基于MEMS技术的硅脉象传感与检测系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉诊是中医学中最具特色的诊断方法,具有简便、可靠、无创伤等优点。随着现代科学技术的飞速发展,用科学的方法采集、处理脉象信息,成为脉诊为患者提供疾病客观信息的重要手段,而脉象传感器的设计和制作是脉诊客观化研究的基础。
     本文采用MEMS技术、CMOS工艺和激光加工技术,设计并制作了硅杯和悬臂梁两种结构的以纳米硅/单晶硅异质结为源极和漏极的MOSFETs脉象传感器,该脉象传感器具有体积小,重量轻、灵敏度高、温度特性好等优点,能够实现对微小脉象信号的准确检测。作为脉象传感器的应用,本文研制了纳米硅/单晶硅异质结MOSFETs脉象检测系统,并阐述了采用人工神经网络处理脉象检测结果的方法。
     在理论分析的基础上,本文设计了纳米硅/单晶硅异质结MOSFETs脉象传感器的力敏结构,确定了衬底材料、硅膜厚度、MOSFET沟道电阻在硅膜和悬臂梁上的位置。在硅杯的长方形硅膜上和悬臂梁上分别设计四个纳米硅/单晶硅异质结p-MOSFET,以p-MOSFET的沟道电阻做为力敏电阻,并将四个p-MOSFET沟道电阻构成惠斯通电桥结构。当硅膜和悬臂梁受到脉搏压力作用时,其内部MOSFET沟道电阻的改变使惠斯通电桥输出电压发生变化,可以实现对脉搏压力的检测。
     本文在n型<100>晶向双面抛光单晶硅片上,分别制作了硅杯和悬臂梁结构的纳米硅/单晶硅异质结MOSFETs脉象传感器芯片,给出了制作工艺和MOSFETs脉象传感器芯片照片。为了解决现有硅悬臂梁刻蚀工艺中存在的刻蚀速度和刻蚀质量等问题,本文研究了激光加工技术与MEMS技术相结合制作硅悬臂梁的方法,使硅悬臂梁的制备更加简洁、快速、精准,有效克服了传统悬臂梁释放时存在的削角问题,也为其他微结构的制备提供了高质量的激光刻蚀方法。
     本文对制备的纳米硅/单晶硅异质结p-MOSFET的特性、硅杯式纳米硅/单晶硅异质结MOSFETs脉象传感器的静态特性、悬臂梁式纳米硅/单晶硅异质结MOSFETs脉象传感器的特性,以及硅杯式纳米硅/单晶硅异质结MOSFETs脉象传感器的温度特性等四个方面,给出实验结果如下:
     在不受外加压力作用时,对纳米硅/单晶硅异质结p-MOSFET的电学特性进行测试分析,并对纳米硅/单晶硅异质结p-MOSFET在-20℃-60℃的温度范围内进行高低温实验。实验结果表明,纳米硅/单晶硅异质结p-MOSFET的沟道电流IDS随温度变化很小,而且随着温度的升高沟道电流IDS的变化量减小。四个纳米硅/单晶硅异质结p-MOSFET的沟道电阻都随着温度的增加而略有变小。
     分别采用恒压源和恒流源两种供电方式对硅杯式纳米硅/单晶硅异质结MOSFETs脉象传感器进行标定,传感器外加压力量程0~160kPa。实验结果给出,采用恒压源供电时,纳米硅/单晶硅异质结MOSFETs脉象传感器的灵敏度随着供电电压的增加而增加,当供电电压为-5.0V时,灵敏度为0.6517mV/kPa,准确度为2.343%F.S;采用恒流源供电时,纳米硅/单晶硅异质结MOSFETs脉象传感器的灵敏度随着供电电流的增加而增加,当供电电流为1.000mA时,灵敏度为0.6381mV/kPa,准确度为2.281%F.S。
     对悬臂梁式纳米硅/单晶硅异质结MOSFETs脉象传感器的特性进行测试,实验结果给出,在一定的振动频率下,悬臂梁的加速度越大,传感器的输出电压越大;在一定的加速度下,振动频率越高,传感器的输出电压越大。
     在不同温度下,对硅杯式纳米硅/单晶硅异质结MOSFETs脉象传感器的温度特性进行测试。实验结果表明,在恒压和恒流两种供电方式下,纳米硅/单晶硅异质结MOSFETs脉象传感器的灵敏度都随着温度的降低而升高。
     本文给出纳米硅/单晶硅异质结MOSFETs脉象传感器的应用实例,介绍了纳米硅/单晶硅异质结MOSFETs脉象检测系统的总体设计方案和各功能模块的设计方法,并给出MOSFETs脉象检测系统的实测结果。本文还阐述了利用人工神经网络中的误差反向传播神经网络和概率神经网络对脉象检测结果进行分析,判别妇女是否怀孕的方法。这种方法有别于单纯对脉形进行分类的分析方法,其优势在于只凭借妇女的脉形特征参量,就能够准确判断该妇女是否怀孕,为今后采用科学方法分析人体脉象信息的研究奠定了基础。
     综上所述,基于MEMS技术研制硅脉象传感和检测系统的方案可行,同时具有集成化和大批量生产的特点,对脉诊客观化研究具有重要意义。
Pulse diagnosis is the most characteristic diagnosis method in traditional chinese medicine, which has the advantages of convenient, reliable and non-invasion. With the rapid development of the modern science and technology, collecting and processing information by scientific methods is an important means of pulse diagnosis providing objective information of diseases for patients. The design and fabrication of the pulse sensor is the objective research foundation of pulse diagnosis.
     The pulse sensors of the silicon cup and the cantilever beam structures have been designed and fabricated by using MEMS, CMOS and laser processing technologies, in which the nc-Si/c-Si heterojunction has been used as the source and drain of the MOSFETs. The pulse sensors can detect the tiny pulse signal accurately, which is small size, light weight, high sensitivity and good temperature characteristics. As the application of the pulse sensors, the nc-Si/c-Si heterojunction MOSFETs pulse detecting system has been fabricated. The methods of processing the pulse detecting results by using artificial neural network have been presented.
     On the basis of theoretical analysis, the force-sensitive structures of the nc-Si/c-Si heterojunction MOSFETs pulse sensors have been designed. The substrate material, the thickness of the silicon film, the position of the MOSFET channel resistance on the silicon film and cantilever beam have been determined. Four nc-Si/c-Si heterojunction p-MOSFETs have been designed on the rectangular silicon film of the silicon cup and the cantilever beam. The p-MOSFETs whose channel resistance has been used as force-sensitive resistance have been designed in a Wheatstone bridge configuration. When the silicon film and the cantilever beam are stimulated by the pulse pressure, the MOSFET channel resistance on the silicon film and the cantilever beam changes, and the output voltage of the Wheatstone bridge changes with the MOSFET channel resistance. Therefore, the pulse sensors can detect the human pulse.
     The nc-Si/c-Si heterojunction MOSFETs pulse sensor chips based silicon cup and cantilever beam have been fabricated on the n-type,<100> crystal orientation, double-side polished silicon wafer. The fabrication process and the photographs of the MOSFETs pulse sensors chips have been presented. To solve some problems of etching rate and quality in the etching technology for silicon cantilevers, a method which combines laser processing technology and MEMS technology is adopted to fabricate silicon cantilevers. The method makes the fabrication of silicon cantilevers simple, rapid and accurate, which avoiding the convex corner undercutting in etching of cantilevers. This study also provides a laser etching method for the fabrication of other microstructures.
     The characteristics of the fabricated nc-Si/c-Si heterojunction p-MOSFET, the static characteristics of the nc-Si/c-Si heterojunction MOSFETs pulse sensor based silicon cup, the characteristics of the nc-Si/c-Si heterojunction MOSFETs pulse sensor based cantilever beam and the temperature characteristics of the nc-Si/c-Si heterojunction MOSFETs pulse sensor based silicon cup have been studied, and the experimental results are as following.
     The electrical characteristics of the nc-Si/c-Si heterojunction p-MOSFET has been studied under the conditions of the applied pressure P=0, and the high and low temperature experiments of the nc-Si/c-Si heterojunction p-MOSFET in temperature range from-20℃to 60℃have been studied. The experimental results show that the channel current IDS of the nc-Si/c-Si heterojunction p-MOSFET has little change with temperature, and the variable quantity of channel current IDs decreases with increasing temperature. The channel resistance of the four nc-Si/c-Si heterojunction p-MOSFET slightly decreases with increasing temperature.
     The nc-Si/c-Si heterojunction MOSFETs pulse sensor based silicon cup has been experimentized using the constant voltage and the constant current power supply respectively, and the applied pressure range of the sensor is 0-160kPa. The experimental results show that the sensitivity of the nc-Si/c-Si heterojunction MOSFETs pulse sensor increases with the increasing of the supply voltage under the conditon of constant voltage power supply, the sensitivity is 0.6517 mV/kPa and the precision is 2.343 %F.S with-5.0V power supply; the sensitivity of the nc-Si/c-Si heterojunction MOSFETs pulse sensor increases with the increasing of the supply current under the conditon of constant current power supply, the sensitivity is 0.6381 mV/kPa and the precision is 2.281% F.S with 1.000mA current supply.
     The characteristics test of the nc-Si/c-Si heterojunction MOSFETs pulse sensor based cantilever beam has been studied. The experimental results show that the output voltage of sensor increases when the acceleration of the cantilever beam increases at a constant vibration frequency; the output voltage of sensor increases when the vibration frequency increases at a constant acceleration.
     The temperature characteristics test of the nc-Si/c-Si heterojunction MOSFETs pulse sensor based silicon cup has been studied at different temperatures. The experimental results show that the sensitivity of the nc-Si/c-Si heterojunction MOSFETs pulse sensor increases with decreasing temperature under the conditions of constant voltage and constant current power supply.
     The application example of the nc-Si/c-Si heterojunction MOSFETs pulse sensor has been presented. The general scheme of the nc-Si/c-Si heterojunction MOSFETs pulse detecting system and the design methods of the function modules have been presented. The detecting results of the MOSFETs pulse detecting system has been presented.The error back propagation neural network and the probabilistic neural network in artificial neural network have been used to process the detecting results of pulses, which can distinguish the pregnant woman. The method is different from the classification of pulse, whose advantage is accurately distinguishing the pregnant woman by the pulse characteristic parameters of the woman. The research will establish the foundation for the study on the human pulse information by scientific methods.
     To sum up, the fabrication method of the silicon pulse sensing and detecting system by MEMS technology is feasible. It is easy to be integrated and produced in a large scale. The study has great significance for the objective research of pulse diagnosis.
引文
[1]Gajendra Shekhawat, Soo-Hyun Tark, Vinayak P. Dravid. MOSFET-Embedded Microcantilevers for Measuring Deflection in Biomolecular Sensors[J]. SCIENCE, 2006, (311):1592-1595.
    [2]燕海霞,王忆勤,李福凤.中医脉象传感器的研究进展[J].上海中医药大学学报,2005,19(1):62-65.
    [3]黄献平,李冰星.BYS214型心电脉象仪与MX2811型脉象仪的比较[J].湖南中医学院学报,1999,19(1):66-67.
    [4]曹玉珍,张力新,王超文.三导脉搏波传感装置[J].仪表技术与传感器,1996,(11):42-43.
    [5]朱筱玮,朱新亚.腕带式脉搏计的研制[J].西安工业学院学报,2001,21(4):349-351.
    [6]王炳和,杨颙,相敬林.脉搏声信号检测系统实验设计及功率谱特征[J].中华物理医学杂志,1998,20(3):158-161.
    [7]田家玮,李如萍.三维血管超声研究的进展[J].中国医学影像技术,1999,15(5):398-399.
    [8]Huai Yongjin, Han Zhengsheng. Design of a High Precision Array Pulse Sensor in TCM[J]. JOURNAL OF SEMICONDUCTORS,2008,29(4):701-705.
    [9]张殉,李志能,陈凯杰等.精细静脉脉象检测新方法及其传感器设计[J].浙江大学学报,2009,43(3):459-462.
    [10]张大鹏,汤伟昌,徐礼胜.中医脉象传感器、三部九侯脉象检测仪及脉象检测方法[P].中国:CN101049247A,2007.10.10.
    [11]罗贵存.基于复合式压力传感器脉象仪的脉象数字特征分析[D].哈尔滨:哈尔滨工业大学,2007.
    [12]马利庄,杨旭波,肖学中等.脉象采集数字手套[P].中国:CN1595335A, 2005.03.16.
    [13]汤伟昌,李睿.三部脉象检测系统的研究[J].研究与论著,2005,29(3):164-166.
    [14]J. Dargahi, W.F. Xie, Peng Ji. An Experimental Teletaction System for Sensing and Teleperception of Human Pulse [J]. Mechatronics,2008, (18):195-207.
    [15]Edward J. Ciaccio, Gary M. Drzewiecki. Tonometric Arterial Pulse Sensor with Noise Cancellation[J]. IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,2008,55(10):2388-2396.
    [16]Hasikin K, Soin N, Ibrahim F. Modeling of a Polyimide Diaphragm for an Optical Pulse Pressure Sensor[C]. International Conference for Technical Postgraduates, 2009,1-5.
    [17]齐天华,刘继伟,高文秀.阵列式脉象传感器的设计与制作[J].传感器技术,2005,24(8):86-88.
    [18]张爱华,余冬.基于相关分析的多维脉搏信号获取[J].中国生物医学工程学报,2006,25(6):793-795.
    [19]刘峰,陈家旭.新型全方位脉象仪设计方案[J].现代科学仪器,2007,(4):40-42.
    [20]姜斌,宋蜇存,于鹏.脉象传感器的发展概况[J].科技资讯,2007,(5):22.
    [21]蔡骏,周昌乐,黄旭.中医脉象信息检测方法研究的新进展[J].生物医学工程学杂志,2007,24(3):709-712.
    [22]张晓然,李素香,张勤善.脉象仪的发展现状与思考[J].中医研究,2008,21(5):3-6.
    [23]甘以明,丁辛,杨旭东等.嵌入式压力传感器的偏置对脉搏信号的影响[J].东华大学学报(自然科学版),2008,12(6).672-676.
    [24]张爱华,郭放.无标定检测提取脉搏图像信息[J].中国组织工程研究与临床康复,2009,13(26):5113-5116.
    [25]王丙利,李点美,王璐等.硅悬臂梁脉象传感器温度补偿[J].传感器与微系统,2006,25(4):24-28.
    [26]So-Youn Park, Ju-Jang Lee. Self-Diagnosis Device Using Wrist Pulse[J]. The 33rd Annual Conference of the IEEE Industrial Electronics Society (IECON),2007, (33):139-142.
    [27]Teh-Ho Tao, Shin-Jen Hu, Jla-Hung Peng et al. An Ultrawideband Radar Based Pulse Sensor for Arterial Stiffness Measurement[J]. Proceedings of the 29th Annual International Conference of the IEEE EMBS,2007, (29):1679-1682.
    [28]Takuji Suzuki, Ken-ichi Kameyama, Toshiyo Tamura. Development of the Irregular Pulse Detection Method in Daily Life using Wearable Photoplethysmographic Sensor[J].31st Annual International Conference of the IEEE EMBS,2009, (31):6080-6083.
    [29]Lu Wang, Dianzhong Wen. Research on Non-invasive Arterial Pulse Sensor and Detecting System[J]. Biomedical Engineering and Informatics,2009, (1):1-5.
    [30]Hannu Sorvoja, Vuokko-Marjut Kokko, Risto Myllyla, et al. Use of EMFi as a Blood Pressure Pulse Transducer[J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,2005,54(6):2505-2512.
    [31]Qifa Zhou, Xiaochen, XuLei Sun, et al. PMN-PT Single Crystal, High-Frequency Ultrasonic Needle Transducers for Pulsed-Wave Doppler Application[J]. IEEE transactions on ultrasonics,ferroelectrics, and frequency control,2007,54(3): 668-675.
    [32]K. Hasikinl, N. Soin, F.Ibrahim. Modeling of a Polyimide Diaphragm for an Optical Pulse Pressure Sensor[D]. Kuala Lumpur.University of Malaya,2009.
    [33]Mikyoung Park, HeeJung Kang, Young Huh, et al. Cuffless and Noninvasive Measurement of Systolic Blood Pressure, Diastolic Blood Pressure, Mean Arterial Pressure and Pulse Pressure using Radial Artery Tonometry Pressure Sensor with Concept of Korean Traditional Medicine [J]. Proceedings of the 29th Annual International Conference of the IEEE EMBS,2007, (29):3597-3600.
    [34]岳瑞峰,刘理天,李志坚.集成MOS力敏运放压力传感器[J].半导体学报,2001,22(4):500-502.
    [35]颜黄苹,冯勇建,许金海,等.MOS场效应管压力微传感器[J].传感器技术,2001,20(5):19-21.
    [36]Zhao-Hua Zhang, Yan-Hong Zhang, Li-Tian Liu, et al. A Novel MEMS Pressure Sensor with MOSFET on Chip[J]. IEEE Sensors Conference,2008:1564-1567.
    [37]Yan-Hong Zhang, Li-Tian Liu, Zhao-Hua Zhang, et al. A Novel MOSFET Pressure Microsensor[J].2006:614-616.
    [38]张艳红,刘理天,张兆华,等.新型MOS晶体管式压力传感器[J].微纳电子技术,2007(7-8):225-234.
    [39]M.Fernandez-Bolanos, N.Abele, V.Pott, et al. Polyimide sacrificial layer for SOI SG-MOSFET pressure sensor[J]. Microelectronic Engineering,2006, (83): 1185-1188.
    [40]C.Ravariu, A.Rusu, F.Ravariu. MODIFIED SOI-MOSFET STRUCTURE WITH SHALLOWS DIFFUSIONS[C]. International Semiconductor Conference,2007, 477-480.
    [41]何宇亮,王因生,桂德成,等.纳米硅异质结二极管[J].固体电子学研究与进展,2000,20(1):34-39.
    [42]Ling-Feng Mao. The quantum size effects on the surface potential of nanocrystalline silicon thin film transistors[J]. Thin Solid Films,2010,518(12): 3396-3401.
    [43]F. Besahraoui, Y. Bouizem, L. Chahed, et al. New Numerical Simulation of the Optical Behavior of Nanocrystalline Silicon Thin Films[J]. Physics Procedia, 2009,2(3):655-663.
    [44]D. Gracin, B. Etlinger, K. Juraic, et al. DC conductivity of amorphous-nanocrystalline silicon thin films[J]. Vacuum,2009,84(1):243-246.
    [45]Andreja Gajovic, Davor Gracin, Krunoslav Juraic, et al. Correlating Raman-spectroscopy and high-resolution transmission-electron-microscopy studies of amorphous/nanocrystalline multilayered silicon thin films[J]. Vacuum,2009, 517(18):5453-5458.
    [46]H.C.Lee, S.P.Hong, S.K.Kang, et al. Residual stress on nanocrystalline silicon thin films deposited under energetic ion bombardment by using internal ICP-CVD[J]. Thin Solid Films,2009,517(14):4100-4103.
    [47]Amartya Chowdhury, Sumita Mukhopadhyay, Swati Ray. Fabrication of thin film nanocrystalline silicon solar cell with low light-induced degradation[J]. Solar Energy Materials and Solar Cells,2009,93(5):597-603.
    [48]R.E.I. Schropp, J.K. Rath, H. Li. Growth mechanism of nanocrystalline silicon at the phase transition and its application in thin film solar cells [J]. Journal of Crystal Growth,2009,3(15):760-764.
    [49]P.Q. Luo, Z.B. Zhou, K.Y. Chan, et al. Gas doping ratio effects on p-type hydrogenated nanocrystalline silicon thin films grown by hot-wire chemical vapor deposition[J]. Applied Surface Science,2008,255(5):2910-2915.
    [50]A.M. Funde, Nabeel Ali Bakr, D.K. Kamble, et al. Influence of hydrogen dilution on structural, electrical and optical properties of hydrogenated nanocrystalline silicon (nc-Si:H) thin films prepared by plasma enhanced chemical vapour deposition (PE-CVD)[J]. Solar Energy Materials and Solar Cells,2008,92(10): 1217-1223.
    [51]Sumita Mukhopadhyay, Amartya Chowdhury, Swati Ray.Nanocrystalline silicon: A material for thin film solar cells with better stability [J]. Thin Solid Films,2008, 516(20):6824-6828.
    [52]Amartya Chowdhury, Sumita Mukhopadhyay, Swati Ray.Fabrication of low defect density nanocrystalline silicon absorber layer and its application in thin-film solar cell[J]. Thin Solid Films,2008,516(20):6858-6862.
    [53]Tining Su, Tong Ju, Baojie Yan, et al.ESR study of the hydrogenated nanocrystalline silicon thin films[J]. Thin Journal of Non-Crystalline Solids,2008, 354(19-25):2231-2234.
    [54]Sang-Myeon Han, Sun-Jae Kim, Joong-Hyun Park, et al. High quality nanocrystalline silicon thin film fabricated by inductively coupled plasma chemical vapor deposition at 350 ℃ [J]. Journal of Non-Crystalline Solids,2008,354(25): 2268-2271.
    [55]Amartya Chowdhury, Sumita Mukhopadhyay, Swati Ray.Effect of gas flow rates on PECVD-deposited nanocrystalline silicon thin film and solar cell properties[J]. Solar Energy Materials and Solar Cells,2008,92(4):385-392.
    [56]F. Villar, J. Escarre, A. Antony, et al. Nanocrystalline silicon thin films on PEN substrates[J]. Thin Solid Films,2008,516(5):584-587.
    [57]Peiqing Luo, Zhibin Zhou, Youjie Li, et al. Effects of deposition pressure on the microstructural and optoelectrical properties of B-doped hydrogenated nanocrystalline silicon (nc-Si:H) thin films grown by hot-wire chemical, vapor deposition[J]. Microelectronics Journal,2008,39(1):12-19.
    [58]P. Alpuim, M. Andrade, V. Sencadas, et al. Piezoresistive properties of nanocrystalline silicon thin films deposited on plastic substrates by hot-wire chemical vapor deposition[J]. Thin Solid Films,2008,515(19):7658-7661.
    [59]Koel Adhikary, Swati Ray. Characteristics of p-type nanocrystalline silicon thin films developed for window layer of solar cells [J]. Journal of Non-Crystalline Solids,2007,353(22-23):2289-2294.
    [60]Amartya Chowdhury, Sumita Mukhopadhyay, Swati Ray.Structural and transport properties of nanocrystalline silicon thin films prepared at 54.24 MHz plasma excitation frequency[J]. Journal of Crystal Growth,2007,304(2):352-360.
    [61]Czang-Ho Lee, Andrei Sazonov, Arokia Nathan.High hole and electron mobilities in nanocrystalline silicon thin-film transistors [J]. Journal of Non-Crystalline Solids,2006,352(9-20):1732-1736.
    [62]Wensheng Wei, Gangyi Xu, Tianmin Wang, et al. Carrier conduction in heteroj unction of hydrogenated nanocrystalline silicon with crystal silicon[J]. Thin Solid Films,2007,515(7-8):3997-4003.
    [63]Ying Xu, Zhihua Hu, Hongwei Diao, et al. Heterojunction solar cells with n-type nanocrystalline silicon emitters on p-type c-Si wafers[J]. Journal of Non-Crystalline Solids,2006,352(9-20):1972-1975.
    [64]Z.X. Zhao, R.Q. Cui, F.Y. Meng, et al. Nanocrystalline silicon thin films prepared by RF sputtering at low temperature and heterojunction solar cell[J]. Materials Letters,2004,58(30):3963-3966.
    [65]F. Zignani, A. Desalvo, E. Centurioni. Silicon heterojunction solar cells with p nanocrystalline thin emitter on monocrystalline substrate[J]. Thin Solid Films, 2004,451(3):350-354.
    [66]刘明,刘宏,何宇亮.纳米硅/单晶硅异质结二极管的I-V特性[J].物理学报,2003,52(11):2875-2878.
    [67]赵占霞,崔容强,赵百川,等.溅射法低温生长纳米硅薄膜及异质结电池.真空[J].VACUUM,2004,41(5):11-14.
    [68]Z.X. Zhao, R.Q. Cui, F.Y. Meng, et al. Nanocrystalline silicon thin films deposited by high-frequency sputtering at low temperature [J]. Solar Energy Materials and Solar Cells,2005, (86):135-144.
    [69]Z.X. Zhao, R.Q. Cui, F.Y. Meng, et al. Nanocrystalline silicon thin films prepared by RF sputtering at low temperature and heterojunction solar cell[J]. Materials Letters,2004, (58):3963-3966.
    [70]Bing-Rui Wu, Dong-SingWuu, Meng-ShenWan, et al. Fabrication of nc-Si/c-Si solar cells using hot-wire chemical vapor deposition and laser annealing [J]. Solar Energy Materials and Solar Cells,2009,93(6-7),993-995.
    [71]N. V.Lavrik, M. J. Sepaniak, and P. G Datskos. Cantilever transducers as a platform for chemical and biological sensors[J], Review Of Scientific Instruments, 2004, (75):2229-2253.
    [72]M. Yue, H.Lin, D. E. Dedrick, et al. A 2-D microcantilever array for multiplexed biomolecular analysis[J]. Journal Of Microelectromechanical Systems,2004 (13): 290-299.
    [73]L. Senesac, T. G. Thundat. Nanosensors for trace explosive detection [J], Materials Today,2008(11):28-36.
    [74]温殿忠,穆长生,赵晓峰.采用MEMS技术制造硅磁敏三极管[J].传感器技术,2001,20(5):49-52.
    [75]温殿忠.微泵硅膜振动拾振传感器的设计[J].传感器技术,2007,20(6):1249-1252.
    [76]WEN Dian-zhong. Study on a New Magneto-Transistor Formed on a SOI Substrat[J]. Chinese Journal of Electron Devices,2006,29(3):609-612.
    [77]赵晓锋,温殿忠.基于MEMS技术新型硅磁敏三极管负阻-振荡特性[J].半导体学报,2005,26(6):1214-1217.
    [78]宫经宽,刘樾.MEMS传感器在航空综合电子备份仪表中的应用[J].航空精密制造技术,2009,45(6):45-62.
    [79]J.-P. Raskin, F. Iker,N. Andr, et al. Bulk and surface micromachined MEMS in thin film SOI technology[J]. Sensors and Actuators A,2007,52:2850-2861.
    [80]Radhakrishna Vatedka, Hidekuni Takao, Kazuaki Sawada, et al. Effect of high drain voltage on stress sensitivity in nMOSFETs[J]. Sensors and Actuators A, 2007, (140):89-93.
    [81]周倜,李格,李金华.压力传感器的应力计算[J].江苏石油化工学院学报,2002,12(4):47-49.
    [82]A. Alvin Barlian, Sung-Jin Park, Vikram Mukundan, et,al. Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors[J]. Sensors and Actuators A,2007,134:77-87.
    [83]Chang-Chun Lee, Chih-Tang Peng, Kuo-Ning Chiang. Packaging effect investigation of CMOS compatible pressure sensor using flip chip and flex circuit board technologies [J]. Sensors and Actuators A,2006,126:48-55.
    [84]Chih-Tang Peng, Ji-Cheng Lin, Chun-Te Lin, et al. Performance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technology [J]. Sensors and Actuators A,2005:28-37.
    [85]郭成锐,林鸣谢.压阻式MEMS压力传感器的原理与分析[J].电子质量.2007,(9):38-40.
    [86]张艳红,刘理天,张兆华.新型MOS晶体管式压力传感器[J].微纳电子技术,2007,(7-8):225-234.
    [87]张为,姚素英,张生才等.一种半导体压力传感器[J].天津大学学报,2005,38(10):901-903.
    [88]张栋,李永红.基于MEMS加工技术压力传感器工艺研究[J].传感器世界,2007,(4):30~32.
    [89]张文栋,石云波.新型复合硅微传感器的设计[J].纳米技术与精密工程,2004,2(1):24-28.
    [90]李铁莲,廉自生.液压支架中压力传感器的设计[J].煤矿机械,2007,28(4):20-22.
    [91]温殿忠.力学量敏感器件原理与应用[M].哈尔滨:黑龙江科学技术出版社,1994.150-264.
    [92]温殿忠,赵晓锋,张振辉.传感器原理及其应用[M].哈尔滨:黑龙江大学出版社,2008.1-230.
    [93]李科杰.现代传感技术[M].北京:电子工业出版社,2005:102-104.
    [94]刘迎春,叶湘滨.传感器原理设计与应用[M].北京:国防科技大学出版社,2002:338-339.
    [95]吴家龙.弹性力学[M].北京:高等教育出版社,2001:114-117,377-379.
    [96]徐芝纶.弹性力学[M].北京:高等教育出版社,2006:71.
    [97]范钦珊,殷雅俊.材料力学[M].北京:清华大学出版社,2004:143-144.
    [98]赵晓锋,温殿忠.在EPW中采用(100)硅制作微悬臂梁凸角补偿及工艺研究[J].黑龙江大学自然科学学报,2005,22(5):697-700.
    [99]Li Junchang. The Optimal Control of the Laser Heat Treatment [M]. Beijing: Metallurgical Industry Press,1995.
    [100]施湧潮,梁福平,牛春晖.传感器检测技术[M].北京:国防工业出版社,2007. 21-25.
    [101]纪宗南.AD202/AD204隔离放大器及其应用[J].国外电子元器件,1999,(8):5-12.
    [102]徐大诏.基于FPGA实现的AD1l674高精度快速数据采集系统[J].2009,16(5):23-33.
    [103]钱灿荣,聂东.12位A/D转换器AD1674的单片机接口技术[J].咸宁学院学报,2006,26(3):80-82.
    [104]曹建荣,姚庆梅,张玫.基于AD1674模数转换芯片的接口电路设计[J].青岛大学学报2002,17(3):20-24.
    [105]胡燕,王祥,姜霞玲.解析AD1674的用法[J].仪器仪表用户,2005,12(6):127-129.
    [106]张天凡.51单片机C语言开发详解[M].北京:电子工业出版社.2008,211-214.
    [107]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社:2005,4-9.
    [108]韩力群.人工神经网络教程[M].北京:北京邮电大学出版社.2006,59-64
    [109]阎平凡,张长水.人工神经网络与模拟进化计算(第二版)[M].北京:清华大学出版社:2005,70-71.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700