基于MEMS技术制作MOSFET压力传感器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力传感器被广泛应用于医疗、工业过程监控、生物和航空等各个领域。据相关文献介绍,压力传感器种类繁多,其中多数都是采用硅材料制作的。扩散硅式压力传感器具有灵敏度高且可以小型化、集成化等许多优点,近些年有长足的发展。本文基于MEMS技术制作的MOSFETs压力传感器是在硅杯的方形硅膜上采用微机械加工工艺制作四个P沟道增强型场效应管(P-MOSFET),使硅膜上的四个P-MOSFETs组成惠斯通电桥。利用半导体压阻效应,令两个P-MOSFETs置于硅敏感膜的径向位置,而另外两个P-MOSFETs置于硅敏感膜的横向位置。传感器受电源激励时,对硅敏感膜施加压力,电桥中两个径向的P-MOSFETs沟道等效电阻阻值增大,两个横向P-MOSFETs沟道等效电阻阻值减小。因此使桥路失去平衡,产生端电压输出,从而实现了将力学量信号转化为与之有对应关系的电压信号。
     本文在综述了国内外压力传感器研究概况的基础上,阐述了MOSFETs压力传感器的结构设计、工作原理、制造工艺和该新结构传感器的计算机仿真,对实验研制的MOSFETs压力传感器I-V特性、压敏特性、温度特性进行了实验测试和静态特性分析。实验结果表明,研制的MOSFETs压力传感器灵敏度为8.9mV/100KPa,线性度为±1.651%F·S,迟滞为±0.529%F·S,重复性为±1.550%F·S,精度是2.326%F·S,零点输出的温度系数为1.32%/℃,灵敏度的温度系数为-0.33%/℃,符合设计要求。
     本文设计的MOSFETs压力传感器信号容易采集,测试系统简单;很好地克服了MOSFET电容式压力传感器的测试电路复杂且微小电容信号难以测量的缺点。同时,本文的MOSFETs压力传感器采用P-MOSFET沟道等效电阻做压敏电阻,代替了以往的扩散硅压敏电阻;不但增强了传感器的稳定性,降低了传感器的噪声,而且测量信号稳定,温度特性较好。基于MEMS技术制作的MOSFETs压力传感器的制作工艺与集成电路工艺相兼容,有广泛的应用前景。
Pressure sensor is largely used in the fields such as medical treatment, industry process control, biology and aviation. As far as some literatures concerned, there are many types of pressure sensors, most of them are made from silicon. Silicon diffusion pressure sensor has high sensitivity and could realize miniaturization, integration and so on. So it has made great progress these years. In this paper, the pressure sensor made by MEMS technology has square silicon film with four P type MOSFETs. They make up of Wheatstone bridge. In terms of piezoresistance effect of semiconductor, the sensor has two P type equivalent channel resistances of MOSFET locate at the longitudinal orientation, and the other two locate at the transverse orientation. When the power is supplied and the pressure is applied, two longitudinal P type equivalent channel resistances of MOSFET turn to bigger, the other two become smaller. Then the bridge is out of balance, there is the voltage output, so we can change the pressure signal into the corresponding electric signal.
     Based on the related research of pressure sensor at home and abroad, this paper describes the structure design, work theory, fabrication process and the simulation of MOSFETs pressure sensor. During the experiment, the I-V characteristic, pressure sensitive characteristic and the temperature characteristic are tested; after that the static characteristic is analyzed. The experiment results indicate that the sensitivity of MOSFETs pressure sensor is 8.9mV/100KPa, the linearity is±1.651%F·S, the lag is±0.529%F·S, the repeatability is±1.550%F·S, the precision is2.326 % F·S, the temperature coefficient of null output is 1.32%/℃, the temperature coefficient of sensitivity is -0.33%/℃. The MOSFETs pressure sensor meets the design demand.
     The MOSFET pressure sensor this paper designed can easily get the useful information, and it has simple test system. It can get over the difficulties that MOSFET capacitance pressure sensor has, it avoid the complex test circuit and the trouble that tiny signal is hard to test. At the mean time, the MOSFETs pressure sensor use P-MOSFET channel as pressure sensitive resistance instead of using diffusion silicon as pressure sensitive resistance. So the stability of the sensor is enhanced, the disturbance of the sensor is minimized, the test signal is stabilized, the temperature characteristic is better. The process of MOSFETs pressure sensor based on MEMS technology is compatible with IC process, which has expensive application prospect.
引文
[1]颜黄苹,冯勇建,许金海等.MOS场效应管压力微传感器[J].传感器技术,2001,20(5):19-21.
    [2]王权,丁建宁,王文襄.通用型高温压阻式压力传感器研究[J].中国机械工程,2005,16(20):1795-1798.
    [3]贺水燕,彭万里.硅集成压力传感器设计[J].湘潭师范学院学报(自然科学版),2002,24(3):64-66.
    [4]刘月明,刘君华,张少君.硅微机械传感器的技术特点及发展趋势[J].仪表技术与传感器,2000,(2):1-20.
    [5]金红亚.微型机械技术的应用和市场前景[J].机电一体化,2000,(6):11-13.
    [6]李戎.压力传感器的现状及发展趋势[J].西安工业学院学报,2002,22(3):241-243.
    [7]薛伟,王权,丁建宁等.基于MEMS技术的超微压压力传感器研究进展[J].农业机械学报,2006,37(3):157-159.
    [8]Marko Pavlin,Franc Novak.Yield enhancement of piezoresistive pressure sensors for automotive applications[J].Sensors and Actuators A,2008,141:34-42.
    [9]温殿忠.力学量敏感器件原理与应用[M].哈尔滨:黑龙江科学技术出版社.1994:1-218.
    [10]赵艳平,丁建宁,杨继昌等.硅压力传感器芯片设计分析与优化设计[J].MEMS器件与技术,2006,(9):438-441.
    [11]陈颜军.半导体压阻式传感器的应用.[J]煤炭工程,2005,(4):71-72.
    [12]张晓群,吕惠民.压力传感器的发展、现状与未来[J].半导体杂志,2000,25(1):47-50.
    [13]梁秀红,鞠玉林,任丙彦.扩散硅压阻传感技术的研究现状与发展趋势[J].河北工业大学成人教育学院学报,2000,15(2):37-51.
    [14]张鑫,郭清南,李学磊.压力传感器研究现状及发展趋势[J].电机电器技术,2004,(4):5-29.
    [15]张为,姚素英,张生才等.高温压力传感器现状与展望[J].仪表技术与传感器,2002,(4):6-8.
    [16]常志文.传感器技术发展动向[J].昆明冶金高等专科学校学报,2005,21(5):40-44.
    [17]韩小亮,朱作云,李跃进.高温半导体压力传感器技术[J].西安电子科技大学学报(自然科学版),2001,28(1):120-124.
    [18]颜黄苹,冯勇建,许金海.MOS场效应管压力微传感器[J].传感器技术,2001,20(5):19-21.
    [19]张书玉,张维连,索开南.SOI高温压力传感器的研究[J].传感技术学报,2006,19(4):984-987.
    [20]A.Bems,U.Buder a,E.Obermeier.AeroMEMS sensor array for high-resolution wall pressure measurements[J].Sensors and Actuators A,2006,132:104-111.
    [21]Ingelin Clausen,Ola Sveen.Die separation and packaging of a surface micromachined piezoresistive pressure sensor[J].Sensors and Actuators A,2007,(133):457-466.
    [22]M.Ferna'ndez-Bolan os,N.Abele'a,V.Pott,et al.Polyimide sacrificial layer for SOI SG-MOSFET pressure sensor[J].Microelectronic Engineering,2006(83):1185-1188.
    [23]J.-P.Raskin,F.Iker,N.Andr,et al.Bulk and surface micromachined MEMS in thin film SOI technology[J].Sens.Actuators A,2007,52:2850-2861.
    [24]Radhakrishna Vatedka,Hidekuni Takao,Kazuaki Sawada,etal.Effect of high drain voltage on stress sensitivity in nMOSFETs[J].Sens.Actuators A,2007,140:89-93.
    [25]周倜,李格,李金华.压力传感器的应力计算[J].江苏石油化工学院学报,2002,12(4):47-49.
    [26]Phillip E.Allen,Douglas R.holberg.CMOS Analog Circuit Design Second Edition[M].Beijing:Publishing House of Electronics Industry.2006.58-63.
    [27]A.Alvin Barlian,Sung-Jin Park,Vikram Mukundan,etal.Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors[J].Sens.Actuators A,2007,134:77-87.
    [28]Chang-Chun Lee,Chih-Tang Peng,Kuo-Ning Chiang.Packaging effect investigation of CMOS compatible pressure sensor using flip chip and flex circuit board technologies[J].Sensors and Actuators A,2006,126:48-55.
    [29]Chih-Tang Peng,Ji-Cheng Lin,Chun-Te Lin,et al.Performance and package effect of a novel piezoresistive pressure sensor fabricated by front-side etching technology[J].Sensors and Actuators A,2005:28-37.
    [30]郭成锐,林鸣谢.压阻式MEMS压力传感器的原理与分析[J].电子质量.2007(9):38-40
    [31]朱作云,李跃进,王文襄.微型压阻式压力传感器的研制[J].电子科技,1997,(1):22-25.
    [32]张艳红,刘理天,张兆华.新型MOS晶体管式压力传感器[J].微纳电子技术,2007,(7-8):225-234.
    [33]张为,姚素英,张生才等.一种半导体压力传感器[J].天津大学学报,2005,38(10):901-903.
    [34]张栋,李永红.基于MEMS加工技术压力传感器工艺研究[J].传感器世界,2007,(4):30-32.
    [35]张文栋,石云波.新型复合硅微传感器的设计[J].纳米技术与精密工程,2004,2(1):24-28.
    [36]李铁莲,廉自生.液压支架中压力传感器的设计[J].煤矿机械,2007,28(4):20-22.
    [37]陈贵灿,邵志标,程军等.CMOS集成电路设计[M].西安:西安交通大学出版社.2000.48-57.
    [38]曹培栋.微电子技术基础——双极、场效应晶体管原理[M].北京:电子工业出版社.2004.234-244.
    [39]W.M.彭尼,L.劳.金属一氧化物一半导体集成电路[M].北京:科学出版社.1977.41-48.
    [40]温殿忠,黄得星,张喜勤等.磁敏感元器件与磁传感器[M].哈尔滨:黑龙江 科学技术出版社.2003,20-22.
    [41]E.Hynes,M.O'Neill,D.McAuliffe.Development and charaeterisation of a surface micromachined FET pressure sensor on a CMOS process[J].Sensors and Actuators A,1999,79:283-292.
    [42]Xiaodong Wang,Baoqing Lia,Onofrio L.Russo,et al.Diaphragm design guidelines and an optical pressure sensor based on MEMS technique[J].Sensors and Actuators A,2006,(37):50-56.
    [43]T.Bourouina,C.Vauge,H.Mekki.Variational method for tensile stress evaluation and application to heavily boron-doped square-shaped silicon diaphragms[J].Sensors and Actuators A,1995,(49):21-27
    [44]贺水燕,彭万里.硅集成压力传感器设计[J].湘潭师范学院学报(自然科学版),2002,24(3):64-66.
    [45]颜鹰,史铁林.基于MEMS压力传感器的研究[J].仪表技术与传感器,2005,(2):7-8.
    [46]周倜,李格,李金华.压力传感器的应力计算[J].江苏石油化工学院学报,2002,14(4):47-49.
    [47]孙慧明,于泉.半导体敏感元器件工艺原理[M].哈尔滨:东北林业大学出版社.2000.145-192.
    [48]关旭东.硅集成电路工艺基础[M].北京:北京大学出版社.2003.131-137.
    [49]R.Coq Germanicus,E.Picard,B.Domenges.Microstructure and electrical characterization based on AFM of very high-doped polysilicon grains[J].Applied Surface Science,2007,253:6006-6012.
    [50]M.Zaghdoudi,M.M.Abdelkrim,M.Fathallah.Phosphorus doping and deposition pressure effects on optical and electrical properties of polysilicon[J].Materials Science and Engineering C,2006,26:177-180.
    [51]J.Akhtar,S.K.Lamichhane,P.Sen.Thermal-induced normal grain growth mechanism in LPCVD polysilicon film[J].Materials Science in Semiconductor Processing,2005,8:476-482.
    [52]H.Mahfoz-Kot,A.C.Salaun,T.Mohammed-Brahim.Air-gap polysilicon thin film transistors on glass substrates[J].Sensors and Actuators A,2004,113:344-349.
    [53]Kenichiro Suzuki.Hemispherical-grained LPCVD-polysilicon films for use in MEMS applications[J].Sensors and Actuators A,2000,79:141-146.
    [54]Janak Singh,Sudhir Chandr,Ami Chand.Strain studies in LPCVD polysilicon for surface micromachined devices[J].Sensors and Actuators A,1999,77:133-138.
    [55]M.Boukezzata,B.Birouk,D.Bielle-Daspet.Second-oxidation properties of thin polysilicon films grown by LPCVD and heavily in situ boron-doped[J].Thin Solid Films,1998,335:70-79.
    [56]Y.Laghl,E.Scheid,H.Vergnes.Electronic properties and microstructure of undoped,and B- or P-doped polysilicon deposited by LPCVD[J].Solar Energy Materials and Solar Cells.1997,48:303-314.
    [57]P.Kleimann,B.Semmache,M.Le Berre.Thermal drift of piezoresistive properties of LPCVD polysilicon thin films between room temperature and 200℃[J].Materials Science and Engineering B,1997,46:43-46.
    [58]Mari Ylonen,Altti Torkkeli,Hannu Kattelus.In situ boron-doped LPCVD polysilicon with low tensile stress for MEMS applications[J].Sensors and Actuators A,2003,109:79-87.
    [59]刘玉岭,檀柏梅,张楷亮.微电子技术工程——微电子技术工程——材料、工艺与测试[M].北京:电子工业出版社.2004.340-350.
    [60]Langping Wang,Lei Huang,Yuhang Wang.Duplex diamond-like carbon film fabricated on 2Cr13 martensite stainless steel using inner surface ion implantation and deposition[J].Surface & Coatings Technology,2008,202:3391-3395.
    [61]Y.Wang,M.Qi,G.Q.Li.Morphology of large α-Fe precipitate formed inside sapphire by ion implantation and annealing[J].Materials Letters,2008,62:1444-1447.
    [62]陈力俊.微电子材料与制程[M].上海:复旦大学出版社.2005:207-269.
    [63]T.O ktem,I.Tarakc,loglu,E.O zdogan.Modification of friction and wear properties of PET membrane fabrics by MEVVA ion implantation[J].Materials Chemistry and Physics,2008,108:208-213.
    [64]王惟林,刘训春,魏珂.GaAs的ICP选择刻蚀研究[J].功能材料与器件学报, 2000,6(3):174-177.
    [65]Qi Chen,Ji Fang,Hai-Feng Ji.lsotropie etch for SiO2 microcantilever release with ICP system[J].Microelectronic Engineering,2008,85:500-507.
    [66]G.Marcos,A.Rhallabi,P.Ranson.Properties of deep etched trenches in silicon:Role of the angular dependence of the sputtering yield and the etched species redeposition[J].Applied Surface Science,2008,254:3576-3584.
    [67]Jin-Wan Jeon,Jun-Bo Yoon,Koeng Su Lira.Sloping profile and pattern transfer to silicon by shape-controllable 3-D lithography and ICP[J].Sensors and Actuators A,2007,139:281-286.
    [68]张鉴,黄庆安.ICP刻蚀技术与模型[J].微纳电子技术,2005,(6):288-296.
    [69]Takatoshi Yamada,Hiromichi Yoshikawa,Hiroshi Uetsuka,et al.Cycle of two-step etching process using ICP for diamond MEMS applications[J].Diamond & Related Materials,2007,16:996-999.
    [70]C.C.Welch,A.L.Goodyear,T.Wahlbrink.Silicon etch process options for microand nanotechnology using inductively coupled plasmas[J].Microelectronic Engineering,2006,83:1170-1173.
    [71]T.Wahlbrink,T.Mollenhauer,Y.M.Georgiev,et al.Highly selective etch process for silicon-on-insulator nano-devices[J].Microelectronic Engineering,2005,78-79:212-217.
    [72]樊中朝,余金中,陈少武.ICP刻蚀技术及其在光电子器件制作中的应用[J].微细加工技术,2003,(2):21-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700