity ofmicrobial communities from two soil types experimentally exposed to different heavy metals[J]. ApplEnviron Microbiol,1993,59(11):3605-3617.
    [52] Fu H, Subramanian RR and Masters SC.14-3-3proteins: structure, function, and regulation[J]. AnnuRev Pharmacol Toxicol,2000,40:617-647.
    [53] Gan S, Lau EV and Ng HK. Remediation of soils contaminated with polycyclic aromatichydrocarbons (PAHs)[J]. Journal of Hazardous Materials,2009,172(2–3):532-549.
    [54] Gao J, Garrison AW, Hoehamer C, et al. Uptake and Phytotransformation of o,p‘-DDT and p,p‘-DDTby Axenically Cultivated Aquatic Plants[J]. Journal of Agricultural and Food Chemistry,2000,48(12):6121-6127.
    [55] Gao Y and Zhu L. Plant uptake, accumulation and translocation of phenanthrene and pyrene in soils[J].Chemosphere,2004,55(9):1169-1178.
    [56] Georgieva S, Christensen S and Stevnbak K. Nematode succession and microfauna–microorganisminteractions during root residue decomposition[J]. Soil Biology and Biochemistry,2005,37(10):1763-1774.
    [57] Gerhardt KE, Huang X-D, Glick BR, et al. Phytoremediation and rhizoremediation of organic soilcontaminants: Potential and challenges[J]. Plant Science,2009,176(1):20-30.
    [58] Gianfreda L, Antonietta Rao M, Piotrowska A, et al. Soil enzyme activities as affected byanthropogenic alterations: intensive agricultural practices and organic pollution[J]. Science of theTotal Environment,2005,341(1–3):265-279.
    [59] Gianfreda L, Sannino F, Filazzola MT, et al. Influence of pesticides on the activity and kinetics ofinvertase, urease and acid phosphatase enzymes[J]. Pesticide Science,1993,39(3):237-244.
    [60] Giavalisco P, Nordhoff E, Kreitler T, et al. Proteome analysis of Arabidopsis thaliana bytwo-dimensional gel electrophoresis and matrix-assisted laser desorption/ionisation-time of flightmass spectrometry[J]. Proteomics,2005,5(7):1902-1913.
    [61] Golubev SN, Schelud'ko AV, Muratova AY, et al. Assessing the Potential of Rhizobacteria to Surviveunder Phenanthrene Pollution[J]. Water Air and Soil Pollution,2009,198(1-4):5-16.
    [62] Gondek K, Kopec M, Chmiel M, et al. Response of Zea Maize and Microorganisms to Soil Pollutionwith Polycyclic Aromatic Hydrocarbons (PAHs)[J]. Polish Journal of Environmental Studies,2008a,17(6):875-880.
    [63] Gondek K, Kope M, Chmiel M, et al. Response of Zea Maize and Microorganisms to Soil Pollutionwith Polycyclic Aromatic Hydrocarbons (PAHs)[J]. Polish Journal of Environmental Studies,2008b,17(6):875-880.
    [64] Green CT and Scow KM. Analysis of phospholipid fatty acids (PLFA) to characterize microbialcommunities in aquifers[J]. Hydrogeology Journal,2000,8:126-141.
    [65] Hajheidari M, Eivazi A, Buchanan BB, et al. Proteomics uncovers a role for redox in droughttolerance in wheat[J]. Journal of Proteome Research,2007,6(4):1451-1460.
    [66] Hancock JT, Henson D, Nyirenda M, et al. Proteomic identification of glyceraldehyde3-phosphatedehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis[J]. Plant Physiol Biochem,2005,43(9):828-835.
    [67] Haritash AK and Kaushik CP. Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs):A review[J]. Journal of Hazardous Materials,2009,169(1-3):1-15.
    [68] Henner P, Schiavon M, Druelle V, et al. Phytotoxicity of ancient gaswork soils. Effect of polycyclicaromatic hydrocarbons (PAHs) on plant germination[J]. Organic Geochemistry,1999,30(8, Part2):963-969.
    [69] Henry HF. Natural Revegetation of an Aged Petroleum Landfarm Impacted With Polycyclic AromaticHydrocarbons (PAHs) and Heavy Metals (Cr, Pb, Zn, Ni, Cu): Ecological Restoration, Remediation,and Risk[D]. University of Cincinnati,2004.
    [70] HongBo S, ZongSuo L and MingAn S. Changes of anti-oxidative enzymes and MDA content undersoil water deficits among10wheat (Triticum aestivum L.) genotypes at maturation stage[J]. Colloidsand Surfaces B: Biointerfaces,2005,45(1):7-13.
    [71] Horikawa S, Sasuga J, Shimizu K, et al. Molecular cloning and nucleotide sequence of cDNAencoding the rat kidney S-adenosylmethionine synthetase[J]. J Biol Chem,1990,265(23):13683-13686.
    [72] Huesemann MH, Hausmann TS, Fortman TJ, et al. In situ phytoremediation of PAH-andPCB-contaminated marine sediments with eelgrass (Zostera marina)[J]. Ecological Engineering,2009,35(10):1395-1404.
    [73] Hynek R, Svensson B, Jensen ON, et al. Enrichment and Identification of Integral Membrane Proteinsfrom Barley Aleurone Layers by Reversed-Phase Chromatography, SDS-PAGE, and LC MS/MS[J].Journal of Proteome Research,2006,5(11):3105-3113.
    [74] Ishida H, Makino A and Mae T. Fragmentation of the large subunit of ribulose-1,5-bisphosphatecarboxylase by reactive oxygen species occurs near Gly-329[J]. J Biol Chem,1999,274(8):5222-5226.
    [75] Jaquinod M, Villiers F, Kieffer-Jaquinod S, et al. A proteomics dissection of Arabidopsis thalianavacuoles isolated from cell culture[J]. Molecular&Cellular Proteomics,2007a,6(3):394-412.
    [76] Jaquinod M, Villiers F, Kieffer-Jaquinod S, et al. A Proteomics Dissection of Arabidopsis thalianaVacuoles Isolated from Cell Culture[J]. Molecular and Cellular Proteomics,2007b,6(3):394-412.
    [77] Jiang X, Yin CQ, Yang XL, et al. Polycyclic aromatic hydrocarbons in soils in the vicinity of Nanjing,China[J]. Chemosphere,2008,73(3):389-394.
    [78] Jiang Y, Yang B, Harris NS, et al. Comparative proteomic analysis of NaCl stress-responsive proteinsin Arabidopsis roots[J]. Journal of Experimental Botany,2007,58(13):3591-3607.
    [79] Johnsen AR, Winding A, Karlson U, et al. Linking of microorganisms to phenanthrene metabolism insoil by analysis of C-13-labeled cell lipids[J]. Applied and Environmental Microbiology,2002,68(12):6106-6113.
    [80] Johnson DL, Anderson DR and McGrath SP. Soil microbial response during the phytoremediation of aPAH contaminated soil[J]. Soil Biology and Biochemistry,2005,37(12):2334-2336.
    [81] Joner EJ and Leyval C. Influence of arbuscular mycorrhiza on clover and ryegrass grown together in asoil spiked with polycyclic aromatic hydrocarbons[J]. Mycorrhiza,2001,10:155-159.
    [82] Jordan DB and Chollet R. Inhibition of ribulose bisphosphate carboxylase by substrate ribulose1,5-bisphosphate[J]. J Biol Chem,1983,258(22):13752-13758.
    [83] Jorrín-Novo JV, Maldonado AM, Echevarría-Zome o S, et al. Plant proteomics update (2007–2008):Second-generation proteomic techniques, an appropriate experimental design, and data analysis tofulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge[J].Journal of Proteomics,2009,72(3):285-314.
    [84] Jorrín JV, Rubiales D, Dumas-Gaudot E, et al. Proteomics: a promising approach to study bioticinteraction in legumes. A review[J]. Euphytica,2006,147(1-2):37-47.
    [85] Jorrin JV, Maldonado AM and Castillejo MA. Plant proteome analysis: A2006update[J]. Proteomics,2007,7(16):2947-2962.
    [86] K stner M, Breuer-Jammali M and Mahro B. Enumeration and characterization of the soil microflorafrom hydrocarbon-contaminated soil sites able to mineralize polycyclic aromatic hydrocarbons(PAH)[J]. Applied Microbiology and Biotechnology,1994,41:267-273.
    [87] Kamo M, Kawakami T, Miyatake N, et al. Separation and characterization of Arabidopsis thalianaproteins by two-dimensional gel electrophoresis[J]. Electrophoresis,1995,16(1):423-430.
    [88] Katayama H, Nagasu T and Oda Y. Improvement of in-gel digestion protocol for peptide massfingerprinting by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry[J].Rapid Commun Mass Spectrom,2001,15(16):1416-1421.
    [89] Kaur A, Chaudhary A, Choudhary R, et al. Phospholipid fatty acid-A bioindicator of environmentmonitoring and assessment in soil ecosystem[J]. Current Science,2005,89(7):1103-1112.
    [90] Ke L, Zhang C, Wong YS, et al. Dose and accumulative effects of spent lubricating oil on fourcommon mangrove plants in South China[J]. Ecotoxicology and Environmental Safety,2011,74(1):55-66.
    [91] Kieffer P, Dommes J, Hoffmann L, et al. Quantitative changes in protein expression ofcadmium-exposed poplar plants[J]. Proteomics,2008,8(12):2514-2530.
    [92] Kieft TL, Ringelberg DB and White DC. Changes in Ester-Linked Phospholipid Fatty Acid Profiles ofSubsurface Bacteria during Starvation and Desiccation in a Porous Medium[J]. Applied andEnvironmental Microbiology,1994,60(9):3292-3299.
    [93] Kieft TL, Wilch E, OConnor K, et al. Survival and phospholipid fatty acid profiles of surface andsubsurface bacteria in natural sediment microcosms[J]. Applied and Environmental Microbiology,1997,63(4):1531-1542.
    [94] Kim DW, Rakwal R, Agrawal GK, et al. A hydroponic rice seedling culture model system forinvestigating proteome of salt stress in rice leaf[J]. Electrophoresis,2005,26(23):4521-4539.
    [95] Kitajima S. Hydrogen peroxide-mediated inactivation of two chloroplastic peroxidases, ascorbateperoxidase and2-cys peroxiredoxin[J]. Photochem Photobiol,2008,84(6):1404-1409.
    [96] Komatsu S, Konishi H and Hashimoto M. The proteomics of plant cell membranes[J]. Journal ofExperimental Botany,2007,58(1):103-112.
    [97] Krutz LJ, Beyrouty CA, Gentry TJ, et al. Selective enrichment of a pyrene degrader population andenhanced pyrene degradation in Bermuda grass rhizosphere[J]. Biology and Fertility of Soils,2005a,41(5):359-364.
    [98] Krutz LJ, Beyrouty CA, Gentry TJ, et al. Selective enrichment of a pyrene degrader population andenhanced pyrene degradation in Bermuda grass rhizosphere[J]. Biology and Fertility of Soils,2005b,41(5):359-364.
    [99] Kummerová M and Kmentová E. Photoinduced toxicity of fluoranthene on germination and earlydevelopment of plant seedling[J]. Chemosphere,2004,56(4):387-393.
    [100] Labud V, Garcia C and Hernandez T. Effect of hydrocarbon pollution on the microbial properties of asandy and a clay soil[J]. Chemosphere,2007,66(10):1863-1871.
    [101] Lee SH, Lee WS, Lee CH, et al. Degradation of phenanthrene and pyrene in rhizosphere of grassesand legumes[J]. Journal of Hazardous Materials,2008,153(1-2):892-898.
    [102] Lei Z, Elmer AM, Watson BS, et al. A Two-dimensional Electrophoresis Proteomic Reference Mapand Systematic Identification of1367Proteins from a Cell Suspension Culture of the Model LegumeMedicago truncatula[J]. Molecular&Cellular Proteomics,2005,4(11):1812-1825.
    [103] Leiro′s MC, Trasar-Cepeda C, Garc′a-Fernandez F, et al. Defining the validity of a biochemicalindex of soil quality[J]. Biology and Fertility of Soils,1999,30:140-146.
    [104] Li C-H, Zhou H-W, Wong Y-S, et al. Vertical distribution and anaerobic biodegradation of polycyclicaromatic hydrocarbons in mangrove sediments in Hong Kong, South China[J]. Science of the TotalEnvironment,2009a,407(21):5772-5779.
    [105] Li F, Shi JY, Shen CF, et al. Proteomic characterization of copper stress response in Elsholtziasplendens roots and leaves[J]. Plant Molecular Biology,2009b,71(3):251-263.
    [106] Li M, Zhou Q, Tao M, et al. Comparative study of microbial community structure in different filtermedia of constructed wetland[J]. J Environ Sci (China),2010,22(1):127-133.
    [107] Lin X, Li XJ, Sun TH, et al. Changes in Microbial Populations and Enzyme Activities During theBioremediation of Oil-Contaminated Soil[J]. Bulletin of Environmental Contamination andToxicology,2009,83(4):542-547.
    [108] Liu H, Weisman D, Ye YB, et al. An oxidative stress response to polycyclic aromatic hydrocarbonexposure is rapid and complex in Arabidopsis thaliana[J]. Plant Science,2009,176(3):375-382.
    [109] Liu SL, Luo YM, Cao ZH, et al. Degradation of benzo[a]pyrene in soil with arbuscular mycorrhizalalfalfa[J]. Environmental Geochemistry and Health,2004,26(2):285-293.
    [110] Liu TW, Fu B, Niu L, et al. Comparative Proteomic Analysis of Proteins in Response to SimulatedAcid Rain in Arabidopsis[J]. Journal of Proteome Research,2011,10(5):2579-2589.
    [111] Lors C, Damidot D, Ponge J-F, et al. Comparison of a bioremediation process of PAHs in aPAH-contaminated soil at field and laboratory scales[J]. Environmental Pollution,2012,165(0):11-17.
    [112] Lors C, Ponge J-F, Martínez Aldaya M, et al. Comparison of solid-phase bioassays and ecoscores toevaluate the toxicity of contaminated soils[J]. Environmental Pollution,2010,158(8):2640-2647.
    [113] Lors C, Ponge J-F, Martínez Aldaya M, et al. Comparison of solid and liquid-phase bioassays usingecoscores to assess contaminated soils[J]. Environmental Pollution,2011,159(10):2974-2981.
    [114] Lu H, Zhang Y, Liu B, et al. Rhizodegradation gradients of phenanthrene and pyrene in sediment ofmangrove (Kandelia candel (L.) Druce)[J]. Journal of Hazardous Materials,2011,196(0):263-269.
    [115] Lu M, Zhang ZZ, Sun SS, et al. The Use of Goosegrass (Eleusine indica) to Remediate SoilContaminated with Petroleum[J]. Water, Air, and Soil Pollution,2010a,209(1-4):181-189.
    [116] Lu S, Teng Y, Wang J, et al. Enhancement of pyrene removed from contaminated soils by Bidensmaximowicziana[J]. Chemosphere,2010b,81(5):645-650.
    [117] Lu X-Y, Li B, Zhang T, et al. Enhanced anoxic bioremediation of PAHs-contaminated sediment[J].Bioresource Technology,2012,104(0):51-58.
    [118] Luo L, Zhang S, Shan X-Q, et al. Oxalate and root exudates enhance the desorption of p,p′-DDTfrom soils[J]. Chemosphere,2006,63(8):1273-1279.
    [119] Luo S, Ishida H, Makino A, et al. Fe2+-catalyzed site-specific cleavage of the large subunit ofribulose1,5-bisphosphate carboxylase close to the active site[J]. J Biol Chem,2002,277(14):12382-12387.
    [120] Ma B, He Y, Chen HH, et al. Dissipation of polycyclic aromatic hydrocarbons (PAHs) in therhizosphere: Synthesis through meta-analysis[J]. Environmental Pollution,2010,158(3):855-861.
    [121] Macek T, Macková M and Ká J. Exploitation of plants for the removal of organics in environmentalremediation[J]. Biotechnology Advances,2000,18(1):23-34.
    [122] MacNaughton SJ, Stephen JR, Venosa AD, et al. Microbial population changes duringbioremediation of an experimental oil spill[J]. Applied and Environmental Microbiology,1999,65(8):3566-3574.
    [123] Maila MP and Cloete TE. Germination of Lepidium sativum as a method to evaluate polycyclicaromatic hydrocarbons (PAHs) removal from contaminated soil[J]. International Biodeterioration& Biodegradation,2002,50(2):107-113.
    [124] Maliszewska-Kordybach B and Smreczak B. Habitat function of agricultural soils as affected byheavy metals and polycyclic aromatic hydrocarbons contamination[J]. Environment International,2003,28(8):719-728.
    [125] Maliszewska-Kordybach B, Smreczak B and Martyniuk S. The effect of polycyclic aromatichydrocarbons (PAHs) on microbial properties of soils of different acidity and organic mattercontent[J]. Roczniki Gleboznawstwo,2000,(3-4):5-18.
    [126] Margesin R, Labbé D, Schinner F, et al. Characterization of Hydrocarbon-Degrading MicrobialPopulations in Contaminated and Pristine Alpine Soils[J]. Applied and Environmental Microbiology,2003,69(6):3085-3092.
    [127] Margesin R and Schinner F. Bioremediation of diesel-oil-contaminated alpine soils at lowtemperatures[J]. Applied Microbiology and Biotechnology,1997,47(4):462-468.
    [128] Margesin R, Walder G and Schinner F. The impact of hydrocarbon remediation (diesel oil andpolycyclic aromatic hydrocarbons) on enzyme activities and microbial properties of soil[J]. ActaBiotechnologica,2000a,20(3-4):313-333.
    [129] Margesin R, Zimmerbauer A and Schinner F. Monitoring of bioremediation by soil biologicalactivities[J]. Chemosphere,2000b,40(4):339-346.
    [130] Marti MC, Camejo D, Fernandez-Garcia N, et al. Effect of oil refinery sludges on the growth andantioxidant system of alfalfa plants[J]. Journal of Hazardous Materials,2009,171(1-3):879-885.
    [131] Martin W, Henze K, Kellermann J, et al. Microsequecing and cDNA cloning of the Calvincycle/OPPP enzyme ribose-5-phosphate isomerase (EC5.3.1.6) from spinach chloroplasts[J]. PlantMolecular Biology,1996,30(4):795-805.
    [132] Martinoia E, Maeshima M and Neuhaus HE. Vacuolar transporters and their essential role in plantmetabolism[J]. Journal of Experimental Botany,2007,58(1):83-102.
    [133] Marwood CA, Solomon KR and Greenberg BM. Chlorophyll fluorescence as a bioindicator ofeffects on growth in aquatic macrophytes from mixtures of polycyclic aromatic hydrocarbons[J].Environmental Toxicology and Chemistry,2001,20(4):890-898.
    [134] Maya-Ampudia V and Bernal-Lugo I. Redox-sensitive target detection in gibberellic acid-inducedbarley aleurone layer[J]. Free Radical Biology and Medicine,2006,40(8):1362-1368.
    [135] McCarthy CM and Murray L. Viability and metabolic features of bacteria indigenous to acontaminated deep aquifer[J]. Microbial Ecology,1996,32(3):305-321.
    [136] Megharaj M, Ramakrishnan B, Venkateswarlu K, et al. Bioremediation approaches for organicpollutants: A critical perspective[J]. Environment International,2011,37(8):1362-1375.
    [137] Mehlhorn H, Lelandais M, Korth HG, et al. Ascorbate is the natural substrate for plant peroxidases[J].FEBS Lett,1996,378(3):203-206.
    [138] Merianne A, Tomoko MT, Wang X, et al. Stress responses to polycyclic aromatic hydrocarbons inArabidopsis included growth inhibition and hypersensitive response-like symptoms[J]. Journal ofExperimental Botany,2005,56(421):2983-2994.
    [139] Mooney BP, Miernyk JA, Michael Greenlief C, et al. Using quantitative proteomics of Arabidopsisroots and leaves to predict metabolic activity[J]. Physiologia Plantarum,2006,128(2):237-250.
    [140] Murata N, Takahashi S, Nishiyama Y, et al. Photoinhibition of photosystem II under environmentalstress[J]. Biochim Biophys Acta,2007,1767(6):414-421.
    [141] Muratova A, Pozdnyakova N, Golubev S, et al. Oxidoreductase activity of sorghum root exudates ina phenanthrene-contaminated environment[J]. Chemosphere,2009,74(8):1031-1036.
    [142] Murota K-i, Ohshita Y, Watanabe A, et al. Changes Related to Salt Tolerance in ThylakoidMembranes of Photoautotrophically Cultured Green Tobacco Cells[J]. Plant and Cell Physiology,1994,35(1):107-113.
    [143] Nakanishi Y, Chen S, Inutsuka S, et al. Possible role of indoor environment and coal combustionemission in lung carcinogenesis in Fuyuan country,China[J]. Neoplasma,1997,44(1):69-72.
    [144] Natera SH, Guerreiro N and Djordjevic MA. Proteome analysis of differentially displayed proteinsas a tool for the investigation of symbiosis[J]. Mol Plant Microbe Interact,2000,13(9):995-1009.
    [145] Ndimba BK, Chivasa S, Simon WJ, et al. Identification of Arabidopsis salt and osmotic stressresponsive proteins using two-dimensional difference gel electrophoresis and mass spectrometry[J].Proteomics,2005,5(16):4185-4196.
    [146] Nedunuri KV, Lowell C, Meade W, et al. Management Practices and Phytoremediation by NativeGrasses[J]. International Journal of Phytoremediation,2010,12(2):200-214.
    [147] Neumann D, Emmermann M, Thierfelder JM, et al. HSP68—a DnaK-like heat-stress protein ofplant mitochondria[J]. Planta,1993,190(1):32-43.
    [148] Obendorf RL, Sensenig EM, Wu J, et al. Soluble carbohydrates in mature soybean seed after feedingd-chiro-inositol, myo-inositol, or d-pinitol to stem-leaf-pod explants of low-raffinose, low-stachyoselines[J]. Plant Science,2008,175(5):650-655.
    [149] Ouyang ZY, Peng C, Chen WP, et al. Polycyclic aromatic hydrocarbons in urban soils of Beijing:Status, sources, distribution and potential risk[J]. Environmental Pollution,2011,159(3):802-808.
    [150] Paiva JA, Garces M, Alves A, et al. Molecular and phenotypic profiling from the base to the crownin maritime pine wood-forming tissue[J]. New Phytologist,2008,178(2):283-301.
    [151] Pancholi V. Multifunctional alpha-enolase: its role in diseases[J]. Cell Mol Life Sci,2001,58(7):902-920.
    [152] Pang J, Chan GSY, Zhang J, et al. Physiological aspects of vetiver grass for rehabilitation inabandoned metalliferous mine wastes[J]. Chemosphere,2003,52(9):1559-1570.
    [153] Parker R, Flowers TJ, Moore AL, et al. An accurate and reproducible method for proteome profilingof the effects of salt stress in the rice leaf lamina[J]. Journal of Experimental Botany,2006,57(5):1109-1118.
    [154] Pascual JA, Garcia C, Hernandez T, et al. Soil microbial activity as a biomarker of degradation andremediation processes[J]. Soil Biology and Biochemistry,2000,32(13):1877-1883.
    [155] Peskan-Berghofer T, Neuwirth J, Kusnetsov V, et al. Suppression of heterotrimeric G-proteinbeta-subunit affects anther shape, pollen development and inflorescence architecture in tobacco[J].Planta,2005,220(5):737-746.
    [156] Rajendran N, Matsuda O, Rajendran R, et al. Comparative description of microbial communitystructure in surface sediments of eutrophic bays[J]. Marine Pollution Bulletin,1997,34(1):26-33.
    [157] Rasoulnia A, Bihamta MR, Peyghambari SA, et al. Proteomic response of barley leaves to salinity[J].Molecular Biology Reports,2011,38(8):5055-5063.
    [158] Reddy AR, Chaitanya KV and Vivekanandan M. Drought-induced responses of photosynthesis andantioxidant metabolism in higher plants[J]. Journal of Plant Physiology,2004,161(11):1189-1202.
    [159] Renaut J, Hausman J-F and Wisniewski ME. Proteomics and low-temperature studies: bridging thegap between gene expression and metabolism[J]. Physiologia Plantarum,2006,126(1):97-109.
    [160] Rentz JA, Alvarez PJJ and Schnoor JL. Benzo[a]pyrene co-metabolism in the presence of plant rootextracts and exudates: Implications for phytoremediation[J]. Environmental Pollution,2005,136(3):477-484.
    [161] Requejo R and Tena M. Proteome analysis of maize roots reveals that oxidative stress is a maincontributing factor to plant arsenic toxicity[J]. Phytochemistry,2005,66(13):1519-1528.
    [162] Reynoso-Cuevas L, Gallegos-Martinez ME, Cruz-Sosa F, et al. In vitro evaluation of germinationand growth of five plant species on medium supplemented with hydrocarbons associated withcontaminated soils[J]. Bioresource Technology,2008,99(14):6379-6385.
    [163] Rezek J, in der Wiesche C, Mackova M, et al. The effect of ryegrass (Lolium perenne) on decrease ofPAH content in long term contaminated soil[J]. Chemosphere,2008a,70(9):1603-1608.
    [164] Rezek J, Wiesche CID, Mackova M, et al. The effect of ryegrass (Lolium perenne) on decrease ofPAH content in long term contaminated soil[J]. Chemosphere,2008b,70(9):1603-1608.
    [165] Rinalducci S, Egidi MG, Mahfoozi S, et al. The influence of temperature on plant development in avernalization-requiring winter wheat: A2-DE based proteomic investigation[J]. Journal of Proteomics,2011,74(5):643-659.
    [166] Rios-Hernandez LA, Geig LM and Suflita JM. Biodegradation of an alicyclic hydrocarbon by asulfate-reducing enrichment for a gas condensate-contaminated aquifer[J]. Applied andEnvironmental Microbiology,2003,69(1):434-443.
    [167] Rivett MO, Wealthall GP, Dearden RA, et al. Review of unsaturated-zone transport and attenuationof volatile organic compound (VOC) plumes leached from shallow source zones[J]. Journal ofContaminant Hydrology,2011,123(3–4):130-156.
    [168] Rokka A, Zhang L and Aro EM. Rubisco activase: an enzyme with a temperature-dependent dualfunction?[J]. Plant Journal,2001,25(4):463-471.
    [169] Rossignol M. Analysis of the plant proteome[J]. Current Opinion in Biotechnology,2001,12(2):131-134.
    [170] Rossignol M, Peltier JB, Mock HP, et al. Plant proteome analysis: A2004-2006update[J].Proteomics,2006,6(20):5529-5548.
    [171] Rothermich MM, Hayes LA and Lovley DR. Anaerobic, Sulfate-Dependent Degradation ofPolycyclic Aromatic Hydrocarbons in Petroleum-Contaminated Harbor Sediment[J]. EnvironmentalScience&Technology,2002,36(22):4811-4817.
    [172] Sánchez-Fernández Ro, Davies TGE, Coleman JOD, et al. The Arabidopsis thaliana ABC ProteinSuperfamily, a Complete Inventory[J]. Journal of Biological Chemistry,2001,276(32):30231-30244.
    [173] Sahi C, Agarwal M, Singh A, et al. Molecular characterization of a novel isoform of rice (Oryzasativa L.) glycine rich-RNA binding protein and evidence for its involvement in high temperaturestress response[J]. Plant Science,2007,173(2):144-155.
    [174] Salekdeh GH and Komatsu S. Crop proteomics: aim at sustainable agriculture of tomorrow[J].Proteomics,2007,7(16):2976-2996.
    [175] Salekdeh GH, Siopongco J, Wade LJ, et al. Proteomic analysis of rice leaves during drought stressand recovery[J]. Proteomics,2002,2(9):1131-1145.
    [176] Sannino F and Gianfreda L. Pesticide influence on soil enzymatic activities[J]. Chemosphere,2001,45(4–5):417-425.
    [177] Schroder P, Lyubenova L and Huber C. Do heavy metals and metalloids influence the detoxificationof organic xenobiotics in plants?[J]. Environmental Science and Pollution Research,2009,16(7):795-804.
    [178] Sheng XF and Gong JX. Increased degradation of phenanthrene in soil by Pseudomonas sp. GF3inthe presence of wheat[J]. Soil Biology and Biochemistry,2006,38(9):2587-2592.
    [179] Shevchenko A, Wilm M, Vorm O, et al. Mass spectrometric sequencing of proteins silver-stainedpolyacrylamide gels[J]. Analytical Chemistry,1996,68(5):850-858.
    [180] Shimizu Y. Microalgal metabolites: a new perspective[J]. Annu Rev Microbiol,1996,50:431-465.
    [181] Shimp JF, Tracy JC, Davis LC, et al. Beneficial effects of plants in the remediation of soil andgroundwater contaminated with organic materials[J]. Critical Reviews in Environmental Science andTechnology,1993,23(1):41-77.
    [182] Shinano T, Komatsu S, Yoshimura T, et al. Proteomic analysis of secreted proteins from asepticallygrown rice[J]. Phytochemistry,2011,72(4–5):312-320.
    [183] Siciliano SD and Germida JJ. Biolog analysis and fatty acid methyl ester profiles indicate thatpseudomonad inoculants that promote phytoremediation alter the root-associated microbialcommunity of Bromus biebersteinii[J]. Soil Biology and Biochemistry,1998,30(13):1717-1723.
    [184] Sikkema J, de Bont JA and Poolman B. Mechanisms of membrane toxicity of hydrocarbons[J].Microbiological Reviews,1995,59(2):201-222.
    [185] Sj gren LLE, Stanne TM, Zheng B, et al. Structural and Functional Insights into the ChloroplastATP-Dependent Clp Protease in Arabidopsis[J]. The Plant Cell Online,2006,18(10):2635-2649.
    [186] Slater GF, Cowie BR, Harper N, et al. Variation in PAH inputs and microbial community in surfacesediments of Hamilton Harbour: Implications to remediation and monitoring[J]. EnvironmentalPollution,2008,153(1):60-70.
    [187] Smith KE, Schwab AP and Banks MK. Dissipation of PAHs in saturated, dredged sediments: A fieldtrial[J]. Chemosphere,2008,72(10):1614-1619.
    [188] Smith MJ, Flowers TH, Duncan HJ, et al. Effects of polycyclic aromatic hydrocarbons ongermination and subsequent growth of grasses and legumes in freshly contaminated soil and soil withaged PAHs residues[J]. Environmental Pollution,2006,141(3):519-525.
    [189] Smith MJ, Flowers TH, Duncan HJ, et al. Study of PAH dissipation and phytoremediation in soils:Comparing freshly spiked with weathered soil from a former coking works[J]. Journal of HazardousMaterials,2011,192(3):1219-1225.
    [190] Strniste GF, Martinez E, Martinez AM, et al. Photo-induced reactions of benzo(a)pyrene with DNAin vitro[J]. Cancer Res,1980,40(2):245-252.
    [191] Stru yńska L, Chalimoniuk M and Sulkowski G. The role of astroglia in Pb-exposed adult rat brainwith respect to glutamate toxicity[J]. Toxicology,2005,212(2–3):185-194.
    [192] Su YH and Yang XY. Interactions between selected PAHs and the microbial community inrhizosphere of a paddy soil[J]. Science of the Total Environment,2009,407(3):1027-1034.
    [193] Sugihara K, Hanagata N, Dubinsky Z, et al. Molecular Characterization of cDNA Encoding OxygenEvolving Enhancer Protein1Increased by Salt Treatment in the Mangrove Bruguiera gymnorrhiza[J].Plant and Cell Physiology,2000,41(11):1279-1285.
    [194] Sun TR, Cang L, Wang QY, et al. Roles of abiotic losses, microbes, plant roots, and root exudates onphytoremediation of PAHs in a barren soil[J]. Journal of Hazardous Materials,2010,176(1-3):919-925.
    [195] Sverdrup LE, Krogh PH, Nielsen T, et al. Toxicity of eight polycyclic aromatic compounds to redclover (Trifolium pratense), ryegrass (Lolium perenne), and mustard (Sinapsis alba)[J]. Chemosphere,2003,53(8):993-1003.
    [196] Tam NFY and Wong YS. Effectiveness of bacterial inoculum and mangrove plants on remediation ofsediment contaminated with polycyclic aromatic hydrocarbons[J]. Marine Pollution Bulletin,2008,57(6–12):716-726.
    [197] Tao Y, Zhang S, Zhu Y-g, et al. Uptake and Acropetal Translocation of Polycyclic AromaticHydrocarbons by Wheat (Triticum aestivum L.) Grown in Field-Contaminated Soil[J]. EnvironmentalScience&Technology,2009,43(10):3556-3560.
    [198] Tarze A, Deniaud A, Le Bras M, et al. GAPDH, a novel regulator of the pro-apoptotic mitochondrialmembrane permeabilization[J]. Oncogene,2007,26(18):2606-2620.
    [199] Teng Y, Shen Y, Luo Y, et al. Influence of Rhizobium meliloti on phytoremediation of polycyclicaromatic hydrocarbons by alfalfa in an aged contaminated soil[J]. Journal of Hazardous Materials,2011,186(2–3):1271-1276.
    [200] Tervahauta AI, Fortelius C, Tuomainen M, et al. Effect of birch (Betula spp.) and associated rhizoidalbacteria on the degradation of soil polyaromatic hydrocarbons, PAH-induced changes in birchproteome and bacterial community[J]. Environmental Pollution,2009,157(1):341-346.
    [201] Torneman N, Yang XH, Baath E, et al. Spatial covariation of microbial community composition andpolycyclic aromatic hydrocarbon concentration in a creosote-polluted soil[J]. EnvironmentalToxicology and Chemistry,2008,27(5):1039-1046.
    [202] Trasar-Cepeda C, Leirós MC, Seoane S, et al. Limitations of soil enzymes as indicators of soilpollution[J]. Soil Biology and Biochemistry,2000,32(13):1867-1875.
    [203] van Beelen P and Doelman P. Significance and application of microbial toxicity tests in assessingecotoxicological risks of contaminants in soil and sediment[J]. Chemosphere,1997,34(3):455-499.
    [204] Ventelon-Debout M, Delalande F, Brizard J-P, et al. Proteome analysis of cultivar-specificderegulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing Riceyellow mottle virus infection[J]. Proteomics,2004,4(1):216-225.
    [205] Verrhiest GJ, Clément B, Volat B, et al. Interactions between a polycyclic aromatic hydrocarbonmixture and the microbial communities in a natural freshwater sediment[J]. Chemosphere,2002,46(2):187-196.
    [206] Vestal JR and White DC. Lipid analysis in microbial ecology: quantitative approaches to the study ofmicrobial communities[J]. Bioscience,1989,39:535-541.
    [207] Vincent D, Lapierre C, Pollet B, et al. Water Deficits Affect Caffeate O-Methyltransferase,Lignification, and Related Enzymes in Maize Leaves. A Proteomic Investigation[J]. Plant Physiology,2005,137(3):949-960.
    [208] Waldron PJ, Wu L, Nostrand JDV, et al. Functional Gene Array-Based Analysis of MicrobialCommunity Structure in Groundwaters with a Gradient of Contaminant Levels[J]. EnvironmentalScience&Technology,2009,43(10):3529-3534.
    [209] Walia H, Wilson C, Condamine P, et al. Large-scale expression profiling and physiologicalcharacterization of jasmonic acid-mediated adaptation of barley to salinity stress[J]. Plant Cell andEnvironment,2007,30(4):410-421.
    [210] Wang CY, Wang F, Wang T, et al. PAHs biodegradation potential of indigenous consortia fromagricultural soil and contaminated soil in two-liquid-phase bioreactor (TLPB)[J]. Journal ofHazardous Materials,2010,176(1-3):41-47.
    [211] Wang P, Wang H, Wu L, et al. Influence of black carbon addition on phenanthrene dissipation andmicrobial community structure in soil[J]. Environmental Pollution,2012,161(0):121-127.
    [212] Wang XT, Jiang YF, Wang F, et al. Levels, composition profiles and sources of polycyclic aromatichydrocarbons in urban soil of Shanghai, China[J]. Chemosphere,2009,75(8):1112-1118.
    [213] Watts FZ, Walters AJ and Moore AL. Characterisation of PHSP1, a cDNA encoding a mitochondrialHSP70fromPisum sativum[J]. Plant Molecular Biology,1992,18(1):23-32.
    [214] Weckwerth W. Integration of metabolomics and proteomics in molecular plant physiology–copingwith the complexity by data-dimensionality reduction[J]. Physiologia Plantarum,2008,132(2):176-189.
    [215] Wei SQ and Pan SW. Phytoremediation for soils contaminated by phenanthrene and pyrene withmultiple plant species[J]. Journal of Soils and Sediments,2010,10(5):886-894.
    [216] Wenzel WW. Rhizosphere processes and management in plant-assisted bioremediation(phytoremediation) of soils[J]. Plant and Soil,2009,321(1-2):385-408.
    [217] White DC. Chemical ecology: possible linkage between macro-and microbial ecology[J]. Oikos,1995,74:177-184.
    [218] White DC, Pinkart HC and Ringelberg AB. Biomass measurements: biochemical approaches.Manual of environmental microbiology1997;91-101.
    [219] Wilkins MR, Pasquali C, Appel RD, et al. From proteins to proteomes: Large scale proteinidentification by two-dimensional electrophoresis and amino acid analysis[J]. Bio-Technology,1996a,14(1):61-65.
    [220] Wilkins MR, Sanchez JC, Gooley AA, et al. Progress with proteome projects: Why all proteinsexpressed by a genome should be identified and how to do it[J]. Biotechnology and GeneticEngineering Reviews,1996b,13:19-50.
    [221] Wong MH, Li JH, Yu XZ, et al. Responses of Bioaugmented Ryegrass to Pah Soil Contamination[J].International Journal of Phytoremediation,2011,13(5):441-455.
    [222] Wu L, Chen X, Ren H, et al. ERF protein JERF1that transcriptionally modulates the expression ofabscisic acid biosynthesis-related gene enhances the tolerance under salinity and cold Plantaintobacco[J]. Planta,2007,226:815-825.
    [223] Xiao HP, Cheng SP and Wu ZB. Microbial community variation in phytoremediation of triazophosby Canna indica Linn. in a hydroponic system[J]. Journal of Environmental Sciences-China,2010,22(8):1225-1231.
    [224] Xu H, Roberts N, Singleton FL, et al. Survival and viability of non-culturable Escherichia coli andVibrio cholerae in the estuarine and marine environment[J]. Microbial Ecology,1982,8(4):313-323.
    [225] Xu SY, Chen YX, Wu WX, et al. Protein changes in response to pyrene stress in maize (Zea mays L.)leaves[J]. Journal of Integrative Plant Biology,2007,49(2):187-195.
    [226] Yamaguchi K, von Knoblauch K and Subramanian AR. The plastid ribosomal proteins. Identificationof all the proteins in the30S subunit of an organelle ribosome (chloroplast)[J]. J Biol Chem,2000,275(37):28455-28465.
    [227] Yang XY and Su YH. Interactions between selected PAHs and the microbial community inrhizosphere of a paddy soil[J]. Science of the Total Environment,2009,407(3):1027-1034.
    [228] Yao H and Wu F. Soil microbial community structure in cucumber rhizosphere of different resistancecultivars to fusarium wilt[J]. Fems Microbiology Ecology,2010,72(3):456-463.
    [229] Yi H and Crowley DE. Biostimulation of PAH Degradation with Plants Containing HighConcentrations of Linoleic Acid[J]. Environmental Science&Technology,2007,41(12):4382-4388.
    [230] Yrj l K, Keskinen A-K, kerman M-L, et al. The rhizosphere and PAH amendment mediateimpacts on functional and structural bacterial diversity in sandy peat soil[J]. Environmental Pollution,2010,158(5):1680-1688.
    [231] Ytterberg AJ, Peltier J-B and van Wijk KJ. Protein Profiling of Plastoglobules in Chloroplasts andChromoplasts. A Surprising Site for Differential Accumulation of Metabolic Enzymes[J]. PlantPhysiology,2006,140(3):984-997.
    [232] Yu XZ and Gu JD. Metabolic responses of weeping willows to selenate and selenite[J].Environmental Science and Pollution Research,2007,14(7):510-517.
    [233] Yu XZ, Wu SC, Wu FY, et al. Enhanced dissipation of PAHs from soil using mycorrhizal ryegrassand PAH-degrading bacteria[J]. Journal of Hazardous Materials,2011,186(2–3):1206-1217.
    [234] Zelles L. Fatty acid patterns of phospholipid and lipopolysaccharides in the characterization ofmicrobial communities in soil: A review[J]. Biology and Fertility of Soils,1999a,29:111–129.
    [235] Zelles L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation ofmicrobial communities in soil: a review[J]. Biology and Fertility of Soils,1999b,29(2):111-129.
    [236] Zelles L, Bai QY, Rackwitz R, et al. phospholipid-and lipopolysaccharide-derived fatty acids as anestimate of microbial biomass and community structures in soils[J]. Biology and Fertility of Soils,1995,19:115-123.
    [237] Zeng XW, Qiu RL, Ying RR, et al. The differentially-expressed proteome in Zn/Cdhyperaccumulator Arabis paniculata Franch. in response to Zn and Cd[J]. Chemosphere,2011,82(3):321-328.
    [238] Zhan X, Wu W, Zhou L, et al. Interactive effect of dissolved organic matter and phenanthrene on soilenzymatic activities[J]. Journal of Environmental Sciences,2010,22(4):607-614.
    [239] Zhang C, Xu J, Liu X, et al. Impact of imazethapyr on the microbial community structure inagricultural soils[J]. Chemosphere,2010a.
    [240] Zhang E, Brewer JM, Minor W, et al. Mechanism of enolase: the crystal structure of asymmetricdimer enolase-2-phospho-D-glycerate/enolase-phosphoenolpyruvate at2.0A resolution[J].Biochemistry,1997,36(41):12526-12534.
    [241] Zhang H, Dang Z, Yi XY, et al. Evaluation of Dissipation Mechanisms for Pyrene by Maize (ZeaMays L.) in Cadmium Co-Contaminated Soil[J]. Global Nest Journal,2009,11(4):487-496.
    [242] Zhang J, Yin R, Lin XG, et al. Interactive Effect of Biosurfactant and Microorganism to EnhancePhytoremediation for Removal of Aged Polycyclic Aromatic Hydrocarbons from ContaminatedSoils[J]. Journal of Health Science,2010b,56(3):257-266.
    [243] Zhang R-g, Andersson CE, Savchenko A, et al. Structure of Escherichia coli Ribose-5-PhosphateIsomerase: A Ubiquitous Enzyme of the Pentose Phosphate Pathway and the Calvin Cycle[J].Structure (London, England:1993),2003,11(1):31-42.
    [244] Zhang ZH, Rengel Z and Meney K. Polynuclear aromatic hydrocarbons (PAHs) differentiallyinfluence growth of various emergent wetland species[J]. Journal of Hazardous Materials,2010c,182(1-3):689-695.
    [245] Zhao Y, Du HM, Wang ZL, et al. Identification of proteins associated with water-deficit tolerance inC(4) perennial grass species, Cynodon dactylon x Cynodon transvaalensis and Cynodon dactylon[J].Physiologia Plantarum,2011,141(1):40-55.
    [246] Zheng YQ, Zhang CP, Xu J, et al. Impact of imazethapyr on the microbial community structure inagricultural soils[J]. Chemosphere,2010,81(6):800-806.
    [247] Zhou LK. The Science of Soil Enzymes1987;267-270.
    [248] Zhou XB, Cebron A, Beguiristain T, et al. Water and phosphorus content affect PAH dissipation inspiked soil planted with mycorrhizal alfalfa and tall fescue[J]. Chemosphere,2009,77(6):709-713.
    [249] Zhu J, Chen S, Alvarez S, et al. Cell Wall Proteome in the Maize Primary Root Elongation Zone. I.Extraction and Identification of Water-Soluble and Lightly Ionically Bound Proteins[J]. PlantPhysiology,2006,140(1):311-325.
    [250]丁克强,骆永明.多环芳烃污染土壤的生物修复[J].土壤,2001,(04):169-178.
    [251]丁克强,骆永明,刘世亮,等.多环芳烃菲对淹水土壤微生物动态变化的影响[J].土壤,2002,(04):229-232,236.
    [252]王洪,李海波,孙铁珩,等.生物修复PAHs污染土壤对酶活性的影响[J].生态环境学报,2011,20(04):691-695.
    [253]王振刚.环境卫生学[M].北京:人民卫生出版社,2000.
    [254]王丽丽.多环芳烃在长江口滨岸沉积物中的吸附特征及归趋模拟[D].华东师范大学,2010,硕士.
    [255]王学彤,贾英,孙阳昭,等.典型污染区农业土壤中PAHs的分布、来源及生态风险[J].环境科学学报,2009,29(11):2433-2439.
    [256]申松梅,曹先仲,宋艳辉,等.多环芳烃的性质及其危害[J].贵州化工,2008,33(03):61-63.
    [257]朱凡,田大伦,闫文德,等.四种绿化树种土壤酶活性对不同浓度多环芳烃的响应[J].生态学报,2008,28(09):4195-4202.
    [258]宋雪英,孙丽娜,杨晓波,等.辽河流域表层土壤多环芳烃污染现状初步研究[J].农业环境科学学报,2008,27(01):216-220.
    [259]李梅,万红友.多环芳烃污染土壤的微生物修复[J].环保科技,2008,(04):35-37+46.
    [260]李钠.菲对水田土壤微生物基因多样性和菲降解菌多酚氧化酶、GST酶的影响[D].浙江大学,2006,硕士.
    [261]李静,吕永龙,焦文涛,等.天津滨海工业区土壤中多环芳烃的污染特征及来源分析[J].环境科学学报,2008,28(10):2111-2117.
    [262]沈源源,滕应,骆永明,等.几种豆科、禾本科植物对多环芳烃复合污染土壤的修复[J].土壤,2011,(02):253-257.
    [263]肖敏,高彦征,凌婉婷,等.菲、芘污染土壤中丛枝菌根真菌对土壤酶活性的影响[J].中国环境科学,2009,29(06):668-672.
    [264]肖清铁.水稻耐镉胁迫的生理响应[D].福建农林大学,2011,硕士.
    [265]岳敏,谷学新,邹洪,等.多环芳烃的危害与防治[J].首都师范大学学报(自然科学版),2003,24(03):40-44,31.
    [266]易志刚.多环芳烃对土壤线虫和微生物生物量的影响[J].亚热带农业研究,2008,(02):141-145.
    [267]侯海燕.多环芳烃与孕早期稽留流产关系的研究[D].河北医科大学,2008,硕士.
    [268]段永红,陶澍,王学军,等.天津表土中多环芳烃含量的空间分布特征与来源[J].土壤学报,2005,42(06):942-947.
    [269]胡雄星,周亚康,韩中豪,等.黄浦江表层沉积物中多环芳烃的分布特征及来源[J].环境化学,2005,(06):74-77.
    [270]范海延,李楠,苗青,等.植物应答生物胁迫的蛋白质组学研究进展[J].湖北农业科学,2009,(12):3167-3171.
    [271]倪进治,骆永明,魏然,等.长江三角洲地区土壤环境质量与修复研究Ⅴ.典型地区农业土壤中多环芳烃的污染状况及其源解析[J].土壤学报,2008,45(02):234-239.
    [272]唐倩.苯并芘对血小板功能和血栓形成的影响[D].浙江大学,2011,硕士.
    [273]唐景春and孙青.石油污染土壤生物修复的管理和成本分析[J].环境科学与管理,2010,(06):125-129.
    [274]梁小翠,朱凡,闫文德,等.马褂木盆栽土壤酶活性对PAHs胁迫的响应[J].中南林业科技大学学报,2011,31(05):92-95,116.
    [275]梁小翠,闫文德,田大伦,等.多环芳烃对樟树幼苗土壤微生物的影响[J].中南林业科技大学学报,2007,(06):10-14.
    [276]焦文涛,王铁宇,吕永龙,等.环渤海北部沿海地区表层土壤中PAHs的污染特征及风险评价[J].生态毒理学报,2010,5(02):193-201.
    [277]焦文涛,吕永龙,王铁宇,等.化工区土壤中多环芳烃的污染特征及其来源分析[J].环境科学,2009,30(04):1166-1172.
    [278]樊孝俊,刘忠马,夏新,等.南昌市周边农田土壤中多环芳烃的污染特征及来源分析[J].中国环境监测,2009,25(06):109-112.
    [279]刘世亮,骆永明,吴龙华,等.菲在黑麦草种植土壤中的降解及其对土壤酶的影响[J].土壤学报,2009,46(03):419-425.
    [280]刘江生.东北老工业基地浑蒲灌区土壤中多环芳烃污染特征、断代、溯源及风险评价研究[D].山东大学,2009,硕士.
    [281]刘知晓.植物亚细胞结构蛋白质组学研究进展[J].内蒙古农业大学学报(自然科学版),2009,30(04):327-332.
    [282]刘魏魏,尹睿,林先贵,等.多环芳烃(PAHs)污染土壤的复合生物修复技术初探.第五次全国土壤生物和生物化学学术研讨会2009;11-12.
    [283]刘魏魏,尹睿,林先贵,等.多环芳烃污染土壤的植物-微生物联合修复初探[J].土壤,2010,(05):800-806.
    [284]刘颖.上海市土壤和水体沉积物中多环芳烃的测定方法、分布特征和源解析[D].同济大学,2008,博士.
    [285]刘颖,陈玲,唐银健,等.高效液相色谱法测定黄浦江表层沉积物中的痕量多环芳烃[J].色谱,2007,(03):356-361.
    [286]刘飞,刘应汉,王建武,等.太原市区土壤中多环芳烃污染特征研究[J].地学前缘,2008,15(05):155-160.
    [287]卢晓霞,李秀利,马杰,等.焦化厂多环芳烃污染土壤的强化微生物修复研究[J].环境科学,2011,32(03):864-869.
    [288]孙天然.植物强化微生物修复多环芳烃污染土壤研究[D].山东师范大学,2009,硕士.
    [289]孙倩.多环芳烃污染土壤的生物修复现状及发展趋势[J].安徽农学通报(上半月刊),2010,(13):66-67.
    [290]孙娜,陆晨刚,高翔,等.青藏高原东部土壤中多环芳烃的污染特征及来源解析[J].环境科学,2007,28(03):664-668.
    [291]宫璇,李培军,张海荣,等.土壤的芘污染与土壤酶活性[J].农村生态环境,2004,20(03):53-55,59.
    [292]庞秋颖.盐胁迫盐芥和拟南芥的芥子油苷和蛋白质组比较[D].东北林业大学,2010,博士.
    [293]张天彬,万洪富,周健民,等.深圳表层土壤中多环芳烃的污染特征及来源[J].生态环境,2008,17(03):1032-1036.
    [294]张晶,林先贵,曾军,等.植物混种原位修复多环芳烃污染农田土壤[J].环境工程学报,2012,16(01):341-346.
    [295]张晶,张惠文,丛峰,等.长期灌溉含多环芳烃污水对稻田土壤酶活性与微生物种群数量的影响[J].生态学杂志,2007,26(08):1193-1198.
    [296]张晶,张惠文,张勤,等.长期石油污水灌溉对东北旱田土壤微生物生物量及土壤酶活性的影响[J].中国生态农业学报,2008,16(01):67-70.
    [297]张强华,石莹莹,李东,等.淮安市典型地区土壤中多环芳烃污染调查[J].环境监测管理与技术,2007,19(06):22-24.
    [298]杨国义,张天彬,高淑涛,等.珠江三角洲典型区域农业土壤中多环芳烃的含量分布特征及其污染来源[J].环境科学,2007,28(10):2350-2354.
    [299]杨辉,王海霞,李晓军,等.多环芳烃污染土壤生物修复技术研究进展[J].安徽农业科学,2011,(03):1427-1429+1431.
    [300]芦敏,袁东星,欧阳通,等.厦门岛表土中多环芳烃来源分析及健康风险评估[J].厦门大学学报(自然科学版),2008,47(03):451-456.
    [301]陈世军,祝贤凌,冯秀珍,等.多环芳烃对植物的影响[J].生物学通报,2010,45(02):9-11.
    [302]陈椽,张明时,杨加文,等.黔南州土壤中多环芳烃的污染现状及来源分析[J].生态环境学报,2009,18(03):929-933.
    [303]陈来国,冉勇,麦碧娴,等.广州周边菜地中多环芳烃的污染现状[J].环境化学,2004,23(03):341-344.
    [304]陈涛.盐胁迫红麻叶片差异蛋白质组学及其抗氧化酶活性的分析[D].福建农林大学,2011,硕士.
    [305]马瑾,邱兴华,周永章,等.东莞市农业土壤多环芳烃污染及其空间分布特征研究[J].北京大学学报(自然科学版),2011,47(01):149-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700