厚截面碳纤维复合材料VIMP工艺制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真空导入模塑工艺(Vacuum Infusion Molding Process, VIMP)是大型复合材料构件的常用制备工艺。本文系统开展了VIMP工艺整体成型大尺寸厚截面碳纤维复合材料的相关基础研究。重点考察了厚截面碳纤维预成型体中碳纤维/树脂的浸润机理、树脂体系的流变行为和固化动力学行为、多层纤维织物预成型体的压缩响应行为、多层纤维织物预成型体的面内(x-y平面内)和面外(即z向)渗透特性、厚截面复合材料固化过程中的热化学效应和残余热应力、以及尺度效应对碳纤维复合材料静态力学性能的影响规律。主要研究工作包括:
     开展了碳纤维/环氧树脂的界面性能研究。采用偶联剂直接加入树脂中的迁移法来改善碳纤维/树脂的界面性能,确定偶联剂的最佳含量,优选出纤维/树脂界面粘接性能最佳的胺基硅烷偶联剂改性环氧树脂体系为VIMP工艺整体成型厚截面碳纤维复合材料的基体树脂体系。
     开展了基体树脂体系的VIMP工艺特性研究。考察了基体树脂体系的等温和非等温流变特性。结果表明,基体树脂体系具有VIMP工艺整体成型厚截面碳纤维复合材料的低黏度流变特性,及其适宜的低黏度保持时间。针对单一黏度模型难以准确预测宽黏度范围内树脂体系黏度变化的问题,提出了联合黏度模型来预测树脂体系的流变行为。结果表明,在0~5000mPa·s黏度范围内联合黏度模型预测黏度结果与实验值具有良好的一致性。
     开展了基体树脂体系的固化动力学研究。采用DSC热分析法确定了基体树脂体系的最佳预固化温度、固化温度和后固化温度。建立了基体树脂体系的固化动力学模型。结果表明,树脂体系的动态和等温固化动力学行为可分别采用自催化模型和修正自催化模型来描述,最大固化度与等温固化温度呈良好的线性关系。
     开展了真空负压下多层纤维织物预成型体的压缩响应研究。采用数值模拟方法分析了VIMP工艺注射过程中纤维预成型体压实应力状态随树脂渗流进程的变化规律,以及预成型体厚度(层数)变化对其渗透率、纤维体积分数和流体压力的影响。考察了材料参数和工艺参数对干态纤维预成型体压缩响应的影响。结果表明,纤维预成型体的压实和松弛过程存在明显的滞后现象。预成型体纤维体积分数和厚度随真空压力、压实时间和循环加载次数的变化关系遵循双参数或三参数幂律模型。预成型体纤维体积分数和松弛因子均随其厚度(层数)的增加而增大。纤维预成型体的压缩响应行为与纤维种类、织物形态、铺层方式和混杂方式等因素密切相关。考察了VIMP工艺参数对湿态纤维预成型体压缩响应、复合材料制品厚度和纤维体积分数的影响。结果表明,预注射阶段、注射阶段和后注射阶段,纤维预成型体的厚度变化规律遵循不同的压缩响应模型。沿注射口至抽气口方向,VIMP工艺成型复合材料制品的厚度呈现逐渐减小的趋势,纤维体积分数则逐渐增大。
     开展了多层纤维织物预成型体的面内(x-y平面内)渗透特性研究。考察了导流介质对纤维预成型体面内渗透率及树脂流动行为的影响,以及预成型体面内渗透率随其厚度(层数)的变化规律和厚度效应。结果表明,VIMP工艺中导流介质的提速机理可用渗漏模型和Lead-lag效应来描述。导流介质的提速作用随纤维预成型体厚度(层数)的增加而逐渐减弱。纤维预成型体的面内表观渗透率随其厚度(层数)的增加而降低。
     开展了多层纤维织物预成型体的面外(即z向)渗透特性研究。提出了一种新的面外渗透率测试方法,考察了纤维预成型体面外渗透率随其厚度(层数)的变化规律,以及穿层缝合对预成型体面外渗透率的影响。结果表明,纤维预成型体的面外渗透率比其面内渗透率低1~2个数量级。纤维预成型体的面外渗透率随其厚度(层数)的增加而降低。穿层缝合能够显著提高纤维预成型体的面外渗透率,且缝合因子随厚度(层数)的增加而增大。采用Lead-lag效应表征多层纤维织物预成型体中树脂液体的面内和面外耦合流动行为。结果表明,随着纤维预成型体厚度(层数)的增加,耦合流动行为的影响作用增大。
     开展了厚截面碳纤维复合材料固化过程中的热化学效应和残余热应力研究。考察了单面非对称加热条件下,固化过程中厚截面碳纤维复合材料构件内部的温度和固化度分布,以及厚度变化对温度和固化度分布的影响。结果表明,厚截面复合材料构件中存在明显的温度突变。构件内部温度和固化度呈梯度分布,温度差别最大可达30℃,而固化度差别最大可达10%。温度突变幅度、最大峰值温度、温度梯度和固化度梯度均随着复合材料构件的厚度和体积的增加而增大。考察了厚度变化对厚截面碳纤维复合材料残余热应力的影响。结果表明,厚截面复合材料横向残余热应变的绝对值明显大于纵向残余热应变。厚截面复合材料残余热应力随着构件厚度的增加呈现增大趋势。
     开展了厚截面碳纤维复合材料静态力学性能的尺寸效应研究。结果表明,厚截面碳纤维复合材料弯曲强度、短梁剪切强度和压缩强度均随着厚度的增加而降低,而弯曲模量和压缩模量的测试结果则与试样厚度基本无关。厚截面复合材料的弯曲强度、短梁剪切强度和压缩强度具有明显的尺寸效应,且可用Weibull概率模型进行描述。厚截面复合材料弯曲强度和短梁剪切强度的尺寸效应不仅与“最弱链”数目有关,而且与试样的三维应力状态有关,而压缩强度的尺寸效应仅取决于“最弱链”的分布和数目。
Vacuum infusion molding process (VIMP) is an integral manufacturing techniquefor large-scale composite structures. The basic research related to the VIMPmanufacturing process for large-size thick-section carbon fiber composite structures issystematically carried out in this paper. The research focuses on carbon-fiber/resininfiltration mechanism, rheological behavior and curing kinetics behavior of resinsystem, compaction response of multilayer fabric preform, in-plane (x-y plane) andout-plane (z direction) permeability characteristics of multilayer fabric preform, thethermochemistry effects and thermal residual stress in thick-section composite duringcuring, as well as the scale effects on mechanical properties of the thick-section carbonfiber composites. The main work includes:
     To improve carbon-fiber/resin interfacial adhesion, epoxy resin is modified byincorporation of amino-silane coupling agent. Based on the determined optimalsilane-coupling-agent and its content, an epoxy resin modified by silane coupling agentis chosen as the matrix resin for thick-section carbon fiber composite manufacturedintegrally by VIMP.
     Isothermal and non-isothermal rheological behavior of the epoxy resin isinvestigated by viscosity experiments. The results show that the low-viscosityrheological properties and low-viscosity maintain time of the epoxy resin is appropriatefor VIMP manufacturing of thick-section carbon fiber composites. In order to improvethe prediction accuracy of a single viscosity model, an empirical combined viscositymodel is proposed to predict the rheological behavior of the epoxy resin in a wideviscosity range. The results show that the viscosity predicted by the combined model isin good agreement with the experimental data in the viscosity range of0~5000mPa s.
     DSC analysis is employed to determine the optimal pre-curing, curing andpost-curing temperatures of the epoxy resin. Based on the DSC analysis, the curingkinetics model is established to predict the curing degree of the epoxy resin. The resultsshow that the dynamic and isothermal curing behavior of the epoxy resin can beexpressed by autocatalytic model and modified autocatalytic model, respectively. Themaximum curing degree increases linearly with the isothermal curing temperatures.
     Compaction response behavior of multilayer fabric preform under vacuum pressureis systematically investigated. Numerical simulation is used to analyze the compactionstress variation of the fiber preform and the effects of thickness variation on liquidpressure, permeability as well as fiber volume fraction of the fabric preform during resininfiltration process. Effects of material configurations and processing parameters on thecompaction response behavior of the dry fabric preform are experimentally investigated. The results show that a hysteresis phenomenon can be obviously observed in thecompaction and relaxation process of the fabric preform. The relationship between fibervolume fraction, thickness and vacuum compaction stress, compaction time as well ascyclic times can be expressed by two or three-parameters power law models for thefabric preform. The fiber volume fraction and relaxation factor of the fabric preformincreases with the increasing thickness (layers). Fabric form, fiber types, the way oflayup and hybrid modes have remarkable effects on the compaction response behaviorof the fabric preform. Effects of VIMP processing parameters on the compactionbehavior of wet fabric preform, the thickness and fiber volume fraction of the compositestructures are investigated by experiments. The results show that the thickness variationof the fabric preform follows different compaction response models during pre-filling,filling and post-filling process in VIMP. Thickness of the composite structuremanufactured by VIMP decreases gradually along direction from the injection gate tothe vent, while the fiber volume fraction increases along the direction.
     Flowing experiments are conducted to investigate the in-plane (x-y plane)permeability characteristics of the multilayer fabric preform, including the effects ofdistribution medium on the in-plane permeability and the resin flowing behavior, thevariation rule of in-plane permeability as thickness increasing and thickness effects. Theresults show that the leakage model and Lead-lag effect can be used to describe theaccelerating mechanism of distribution medium on the resin filling flow velocity. Theaccelerating function of distribution medium reduces gradually with the increasingthickness (layers) of the fabric preform. The in-plane permeability of the fabric preformdecreases with the increasing thickness (layers) following two-parameter power lawmodel. It indicates that the accelerating function of the distribution medium and thein-plane permeability of the multilayer fabric preform would be significantly affectedby the thickness of the fabric preform.
     An innovative measuring methods is proposed to investigate the out-plane (zdirection) permeability characteristics of the multilayer fabric prefrom, including theeffects of puncture stitching on the out-plane permeability and the variation rule ofout-plane permeability as thickness increasing. The results show that the out-planepermeability of the fabric preform is1~2orders of magnitude less than that of thein-plane permeability. The out-plane permeability of the fabric preform decreases withthe increasing thickness (layers) following three-parameter power law model. Theout-plane permeability of the fabric preform can be significantly improved by puncturestitching. The stitched factor increases with the increasing thickness (layers) followingthree-parameter power law model. Flow coupling behavior of the in-plane (x-y plane)and the out-plane (z direction) flow is investigated by using Lead-lag effect. The resultsshow that the effect of the flow coupling behavior increases with the increasingthickness (layers).
     Considering single-sided asymmetric heating condition during curing process ofthe thick-section carbon fiber composite manufactured by VIMP, distribution oftemperatures and curing degree as well as the effect of thickness variation areinvestigated by experimental and finite element methods. The results show thattemperature overshoot is observed clearly in the temperature variation history of thethick-section composite during curing process. Along thickness direction, thetemperature and curing degree of the composite are of gradient distributions. Internalmaximum temperature and curing-degree difference of the composite is up to30℃and10%, respectively. The temperature overshoot, maximum peak temperature, temperaturegradient and curing degree gradient increase linearly with the thickness and volume ofthe composite. Effects of thickness variation on the thermal residual stress of thethick-section carbon fiber composite are investigated by experimental and finite elementmethods. The results show that the transverse residual thermal-strain is significantlygreater than the longitudinal residual thermal-strain of the thick-section carbon fibercomposite. And the thermal residual stress of the thick-section composite increases withthe increasing thickness.
     Size effects of static mechanical properties of the thick-section carbon fibercomposite are investigated by experiments and finite element simulation. The resultsshow that flexural strength, short-beam shear strength and compression strength of thecomposite decrease with the increasing thickness following logarithmic model, whilethe flexural and compression modulus basically remain a constant as thicknessincreasing. The size effects of flexural strength, short-beam strength and compressionstrength of the thick-section composite can be expressed by Weibull probability model.The size effects of flexural and short-beam shear strength depend on not only thenumber of the “weakest link” but also the three-dimensional stress states of thespecimen. While the size effects of compression strength only depends on the numberand distribution of the “weakest link”.
引文
[1]乔海霞.玻璃纤维/碳纤维混杂增强复合材料电缆芯老化性能研究[D].国防科学技术大学硕士学位论文,2006.
    [2]杜刚.复合材料推力筒设计与整体制备技术研究[D].国防科技大学博士学位论文,2007.
    [3]刘雄亚,谢怀瑾.复合材料工艺及设备[M].武汉:武汉工业大学出版社.
    [4]郭战胜.厚截面树脂基复合材料制造过程中的热化学和残余应力研究[D].哈尔滨工业大学博士学位论文,2004.
    [5] Gokce A, Hsiao K T, Advani S G. Branch and bound search to optimize injectiongate locations in liquid composite molding process[J]. Composites: Part A,2002,33(9):1263-1272.
    [6]代晓青.纤维预成型体中环氧树脂-固化剂反应体系流动浸渍行为研究[D].国防科学技术大学博士学位论文,2010.
    [7]刘卓峰. GFRP层合板厚板VIMP制备工艺与力学性能尺寸效应研究[D].国防科学技术大学博士学位论文,2010.
    [8]代晓青. RFI工艺成型复合材料构件用树脂膜研究[D].国防科学技术大学硕士学位论文,2005.
    [9] Um M K, Lee W I. A study on the mold filling process in resin transfermolding[J]. Polymer Engineering and Science,1991,31(11):765-771.
    [10] Sun X D, Li S J, Lee L J. Molding filling analysis in vacuum assisted resintransfer molding[J]. Polymer Composites,1998,19(6):807-817.
    [11] Sevostianov I B, Verijenko V E, von Klemperer C J, et al. Mathematical model ofstress formation during vacuum resin infusion process[J]. Composites: Part B,1999,30(5):513-521.
    [12] Zhu Y D, Wang J H, Yang Z. Vacuum Infusion Molding Process Part I: VIMPBased on a high permeable medium[J]. Journal of Wuhan University ofTechnology,2003,18(3):72-75.
    [13] Johnson R J, Pitchumani R. Enhancement of flow in VARTM using localizedinduction heating[J]. Composites Science and Technology,2003,63(15):2201-2215.
    [14] Johnson R J, Pitchumani R. Simulation of active flow control based on localizedperform heating in a VARTM process[J]. Composites: Part A,2006,37:1815-1830.
    [15] Grujicic M, Chittajallu K M. Optimization of the VARTM process forenhancement of the degree of devolatilization of polymerization by-products andsolvents[J]. Journal of Materials Science,2003,38:3729-3739.
    [16] Correia N C, Robitaille F, Long A C. Analysis of the vacuum infusion mouldingprocess: I. Analytical formulation [J]. Composites: Part A,2005,36(12):1645-1656.
    [17] Afendi M, Banks W M, Kirkwood D. Bubble free resin for infusion process[J].Composites: Part A,2005,36(6):739-746.
    [18] Dong C S. Development of a process model for the vacuum assisted resin transfermolding simulation by the response surface method[J]. Composites: Part A,2006,37(9):1316-1324.
    [19] Bender D, Schuster J, Heider D. Flow rate control during vacuum-assisted resintransfer molding (VARTM) processing[J]. Composites Science and Technology,2006,66(13):2265-2271.
    [20] Modi D, Correia N, Johnson M. Active control of the vacuum infusion process[J].Composites: Part A,2007,38(5):1271-1287.
    [21] Modi D, Johnson M, Long A, et al. Analysis of pressure profile and flowprogression in the vacuum infusion process[J]. Composites Science andTechnology,2009,69(9):1458-1464.
    [22] Kuentzer N, Simacek P, Advani S G, et al. Correlation of void distribution toVARTM manufacturing techniques[J]. Composites: Part A,2007,38(3):802-813.
    [23] Heider D, Simacek P, Dominauskas A, et al. Infusion design methodology forthick-section, low-permeability preforms using inter-laminar flow media[J].Composites: Part A,2007,38(2):525-534.
    [24] Brouwer W D, van Herpt E C F C, Labordus M. Vacuum injection moulding forlarge structural applications [J]. Composites: Part A,2003,34(6):551-558.
    [25] Summerscales J, Searle T J. Low-pressure (vacuum infusion) techniques formoulding large composite structures[J]. Proceedings of the institution ofMechanical Engineers, Part L: Journal of Materials: Design and Applications,2005,219(1):45-58.
    [26] Kelkar A D, Tate J S, Chaphalkar P. Performance evaluation of VARTMmanufactured textile composites for the aerospace and defense applications[J].Materials Science and Engineering B,2006,132:126-128.
    [27] Hammami A, Gauvin R, Trochu F. Modeling the edge effect in liquid compositesmolding[J]. Composites: Part A,1998,29(5-6):603-609.
    [28] T G古托夫斯基.先进复合材料制造技术[M].北京:化学工业出版社.
    [29] Mijovic J, Lee C H. A comparison of chemorheological models for thermosetcure[J]. Journal of Applied Polymer Science.1989,38(12):2155-2170.
    [30] Perry M J, Wang T J, Ma Y. Resin transfer moulding of epoxy/graphitecomposites[C]. International SAMPE Technical Conference:24th InternationalSAMPE Metals and Metals Processing Conference, Canada:1992.
    [31] Bidstrup S A, Macosko C W. Chemorheology relations for epoxy-aminecrosslinking[J]. Journal of Polymer Science: Part B,1990,28(5):691-709.
    [32] Hoes K, Dinescu D, Sol H, et al. New set-up for measurement of permeabilityproperties of fibrous reinforcements for RTM [J]. Composites: Part A,2002,33(7):959-969.
    [33]董萌. RFI成型工艺用树脂膜的研究[D].西北工业大学硕士学位论文,2007.
    [34]路遥,段跃新,梁志勇,等.钡酚醛树脂体系化学流变特性研究[J].复合材料学报,2002,19(5):33-37.
    [35] Kang M K, Jung J J, Lee W I L. Analysis of resin transfer molding process withcontrolled multiple gates resin injection[J]. Composites: Part A,2000,31(5):407-422.
    [36] Halley P J, Mackay M E. Chemorheology of thermoset: an overview[J]. PolymerEngineering and Science.1996,36(5):593-608.
    [37] Malkin A Y, Kulichikhin S G. Rheokinetics of Curing of Epoxy Resins Near theGlass Transition[J]. Polymer Engineering and Science.1997,37(8):1322-1330.
    [38]石凤,段跃新,梁志勇,等. RTM专用双马来酰亚胺树脂体系化学流变特性[J].复合材料学报,2006,23(1):56-62.
    [39]石凤,段跃新,梁志勇,等.5228环氧树脂体系化学流变特性研究[J].玻璃钢/复合材料,2006,4:26-30.
    [40] Williams M L, Landel R F, Ferry J D. The temperature dependence of relaxationmechanisms in amorphous polymers and other glass-forming liquids[J]. Journal ofthe American Chemical Society,1955,77:3701-3707.
    [41] Fontana Q P V. Viscosity: thermal history treatment in resin transfer moldingprocess modeling[J]. Composites: Part A,1998,29(1-2):153-158.
    [42] Kiuna N, Lawrence C J, Fontana Q P V, et al. A model for resin viscosity duringcure in the resin transfer molding process[J]. Composites: Part A,2002,33(11):1497-1503.
    [43] Roller M B. Characterization of the time-temperature-viscosity behavior of curingB-staged epoxy resin. Polymer Engineering Science,1975,15:406-416.
    [44] Roller M B. Rheology of curing thermosets: A review. Polymer EngineeringScience,1986,26:432-440.
    [45]梁志勇,段跃新,林云,等.EPON862环氧树脂体系化学流变特性研究[J].复合材料学报,2001,18(1):16-19.
    [46]梁志勇,段跃新,林云,等.乙烯基酯树脂体系流变特性及RTM工艺窗口预报研究[J].材料工程,2001,8:36-39.
    [47] Maazouz A, Texier C, Taha M. Chemo-rheological study of a dicyanate ester forthe simulation of the resin-transfer molding process[J]. Composite Science andTechnology,1998,58(5):627-632.
    [48] Hsieh T H, Wang T L, Ho K S, et al. Chemorheological analysis of an epoxy-novolac molding compound[J]. Polymer Engineering and Science.2000,40(2):418-429.
    [49] Karkanas P I, Partridge I K. Cure modelling and monitoring of epoxy/amine resinsystems. Part II: network formation and chemoviscosity modelling. Journal ofApplied Polymer Science,2000,77:2178-2188.
    [50] Vyazovkin S. Alternative description of process kinetics[J]. Thermochimica Acta,1992,211:181-187.
    [51]孙曼灵.环氧树脂应用原理与技术[M].北京:机械工业出版社,2002.
    [52] Francis B, Poel G V, Posada F, et al. Cure kinetics and morphology of blends ofepoxy resin with poly (ether ether ketone) containing pendant tertiary butylgroups[J]. Polymer,2003,44(13):3687-3699.
    [53] Jeninger W, Schawe J E K. Calorimetric studies of isothermal curing of phaseseparating epoxy networks[J]. Polymer,2000,41(4):1577-1588.
    [54] Su C C, Woo E M. Cure kinetics and morphology of amine-curedtetraglycidyl-4,4’-diaminodiphenylmethane epoxy blends with poly(etherimide)[J]. Polymer,1995,36(15):2883-2894.
    [55]王遵.复合材料单面补强含裂纹铝合金薄板的残余热应力及其影响研究[D].国防科技大学博士学位论文,2007.
    [56] Schawe J E K. A description of chemical and diffusion control in isothermalkinetics of cure kinetics[J]. Thermochimica Acta,2002,388(1-2):299-312.
    [57] Keenan M R. Autocatalytic cure kinetics from DSC measurements: zero initialcure rate[J]. Journal of Applied Polymer Science,1987,33(5):1725-1734.
    [58] Pellin M P, Regueira L N, Quintela A L, et al. Epoxy resins based ontrimethylolpropane. II kinetic and thermodynamic parameters of cure withm-XDA[J]. Journal of Applied Polymer Science,1995,55(11):1507-1516.
    [59] Yousefi A, Lafleur P G. Kinetic studies of thermoset cure reactions: A review[J].Polymer Composites,1997,18(2):157-168.
    [60] Sourour S, Kamal M R. Differential scanning calorimetry of epoxy cure:isothermal cure kinetics[J]. Thermochimica Acta,1976,14(1-2):41-59.
    [61] Shanku R, Vaughan J G, Roux J A. Rheological characteristics and cure kineticsof EPON862/W epoxy used in pultrusion[J]. Advances in Polymer Technology,1997,16(4):297-311.
    [62] Lee J Y, Shim M J, Kim S W. Autocatalytic cure kinetics of natural zeolite filledepoxy composites[J]. Materials Chemistry and Physics,1997,48(1):36-40.
    [63]石海洋,李鹏,薛忠民,等. GF/VE复合材料的等温固化动力学模型[J].高分子材料科学与工程,2005,21(5):113-116.
    [64] Kamal M R and Sourour S. Kinetics and thermal characerization of thermosetcure[J]. Polymer Engineering&Science,1973,13(1):59-64.
    [65] Kamal M R. Thermoset characterization for molding analysis[J]. PolymerEngineering Science,1974,14(1-2):231-239.
    [66] Lee C L, Ho J C, Wei K H. Resin transfer molding (RTM) process of a highperformance epoxy resin. I: kinetic studies of cure reaction[J]. PolymerEngineering and Science,2000,40(4):929-934.
    [67] Chern C S, Poehlein G W. A kinetic model for curing reactions of epoxides withamines[J]. Polymer Engineering and Science,1987,27(11):788-795.
    [68] Khanna U, Chanda M. Kinetics of anhydride curing of isophthalic diglycidyl esterusing differential scanning calorimetry[J]. Journal of Applied Polymer Science,1993,49(2):319-329.
    [69] Kim R Y, McCarthy S P, Fanucci J P. Compressibility and relaxation of fiberreinforcements during composite processing[J]. Polymer composites,1991,12(1):13-19.
    [70] Robitaille F, Gauvin R. Compaction of textile reinforcements for compositesmanufacturing I: Review of experimental results[J]. Polymer composites,1998,19(2):198-216.
    [71] Robitaille F, Gauvin R. Compaction of textile reinforcements for compositesmanufacturing II: compaction and relaxation of dry and H2O-saturated wovenreinforcements[J]. Polymer composite,1998,19(5):543-557.
    [72] Robitaille F, Gauvin R. Compaction of textile reinforcements for compositesmanufacturing III: Reorganization of the fiber network in woven[J]. Polymercomposites,1999,20(1):48-61.
    [73] Chen B, Cheng A H D, Chou T W. A nonlinear compaction model for fibrousperforms[J]. Composites: Part A,2001,32(5):701-707.
    [74] Luo Y, Verposet I. Compressibility and relaxation of a new sandwich textilepreform for liquid composite molding. Polymer Composites,1999;20(2):179-191.
    [75] Rigas J E, Mulkern T J, Walsh S M, et al. Effects of processing conditions onvacuum assisted resin transfer molding process[C]. Army research laboratoryreport ARL-TR-2480,2001.
    [76] Williams D C, Grove M S, Summerscales J. The compression response of fiberreinforced plastic plates during manufacture by the resin infusion under flexibletooling method[J]. Composites: Part A,1998,29(1-2),111-114.
    [77] Tackitt K D, Walsh S M. Experimental study of thickness gradient formation inthe VARTM process. Materials and Manufacturing Processes,2005,20(4):607-627.
    [78] Hammami A, Gebart B R. Analysis of the vacuum infusion molding process[J].Polymer composites,2000,21(1):28-40.
    [79] Hammami A. Effect of reinforcement structure on compaction behavior in thevacuum infusion process. Polymer Composite,2001,22(3):337-348.
    [80] Kelly P A, Umerb R, Bickerton S. Viscoelastic response of dry and wet fibrousmaterials during infusion processes. Composite: Part A,2006,27:868-873.
    [81] Yenilmez B, Senan M, Sozer E.M. Variation of part thickness and compactionpressure in vacuum infusion process. Composites Science and Technology,2009,69(11-12):1710-1719.
    [82]杨金水.真空导入模塑工艺树脂流动行为研究[D].国防科技大学硕士学位论文,2007.
    [83] Steenkamer D A, Knight S A H M, Wilkins D J, et al. Experimentalcharacterisation of permeability and fibre wetting for liquid molding[J]. Journal ofMaterial Science,1995,30(12):3207-3215.
    [84] Ferland P, Guittand D, Trochu F. Concurrent methods for permeabilitymeasurement in resin transfer molding[J]. Polymer Composites,1996,17(1):149-157.
    [85] Amico S, Lekakon C. An experimental study of the permeability and capillarypressure in resin transfer moulding[J]. Composites Science and Technology,2001,61(13):1945-1959.
    [86] Hammond V H, Loos A C. The effects of fluid type and viscosity on thesteady-state and advancing front permeability behavior of textile preforms[J].Journal of Reinforcement Plastics and Composites,199,16(1):50-72.
    [87] Weitzenbock J R, Shenoi R A, Wilson P A. Radial flow permeabilitymeasurement, Part A: Theory[J]. Composites: Part A,1999,30(6):781-796.
    [88] Mogavero J, Advani S G. Experimental investigation of flow throughmulti-layered performs[J]. Polymer Composites,1997,18(5):649-655.
    [89] Gebart B R, Lidstom P. Measurement of in-plane permeability of anisotropic fiberreinforcements[J]. Polymer Composites,1996,17(1):43-52.
    [90] Standtfeld H C. An experimental method to continuously measurer permeabilityof fiber preform as a function of fiber volume fraction[J]. Journal ofReinforcement Plastics and Composites,2002,21(10):879-899.
    [91] Trevino L, Rupel K, Young W B, et al. Analysis of resin injection molding inmolds with pre-placed fiber mats. I: Permeability and compressibilitymeasurements[J]. Polymer composites,1991,12(1):20-29.
    [92] Wu C H, Wang T J, Lee L J. Trans-plane fluid permeability measurement and itsapplication in liquid composite molding[J]. Polymer Composites,1994,15(4):289-298.
    [93] Ahn S H, Lee W I, Springer G S. Measurement of the three-dimensionalpermeability of fiber performs using embedded fiber optic sensors[J]. Journal ofComposites Materials,1995,29(6):714-733.
    [94] Woerdeman D L, Phelan J F R, Parnas R S. Interpretation of3-D permeabilitymeasurements for RTM molding[J]. Polymer Composites,1995,16(6):470-480.
    [95] Weitzenbock J R, Shenoi R A, Wilson P A. Measurement of three-dimensionalpermeability[J]. Composites: Part A,1998,29(1-2):159-169.
    [96] Nedanov P B. A method to determine3D permeability of fibrousreinforcements[J]. Journal of composite materials,2002,36(2):241-254.
    [97] Stoven T, Weyrauch F, Mitschang P, et al. Continuous monitoring ofthree-dimensional resin flow through a fibre perform[J]. Composite: Part A,2003,34(6):475-480.
    [98] Parnas R S,Howard J G,Luce T C,et al. Permeability characterization. Part I: aproposed standard reference fabric for permeability[J]. Polymer Composites,1995,16(6):429-445.
    [99] Ngo N D, Tamma K K. Microscale permeability prediction ofporous fibrousmedia[J]. International Journal of Heat and Mass Transfer,2001,44:3135-3145.
    [100] Carman P C. Flow of gases through porous media[M]. London: Butterworths,1956:155-156.
    [101] Lam R C, Kardos J L. The permeability and compressibility of aligned andcross-plied carbon fiber beds during processing of composites[J]. PolymerEngineering and Science,1991,31(14):1064-1070.
    [102] Bruschke M V. A predictive model for permeability and non-isothermal flow ofviscous and shear-thinning fluids in anisotropic fibrous media[D]. Delaware:University of Delaware,1992.
    [103] Gutowski T G, Morigati T, Cai Z. The consolidation of laminate composites[J].Journal of Composite Materials,1987,21(2):172-188.
    [104]陈鹏,段跃新,梁志勇.预成型体纵向渗透率统计模型[J].复合材料学报,2004,21(2):105-110.
    [105] Keller J B. Viscous flow through a grating or lattice of cylinders[J]. The Journalof Fluid Mechanics,1964,18(1):94-96.
    [106] Gebart B R. Permeability of unidirectional reinforcements for RTM[J]. CompositeMaterials,1992,26(8):1100-1133.
    [107] Bickerton S, Sozer E M, imácek P, et al. Fabric structure and mold curvatureeffects on preform permeability and mold filling in the RTM process, Part II:Predictions and comparisons with experiments[J]. Composites: Part A,2000,31(5):439-458.
    [108] Happel J. Viscous flow relative to arrays of cylinders[J]. AIChE Journal,1959,5(2):174-177.
    [109] Kuwabura S. The force experienced by randomly distributed parallel circularcylinders or spheres in a viscous flow at small Reynolds numbers[J]. Journal ofthe Physics Society of Japan,1959,14:527-532.
    [110] Hasimoto H. On the periodic fundamental solutions of the Stokes equations andtheir application to viscous flow past a cubic array of cylinders[J]. The Journal ofFluid Mechanics,1959,5(2):317-328.
    [111] Sangani A S, Acrivos A. Slow flow through a periodic array of spheres[J].Multiphase Flow,1982,8(4):343-360.
    [112] Chiemlewski C C, Petty A, Jayaraman K. Crossflow permeation of viscous andviscoelastic liquids in cylinder arrays[C]. Proceedings of the American Society forComposites, Fifth Technical Conference: composites materials in transition; Eastlansing, Michigan, USA.12-14, June,1990.
    [113] Kirsch A A, Fuchs N A. The fluid flow in a system of parallel cylindersperpendicular to the flow direction at small Reynolds numbers[J]. Journal of thePhysics Society of Japan,1967,22:527-532.
    [114] Sangani A S, Yao C. Transport processes in random arrays of cylinders, Part II:Viscous flow[J]. Physics of Fluids,1988,31(9):2435-2444.
    [115] Neale G, Masliyah J H. Flow perpendicular to mats of randomly arrangedcylindrical fibers (importance of cell models)[J]. American Institute of ChemicalEngineers Journal,1975,21(4):805-807.
    [116] Bruschke M V, Advani S G. Flow of generalized Newtonian fluids across aperiodic array of cylinders[J]. Journal of Rheology,1993,37(3):479-498.
    [117] Dimitrovova Z, Faria L. Finite element modeling of the resin transfer moldingprocess based on homogenization techniques[J]. Computers and Structures,2000,76:379-397.
    [118]戴福洪,张博明,杜善义.基于均匀化法的单向纤维增强体渗透率[J].力学学报,2004,36(6):709-713.
    [119] Takano N, Zako M, Okazaki T, et al. Microstructure-based evaluation of theinfluence of woven architecture on permeability by asymptotic homogenizationtheory[J]. Composites Science and Technology,2002,62(10-11):1347-1356.
    [120] Beavers G S, Joseph D D. Boundary condition at a naturally permeable wall[J].The Journal of Fluid Mechanics,1967,30:197-205.
    [121] Brinkman H C. A calculation of the viscous force exerted by a flowing fluid on adense swarm of particles[J]. Applied Sciences,1947,1:27-34.
    [122] Spaid M A, Phelan F R J. Lattice Boltzmann methods for modeling microscaleflow in fibrous porous media[J]. Physics of Fluids,1997,9(9):2468-2474.
    [123] Belov E B, Lomov S V, Verpoest I, et al. Modelling of permeability of textilereinforcements: Lattice Boltzman method[J]. Composites Science and Technology,2004,64(7-8):1069-1080.
    [124] Gokce A, Advani S. Permeability estimation with the method of cell[J]. Journal ofComposite Materials,2001,35(8):713-728.
    [125] Reddy J N, Gartling D K. The finite element method in heat transfer and fluiddynamics[M]. Second Edition, CRC Press,2000.
    [126] Shin D D. Intelligent processing for thick composites[D]. Dissertation ofUniversity of California,2000.
    [127] Loos A C, Springer G S. Curing of epoxy matrix composites[J]. Journal ofComposite Materials,1983,17(2):135-169.
    [128] Ciriscioli P R, Springer G S. Smart autoclave cure of composites[M]. USA:Technomic Publishing Company, Inc.,1990:13.
    [129] Kays A O. Exploratory development on processing science of thick sectioncomposites[R]. Technical report AFWAL-TR-85-4090, Air Force WrightAeronautical Laboratories, Wright Patterson AFB, OH,1985.
    [130] Twardowski T E, Lin S E, Gell P H. Curing in thick composite laminates:Experiment and Simulation[J]. Journal of composite materials,1993,27(3):215-25.
    [131] Guo Z S, Du S Y, Zhang B M. Temperature distribution of thick thermosetcomposites[J]. modelling and simulation in materials science and engineering,2004,12(3):443-452.
    [132] Guo Z S, Du S Y, Zhang B M. Temperature field of thick thermoset compositelaminates during cure process[J]. Composites Science and Technology,2005,65(3-4):517-523.
    [133] Bogetti T A, Gillespie J J W. Two-dimensional cure simulation of thickthermosetting composites[J]. Journal of Composite Material,1991,25(3):239-273.
    [134] Bogetti T A, Gillespie J J W. Process-induced stress and deformation inthick-section thermoset composite laminates[J]. Journal Composite Material,1992,26(5):625~660.
    [135] Naji M I, Hoa S Y. Curing of thick angle-bend thermoset composite part: Curingcycle effect on thickness variation and fiber volume fraction[J]. Journal ofReinforced Plastics Composites,1999,18(8):702-723.
    [136] Naji M I, Hoa S Y. Curing of thick angle-bend thermoset composite Part: Curingprocess modification for uniform thickness and uniform fiber volume fractiondistribution[J]. Journal of Composite Material,2000,34(20):1710-1755.
    [137] Park H C, Lee S W. Cure simulation of thick composite structures using the finiteelement method[J]. Journal Composite Material,2001,35(3):188-200.
    [138] Young W B. Resin flow analysis in the consolidation of multi-directionallaminated composites[J]. Polymer composites,1995,16(3):250-257.
    [139] Young W B. Consolidation and cure simulation for laminated composites[J].Polymer composites,1996,17(1):142-148.
    [140] Hojjati M and Hoa S V. Curing simulation of thick thermosetting composites[J].Composites Manufacturing,1994,5(3):159-169.
    [141] Costa V A F, Sousa A C M. Modeling of flow and thermo-kinetics during the cureof thick laminated composites[J]. International Journal of Thermal Sciences,2003,42:15-22.
    [142] Oh J H, Lee D G. Cure cycle for thick glass/epoxy composite laminates[J].Journal Composite Material,2002,36(1):19-45.
    [143] Mijovic J and Wang H T. Modeling of processing of composites part II:Temperature distribution during cure[J]. SAMPE Journal,1988,24:42-55.
    [144] Michaud D J, Beris A N, Dhurjati P S. Thick-sectioned RTM compositemanufacturing: Part1: In situ cure model parameter identification and sensing[J].Journal of Composite Material,2002,36(10):1175-1200.
    [145] Yi S, Hilton H H. Effects of thermo-mechanical properties of composites onviscosity, temperature and degree of cure in thick thermosetting compositelaminates during curing process[J]. Journal of Composite Material,1998,32(7):600-622.
    [146] Chern B C, Moon T J, Howell J R, et al. New experimental data for enthalpy ofreaction and temperature and degree-of-cure-dependent specific heat and thermalconductivity of the Hercules3501-6epoxy system[J]. Journal of CompositeMaterial,2002,36(17):2061-2072.
    [147] Kalogiannakis G, Hemelrijck D V, Assche G V. Measurements of thermalproperties of carbon/epoxy and class/epoxy using modulated temperaturedifferential scanning calorimetry[J]. Journal Composite Material,2004,38(2):163-175.
    [148]胡训传,李松年,赵天惠.复合材料弹翼结构热力力学分析[J].北京航空航天大学学报,1996,22(3):374-378.
    [149]左德峰,朱金福,黄再兴.树脂基复合材料固化过程中温度场的数值模拟[J].南京航空航天大学学报,1999,31(6):701-705.
    [150]杨自春.复合材料层合结构的非线性传热分析[J].海军工程大学学报,2000,5:9-13.
    [151] Pantelelis N, Vrouvakis T, Spentzas K. Cure cycle design for composite materialsusing computer simulation and optimisation tools[J]. Engineering Research,2002,67(6):254-262.
    [152] Martinez G M. Fast cure for thick laminated organic matrix composites[J].Chemical Engineering and Science,1991,46(2):439-450.
    [153]李辰砂.复合材料成型工艺智能化的研究[D].哈尔滨工业大学博士学位论文,1999.
    [154]武湛君.基于光纤传感技术的复合材料固化监测技术[D].哈尔滨工业大学博士学位论文,2001.
    [155] Michaud D J, Beris A N, Dhurjati P S. Curing behavior of thick-sectioned RTMcomposites[J]. Journal of composite Material,1998,32(14):1273-1296.
    [156] Michaud D J, Beris A N, Dhurjati P S. Thick-sectioned RTM compositemanufacturing: Part2: Robust cure cycle optimization and control[J]. JournalComposite Material,2002,36(10):1201-1231.
    [157] Antonucci V, Giordano M, Hsiao K T, et al. A Methodology to reduce thermalgradients due to the exothermic reactions in composites processing[J].International Journal of Heat and Mass Transfer,2002,45(8):1675-1684.
    [158] Tzeng J T, Loos A C. A cure analysis for axisymmetric composites[J]. CompositeManufacturing,1993,4(3):43-51.
    [159] Mathar J. Determination of initial stress by measuring the deformations arounddrilled holes[J]. Transactions of ASME,1934,56(4):249-254.
    [160] Rendler N J, Vigness I. Hole-drilling strain-gage method of measuring residualstresses[J]. Experimental Mechanics,1966,6:577-586.
    [161] Bert C W, Thompson G L. A method for measuring planar residual stresses inrectangularly orthotropic materials[J]. Journal of Composite Material,1968,2(2):244-253.
    [162] Yu L, Yin Q M, Asundi A. Residual stresses in unsymmetric laminated carbonfiber composites[J]. Proceedings of SPIE,1999,3740:118-121.
    [163] Shankar K, Xie H, Asundi A, et al. Measurement of residual stresses in polymercomposites using moire interferometry[J]. Proceedings of SPIE-the internationalsociety for optical engineering,2001,4317:198-203.
    [164] Ambu R, Ginesu F. Residual stress analysis in graphite/PEEK compositelaminates[J]. Key Engineering Materials,2002,221-222:347-354.
    [165] Zuccarello B. Optimal calculation steps for the evaluation of residual stress by theincremental hole-drilling method[J]. Experimental Mechanics,1999,39(2):117-124.
    [166] Sicot O, Gong X L, Cheroulat A, et al. Determination of residual stresses ofcomposite laminates using the incremental hole-drilling method[J]. Journal ofComposite Material,2003,37(9):831-844.
    [167] Sicot O, Gong X L, Cheroulat A, et al. Influence of experimental parameters ondetermination of residual stress using the incremental hole-drilling method[J].Composite Science and Technology,2004,64(2):171-180.
    [168] Baldi A, Jacquot P. Residual stresses investigations in composite samples byspeckle interferometry and specimen repositioning[J]. Proceedings of SPIE,2003,4933:141-148.
    [169] Lee J, Czarnek R, Guo Y. Interferometric study of residual strain in thickcomposites[J]. Proceedings of the1989SEM conference on experimentalmechanics, Cambridge, MA,1989:355-364.
    [170] Gascoigne H E. Residual surface stresses in laminated cross-ply fiber-epoxycomposite materials[J]. Experimental Mechanics,1994,34(1):27-36.
    [171] Sunderland P, Yu W J, Manson J E. A technique for the measurement ofprocess-induced internal stresses in polymers and polymer composites[J].Proceedings of ICCM-10,1995,3:125-132.
    [172] Lee J, Czarnek R. Measuring residual strains in composites laminates using moireinterferometry[J]. Proceedings of the1991SEM Conference on ExperimentalMechanics, Milwaukee W. I.,1991:405-415.
    [173] Chapman T J, Gillespie J W, Pipes R B. Prediction of process-induced residualstresses in thermoplastic composites[J]. Journal Composite Material,1990,24(6):615-643.
    [174] Manson J E, Seferis J C.“Process Simulated Laminate (PSL)” A methodology tointernal stress characterization in advanced composite materials[J]. Journal ofComposite Material,1992,26(3):405-431.
    [175] Joh D, Byun K Y, Ha J. Thermal residual stresses in thick graphite/epoxycomposite laminates-uniaxial approach[J]. Experimental Mechanics,1993,31(1):70-76.
    [176] Ha S K, Kim H T, Sung T H. Measurement and prediction of process-inducedresidual strains in thick wound composite rings[J]. Journal of Composite Material,2003,37(14):1223-1237.
    [177] Bowman K B, Mollenhauer D H. Experimental investigation of free edge residualstresses in layered materials[J].42nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference and Exhibit Technical Papers,Seattle, WA,2001, v4:2921-2929.
    [178] Günq r S, Ruiz C. Measurement of thermal residual stresses in continuous fibrecomposites[J]. Key Engineering Materials,1997,127-131:851-860.
    [179] Zewi I G, Daniel I M, Gotro J T. Residual stresses and warpage inwoven-glass/epoxy laminate[J]. Experimental Mechanics,1987,27(1):44-50.
    [180] Jain L K, Mai Y W. Stress and deformations induced during manufacturing. Part1:Theoretical analysis of composite cylinders and shells[J]. Journal of CompositeMaterial,1997,31(7):672-695.
    [181] Wang T M, Daniel I M, Gotro J T. Thermoviscoelastic analysis of residualstresses and warpage in composite laminates[J]. Journal of Composite Material,1992,26(6):883-899.
    [182] Jeronimidis G, Parkyn A T. Residual stresses in carbon fiber-thermoplastic matrixlaminates[J]. Journal of Composite Material,1988,22:401-415.
    [183] Kim K S, Hahn H T, Croman R B. The effect of cooling rate on residual stressesin a thermoplastic composite[J]. Journal of Composite Technology&Research,1989,11(2):47-52.
    [184] Fakuda H, Takahashi K, Toda S. Thermal deformation of anti-symmetriclaminates at cure[J]. Proceedings of ICCM-10,1995(3):141-148.
    [185] Daniel I M, Wang T. Determination of chemical cure shrinkage in compositelaminates[J]. Journal of Composite Technology&Research,1989,12(3):172-176.
    [186] Daniel I M, Wang T, Karalekas D, et al. Determination of chemical cureshrinkage in woven glass/epoxy laminates[C]. Annual TechnicalConference-Society of Plastics Engineers: Plastics Creat a World Difference, NewYork, New York, USA,1-4, May,1989.
    [187] Maji A, Ganley J. Determination of the residual stress profile in a thin compositepart[J]. Advances in Composite Materials and Mechanics,1999,42-55.
    [188] Daniel I M, Liber T, Chamis C C. Measurement of residual strains in boron/epoxyand glass/epoxy laminates[J]. Composite Reliability,1975,580:340-351.
    [189] Daniel I M, Liber T. Effect of laminate construction on residual stresses ingraphite/polyimide composites[J]. Experimental Mechanics,1977,1:21-25.
    [190] Crasto A S, Kim R Y, Russell J D. In situ monitoring of residual straindevelopment during composite cure[J].44th International SAMPE Symposiumand Exhibition, Long Beach, CA, USA,1999:1705-1717.
    [191] Kim R Y, Rice B P, Crasto A S, et al. Influence of process cycle on residual stressdevelopment in BMI composites[J].45th International SAMPE Symposium andExhibition, Long Beach, CA, USA,2000,45(I):148-155.
    [192] Crasto A S, Kim R Y, Russell J D. In situ monitoring of residual straindevelopment during composite cure[J]. Polymer Composites,2002,23(3):454-463.
    [193] Post D. Moiré Interferometry: Advances and Applications. ExperimentalMechanics,1991,31(3):276-280.
    [194] Predecki P, Barrett C S. Stress measurement in graphite/epoxy composites byX-ray diffraction from fillers[J]. Journal of Composite Material,1979,13(1):61-71.
    [195] Fenn R H, Jones A M, Wells G M. X-ray diffraction investigation of triaxialresidual stresses in composite materials[J]. Journal of Composite Material,1993,27(14):1338-1351.
    [196] Nakamae K, Nishino T, Airu X, et al. Studies on mechanical properties ofpolymer composites by X-ray diffraction. I. Residual stress in epoxy resin byX-ray diffraction[J]. Journal of Applied Polymer Science,1990,40(11-12):2231-2238.
    [197] Benedikt B, Kumosa M, Predecki P K, et al. An analysis of residual thermalstresses in a unidirectional graphite/PMR-15composite based on X-ray diffractionmeasurements[J]. Composite Science and Technology,2001,61(14):1977-1994.
    [198] Benedikt B, Predecki P, Armentrout D, et al. The use of X-ray diffractionmeasurements to determine the effect of bending loads on internal stresses inaluminum inclusions embedded in unidirectional graphite-fibre/PMR-15composite[J]. Composite Science and Technology,2001,61(14):1995-2006.
    [199] Meske R, Schnack E. A micromechanical model for X-ray stress analysis of Fiberreinforced composites[J]. Journal of Composite Material,2001,35(11):972-998.
    [200] Unger W J, Hansen J S. The effect of thermal processing on residual straindevelopment in unidirectional graphite fiber reinforced PEEK[J]. JournalComposite Material,1993,27(1):59-81.
    [201] Eng O K, Boay C G, Asundi A, et al. Development and application ofmicro-moire interferometer[J]. Proceedings of SPIE,1999,3897:650-657.
    [202] Schwarz R C, Kutt L M, Papazian J M. Measurement of residual stress usinginterferometric moire: A new insight[J]. Experimental Mechanics,2000,40(3):271-281.
    [203] Ifju G P, Kilday B C, Liu S C, et al. Measurement of residual stress in laminatedcomposites[J]. Proceedings of VII International Congress on ExperimentalMechanics and Experimental/Numerical Mechanics in Electronic Packaging,Nashville, Tennessee,1996:198-199.
    [204] Ifju G P, Kilday B C, Niu X, et al. Novel method to measure residual stresses inlaminated composites[J]. Journal of Composite Material,1999,33(16):1511-1524.
    [205] Ifju G P, Niu X, Kilday B C, et al. Residual strain measurement in compositesusing the cure-referencing method[J]. Experimental Mechanics,2000,40(1):22-30.
    [206] Bowman K B, Mollenhauer D H. Experimental investigation of residual stressesin layered materials using moire interferometry[J]. Journal of ElectronicPackaging,2002,124:340-344.
    [207]赵占朝,唐海.埋入式光纤法布里-珀罗温度和应变传感器模型研究[J].光学学报,1996,16(11):1650-1656.
    [208] Liu T, Wu M, Rao Y J, et al. Multiplexed optical fibre-based extrinsic fabry-perotsensor system for in-situ strain monitoring in composites[J]. Smart Materials andStructures,1998,7(4):550-556.
    [209]李长春,陶宝祺.埋入光纤进行复合材料中的应变测量[J].复合材料学报,1999,16(1):77-50.
    [210] Grattan K T V, Sun T. Fiber optic sensor technology: An overview[J]. Sensorsand Actuators.2000,82(1):40-61.
    [211] Murukesshan V M, Chan P Y. Cure monitoring of smart composites using fiberBragg grating based embedded sensors[J]. Sensors and Actuators.2000,79(2):153-161.
    [212] Rao Y J, Cooper M R, Jackson D A, et al. High resolution static strainmeasurement using an in-fibre-bragg-grating-based fabry-perot sensor[J].Proceedings of SPIE,2000,4185:284-287.
    [213] Rao Y J, Cooper M R, Jackson D A, et al. Absolute strain measurement using anin-fibre-bragg-grating-based fabry-perot sensor[J]. Electronics Letters,2000,36(8):708-709.
    [214]关柏鸥, Tam H Y, Ho S L.等.用一根光纤光栅实现温度与应变的同时测量[J].光学学报,2000,20(6):827-830.
    [215] Degrieck J, Waele W D, Verleysen P. Monitoring of fiber reinforced compositeswith embedded optical fiber bragg sensors, with application to filament woundpressure vessels[J]. NDT&E International,2001,34(4):289-296.
    [216] Guemes J A, Menendez J M. Response of Bragg grating fiber-optic sensors WhenEmbedded in Composite Laminates. Composite Science and Technology,2002,62(7-8):959-966.
    [217] Ferdinand P, Magne S, Marty V D, et al. Applications of fiber Bragg gratingsensors in the composite industry[J]. MRS Bulletin,2002,27(5):400-407.
    [218] Tanaka N, Okabe Y, Takeda N. Temperature-compensated strain measurementusing FBG sensors embedded in composite laminates[J]. Proceedings of SPIE,2002,4694:304-313.
    [219] Kang H Y, Kang D H, Bang H J, et al. Cure monitoring of composite laminatesusing fiber optic sensors[J]. Smart Material and Structure,2002,11(2):279-287.
    [220] Rao Y J, Yuan S F, Zeng X K, et al. Simultaneous strain and temperaturemeasurement of advanced3-D braided composite materials using an improvedEFPI/FBG system[J]. Optics and Lasers in Engineering,2002,38(6):557-566.
    [221]饶云江,曾祥楷,朱永,等.非本征型法布里珀罗干涉仪光纤布拉格光栅应变温度传感器及其应用[J].光学学报,2002,22(1):85-88.
    [222]黄睿,袁慎芳,陶宝祺.用于编织复合材料应变检测的光纤微弯传感器[J].压电与声光,2002,24(5):351-353.
    [223]王目光,魏淮,童治,等.利用双周期光纤光栅实现应变和温度同时测量[J].光学学报,2002,22(7):867-869.
    [224]郭亚林,梁国正,丘哲明,等.复合材料光纤应变传感器发展概况[J].纤维复合材料,2002,19(3):42-44.
    [225]冯青蕊,张慧萍,晏雄,等.光纤传感器在复合材料研究中的应用[J].玻璃钢/复合材料,2002,(1):32-35.
    [226] Takeda N, Mizutani T, Hayashi K, et al. Application of fiber Bragg gratingsensors to real-time strain measurement of cryogenic tanks[J]. Proceedings ofSPIE,2003,5056:304-311.
    [227] Kang H Y, Kang D H, Hong C S, et al. Simultaneous monitoring of strain andtemperature during and after cure of unsymmetric composite laminate usingfiber-optic sensors[J]. Smart Materials and Structures,2003,12(1):29-35.
    [228]万里冰.埋光纤布拉格光栅传感器智能材料与结构研究[D].哈尔滨工业大学博士学位论文,2003.
    [229]梁大开,邱浩.表面等离子体波光纤传感器应用于复合材料固化监测的研究[J].光学技术,2003,29(2):185-187.
    [230]福田武人.光纤传感器在监测RTM固化过程及复合材料健康状况中的应用[J].纤维复合材料,2003,19(3):55-61.
    [231]万里冰,武湛君,张博明,等.光纤布拉格光栅监测复合材料固化[J].复合材料学报,2004,21(3):1-5.
    [232] Hahn H T, Pagano N J. Curing stress in composite laminates[J]. Journal ofComposite Material,1975,9(1):91-105.
    [233] Hyer M W. Calculations of the room-temperature shapes of unsymmetriclaminates[J]. Journal of Composite Materials,1981,15:295-310.
    [234] Jun W J, Hong C S. Cured shape of unsymmetric laminates with arbitrary lay-upangles[J]. Journal of Reinforced Plastics Composites.1992,11(12):1352-1366.
    [235] Tseng S C, Ossward T A. Prediction of shrinkage and warpage of fiber reinforcedthermoset composite parts[J]. Journal of Reinforced Plastics Composites,1994,13(8):698-721.
    [236] Jain L K, Mai Y W. Stress and deformations induced during manufacturing. Part2:A study of the spring-in phenomenon[J]. Journal of Composite Material,1997,31(7):695-719.
    [237] Ganley J M, Maji A K. Explaining spring-in in filament wound carbonfiber/epoxy composites[J]. Journal of Composite Material,2000,34(14):1215-1239.
    [238] Radford D W, Diefendorf R J. Shape instabilities in composites resulting fromlaminate anisotropy[J]. Journal of Reinforced Plastic Composites,1993,12(1):58-75.
    [239] Huang C K, Yang S Y. Study on accuracy of angled advanced composite tools[J].Materials and Manufacturing Process,1997,12(3):473-486.
    [240] Chen H, Yang Z, Jemah A K, Williams F W. Process-induced stress analysis ofcomposite laminates using semi-analytical Hamiltonian method[J]. CompositeStructures,1998,41:49-55.
    [241] Wang J, Kelly D, Hillier W. Finite element analysis of temperature inducedstresses and deformations of polymer composite components[J]. Journal ofComposite Material,2000,34(17):1456-1471.
    [242] Schapery R A. Application of thermodynamics to thermomechanical, fracture, andBirefringent phenomena in viscoelastic Media[J]. Journal of Applied Physics,1964,35(5):1451-1465.
    [243] Schapery R A. A Method of viscoelastic stress analysis using elastic solutions[J].Journal of the Franklin Institute,1965,279:268-289.
    [244] Schapery R A. Stress analysis of viscoelastic composite materials[J]. Journal ofComposite Material,1967,1(3):228-267.
    [245] Schapery R A. Thermal expansion coefficient of composite materials based onenergy principles[J]. Journal of Composite Material,1968,2(3):380-404.
    [246] Weitsman Y. Residual thermal stresses due to cool-down of epoxy-resincomposites[J]. Journal of Applied Mechanics,1979,46(3):563-567.
    [247] Weitsman Y. Optimal cool-down in linear viscoelasticity[J]. Journal of AppliedMechanics,1980,47(1):35-39.
    [248] Harper B D, Weitsman Y. Residual stresses in an unsymmetrical cross-plygraphite/epoxy laminates[J]. AIAA Journal,1981,19:325-332.
    [249] Harper B D, Weitsman Y. On the effects of environmental conditioning onresidual stresses in composite laminates[J]. International Journal of Solids andStructures,1985,21(8):907-926.
    [250] Wang T M, Daniel I M, Gotro J T. Thermoviscoelastic analysis of residualstresses and warpage in composite laminates[J]. Journal Composite Material,1992,26(6):883-899.
    [251] White S R, Hahn H T. Process modeling of composite materials: Residual stressdevelopment during cure. Part I: Model formulation[J]. Journal of CompositeMaterial,1992,26(16):2402-2422.
    [252] White S R, Hahn H T. Process modeling of composite materials: Residual stressdevelopment during cure. Part II: Experimental validation[J]. Journal ofComposite Material,1992,26(16):2423-2454.
    [253] Bogetti T A, Gillespie J J W, Mc Cullouqh R L. Influence of processing on thedevelopment of residual stresses in thick section thermoset composites[J].International Journal of Materials&Product Technology,1994,9(1-3):170-182.
    [254] Simon S L, Mckenna G B, Sindt O. Modeling the evolution of the dynamicmechanical properties of a commercial epoxy during cure after gelation[J].Journal of Applied Polymer Science,2000,76(4):495-508.
    [255] Wang H, Yu T. Effect of Cure History on Residual Stresses in Epoxy Resins[J].Polymers&Polymer Composites,1995,3(5):369-374.
    [256] Prasatya P, Mckenna G B, Simon S L. A viscoelastic model for predictingisotropic residual stresses in thermosetting materials: Effects of processingparameters[J]. Journal of Composite Material,2001,35(10):825-848.
    [257] Kim Y K, White S R. Stress relaxation behavior of3501-6epoxy resin duringcure[J]. Polymer Engineering Science,1996,36(23):2852-2862.
    [258] Russell J D, Lee A Y. Effect of cure cycle on the specific volume of3501-6epoxy[J].29th International SAMPE Technical Conference, Orlando, FL, USA,1997:289-301.
    [259] Karkkainen R L, Madhukar M S, Russell J D, et al. Empirical modeling of in-curevolume changes of3501-6epoxy[J].45th International SAMPE Symposium andExhibition, Long Beach, CA, USA,2000:123-135.
    [260] O’Brien D J, Mather P T, White S R. Viscoelastic properties of an epoxy resinduring cure[J]. Journal of Composite Material,2001,35(10):883-904.
    [261] Yi S, Chian K S, Hilton H H. Nonlinear viscoelastic finite element analyses ofthermosetting polymeric composites during cool-down after curing[J]. Journal ofComposite Material,2002,36(1):3-17.
    [262] Golestanian H, Ei-Gizawy A S. Modeling of process induced residual stresses inresin transfer molded composites with woven fiber mats[J]. Journal of CompositeMaterial,2001,35(17):1513-1528.
    [263] Choi D S, Im Y T. Prediction of shrinkage and warpage in consideration ofresidual stress in integrated simulation of injection molding[J]. CompositeStructures,1999,47(1):655-665.
    [264] Raghavan J. Evolution of cure, mechanical properties, and residual stress duringe-beam curing of a polymer composite[J].46th International SAMPE Symposiumand Exhibition, Long Beach, CA,2001:2090-2102.
    [265] Jacquemin F, Vautrin A, Guillen R. Internal stress reduction in filament woundcomposite pipes by humid conditioning: Numerical simulation[J]. MaterialsScience Forum,2003,425-432(3):2089-2094.
    [266] Kim C, White S R. Continuous curing and induced thermal stresses of a thickfilament wound composite cylinder[J]. Journal of Reinforced Plastics Composites,2001,20(2):165-179.
    [267] Kim Y K, White S R. Process-induced stress relaxation analysis of AS4/3501-6laminate[J]. Journal of Reinforced Plastics Composites,1997,16(1):2-16.
    [268] White S R, Kim Y K. Process-induced residual stress analysis of AS4/3501-6composite material[J]. Mechanics of Composite Materials and Structures,1998,5:153-186.
    [269] Lee S S, Sohn Y S. Viscoelastic analysis of residual stresses in a unidirectionallaminate[J]. Structural Engineering and Mechanics,1994,2(4):383-393.
    [270] Chen Y, Xia Z, Ellyin F. Evolution of residual stresses induced during curingprocessing using a viscoelastic micromechanical model[J]. Journal of CompositeMaterial,2001,35(6):522-542.
    [271] Xia Z, Zhang Y, Ellyin F. Thermal residual stresses induced during manufacturingprocess of fiber reinforced polymeric composites[J].2002ASME PressureVessels and Piping Conference. Vancouver, BC, Canada,2002,443(2):171-175.
    [272] Yi S, Hilton H H, Ahmad M F. Cure-cycle simulation of composites withtemperature-and cure-dependent anisotropic viscoelastic properties and stochasticdelaminations[J]. Mechanics of Composite Materials and Structures,1998,5:81-101.
    [273] Hilton H H, Yi S. Stochastic delamination simulations of nonlinear viscoelasticcomposites during cure[J]. Journal of Sandwich Structures and Materials,1999,1:111-127.
    [274] Zhu Q, Geubelle P H, Li M, et al. Dimensional accuracy of thermoset composites:Simulation of process-induced residual stresses[J]. Journal of Composite Material,2001,35(24):2171-2205.
    [275] Zhu Q, Geubelle P H. Dimensional accuracy of thermoset composites: Shapeoptimization[J]. Journal of Composite Material,2002,36(1):647-672.
    [276] Li M, Zhu Q, Geubelle P H, et al. Optimal curing for thermoset matrix composites:Thermochemical consideration[J]. Polymer Composite,2001,22(1):118-131.
    [277] Hertzberg R W. Deformation and fracture mechanics of engineering materials[M].New York: Wiley,1976.
    [278] Zweben C. Is there a size effect in composites[J]. Composites,1994,25(6):451-454.
    [279] Hitchon J W, Phillips D C. The dependence of the strength of carbon fibres onlength[J]. Fibre Science and Technology,1979,12(3):217-233.
    [280] Beyerlein I J, Phoenix S L. Statistics for the strength and size effects ofmicro-composites with four carbon fibers in epoxy resin[J]. Composites Scienceand Technology,1996,56(1):75-92.
    [281] Odom E M, Adams D F. Specimen size effect during tensile testing of anunreinforced polymer[J]. Journal of Materials Science,1992,27(7):1767-1771.
    [282] Rezaifard A H, Bader M G, Smith P A. Investigation of transverse properties of aunidirectional carbon/epoxy laminate: Part-1Matrix properties[J]. CompositesScience and Technology,1994,52(2):275-285.
    [283] Zhou G, Davies G. Characterization of thick glass woven roving/polyesterlaminates:1. Tension compression and Shear[J]. Composites,1995,26(8):579-586.
    [284] Zhou G, Davies G. Characterization of thick glass woven roving/polyesterlaminates:2. Flexure and statistical considerations[J]. Composites,1995,26(8):587-596.
    [285] Wisnom M R. Size effects in the testing of fibre-composite materials[J].Composites Science and Technology,1999,59(13):1937-1957.
    [286] Sutherland L S, Shenoi R A, Lewis S M. Size and scale effects in composites: I.Literature review[J]. Composites Science and Technology,1999,59(2):209-220.
    [287] Chiang C H, Koenig J L. Chemical reactions occurring at the interface of epoxymatrix and aminosilane coupling agents in fiber-reinforced composites[J].Polymer Composites,1980,1(2):88-92.
    [288] Xie Y J, Hill C A S, Xiao Z F, et al. Silane coupling agents used for naturalfiber/polymer composites: A review[J]. Composites: Part A,2010,41(7):806-819.
    [289] Serier A, Pascault J P, Lam T M. Reaction in aminosilane-epoxy prepolymersystems. II. Reactions of alkoxysilane groups with or without the presence ofwater[J]. Journal of Polymer Science Part A: Polymer Chemistry,1991,29(8):1125-1131.
    [290] Scheidegger, Adrian E. The physics of flow through porous media[M].3rded.Toronto: University of Toronto Press,1974.
    [291] Govignon Q, Bickerton S, Kelly P A. Simulation of the reinforcement compactionand resin flow during the complete resin infusion process[J]. Composites: Part A,2010,41(1):45-57.
    [292]梁子青,唐邦铭,李艳亮.织物预成型体的可压缩性研究[J].材料工程,2006,6:5-8.
    [293] Kruckenberg T, Ye L, Paton R. Static and vibration compaction andmicrostructure analysis on plain-woven textile fabrics[J]. Composites: Part A,2008,39(3):488-502.
    [294]陈萍,李宏运,陈祥宝.铺层方式对织物渗透率的影响[J].复合材料学报,2001,18(1):30-33.
    [295] Simacek P, Heider D, Gillespie J J, et al. Post-filling flow in vacuum assistedresin transfer molding process: Theoretical analysis[J]. Composites: Part A,2009,40(6-7):913-924.
    [296] Yang J S, Xiao J Y, Zeng J C, et al. Compaction behavior and part thicknessvariation in vacuum infusion molding process[J]. Applied Composite Materials,DOI:10.1007/s10443-011-9217-8.
    [297] Kissinger H E. Reaction kinetics in differential thermal analysis export findsimilar[J]. Analytical Chemistry,1957,29(11):1702-1706.
    [298] Malek J. The kinetic analysis of non-isothermal data[J]. Thermochimica Acta,1992,200(8):257-269.
    [299] Malek J. Kinetic analysis of crystallization processes in amorphous materials[J].Thermochimica Acta,2000,355(1-2):239-253.
    [300] Senum G I, Yang R T. Rational approximations of the integral of the Arrheniusfunction [J]. Journal of Thermal Analysis,1977,11(3):445-447.
    [301] Lee J Y, Choi H K, Shim M J, et al. Kinetic studies of an epoxy cure reaction byisothermal DSC analysis[J]. Thermochimica Acta,2000,343(1-2):111-117.
    [302]代晓青,肖加余,曾竟成,等.等温DSC法研究RFI用环氧树脂固化动力学[J].复合材料学报,2008,25(4):18-23.
    [303] Liu X L, Crouch I G, Lam Y C. Simulation of Heat Transfer and Cure inPultrusion with a General-Purpose Finite Element Package[J]. Composite Scienceand Technology,2000,60(6):857-864.
    [304] Mijovic J. Effects of graphite fiber and epoxy matrix physical properties on thetemperature profile in a composite during cure[J]. Polymer Composites,1991,12(2):122-125.
    [305] Wetherhold R C, Wang J. Difficulties in the theories for predicting transversethermal conductivity of continuous fiber composites[J]. Journal of CompositeMaterial,1994,28(15):1419-1498.
    [306] Hashin Z. Analysis of properties of fiber composites with anisotropicconstituents[J]. Journal of Applied Mechanics,1979,46(3):543-550.
    [307] Progelhof R C, Throne J L, Ruetsch R R. Methods for predicting the thermalconductivity of composite systems: A review[J]. Polymer Engineering&Science,1976,16(9):615-625.
    [308] Pilling M W, Yates B, Black M A, et al. The Thermal Conductivity of CarbonFibre-Reinforced Composites[J]. Journal of Material Science,1979,14(2):1326-1338.
    [309] Chung P W, Tamma K K, Namburu R R. Homogenization oftemperature-dependent thermal conductivity in composite materials[J]. Journal ofThermophysics and Heat Transfer,2001,15(1):10-17.
    [310] Mirmira S R, Jackson M C, Fletcher L S. Effective thermal conductivity andthermal contact conductance of graphite fiber composites[J]. Journal ofThermophysics and Heat Transfer,2001,15(1):18-26.
    [311] Farmer J D, Covert E E. Transverse thermal conductance of thermosettingcomposite materials during their cure[J]. Journal of Thermophysics and HeatTransfer,1994,8(2):358-365.
    [312] Farmer J D, Covert E E. Thermal conductivity of a thermosetting advancedcomposite during Its cure[J]. Journal of Thermophysics Heat Transfer,1994,10(3):467-475.
    [313] Daniel I M, Ishai Q. Engineering mechanics of composite materials[M]. OxfordUniversity Press,1994.
    [314] Klasztorny M, Wilczynski A P. Constitutive equations of viscoelasticity andestimation of viscoelastic parameters of unidirectional fibrous polymericcomposites[J]. Journal of Composite Materials,2000,34(19):1624-1639.
    [315] Wang H S, Chou T W. Transient Thermal Stress Analysis of a RectangularOrthotropic Slab[J]. Journal of Composite Materials,1985,19(9):424-441.
    [316] Gowayed Y, Zou W, Gross S. Analytical approach to evaluate the coefficients ofthermal expansion of textile composite materials[J]. Polymer Composites,2000,21(5):814-820.
    [317] Islam M R, Sjolind S G, Pramila A. Finite element analysis of linear Thermalexpansion coefficients of unidirectional cracked composites[J]. Journal ofComposite Materials,2001,35(19):1762-1776.
    [318] Soutis C. Measurement of the static compressive strength of carbon fibre/epoxylaminates[J]. Composite Science and Technology,1991,42(4):373-92.
    [319] Lee J, Soutis C. Thickness effect on the compressive strength of T800/924Ccarbon fibre-epoxy laminates[J]. Composites: Part A,2005,36(2):213-227.
    [320] Lee J, Soutis C. A study on the compressive strength of thick carbon fibre–epoxylaminates[J]. Composites Science and Technology,2007,67(10):2015-2026.
    [321] Hsiao H M, Daniel I M, Wooh S C. A new compression test methods for thickcomposites[J]. Journal of Composite Materials,1995,29(13):1789-806.
    [322] Daniel I M, Hsiao H M. Is there a thickness effect on compressive strength ofunnotched composite laminates?[J]. International Journal of Fracture,1999;95:143-158.
    [323] Whitman J M, Pagano N J. Shear deformation in heterogeneous anisotropicplates[J]. Journal of Applied Mechanics,1970;37(4):1031-1036.
    [324] Port K F. The compressive strength of carbon fibre reinforced plastics[R]. RAETechnical Report,82083,1982,[ADA132025].

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700