Ihh/Glil通路对大鼠急性脊髓损伤后内源性神经干细胞增殖分化的调控及川芎嗪干预作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:观察大鼠急性脊髓损伤后IhhmRNA. GlilmRNA在受损脊髓的分布及不同时间点的表达变化,分析Ihh/Glil信号通路对脊髓内源性神经干细胞的调控作用,明确川芎嗪治疗脊髓损伤的分子机制。
     方法:将SD大鼠随机分为空白组(A组6只)、假手术组(B组36只)、模型组(C组36只),甲强龙对照组(D组36只),川芎嗪治疗组(E组36只)。用改良Allen's法建立大鼠急性脊髓损伤模型。E组在造模后每日腹腔注射盐酸川芎嗪注射液,400mg/kg/d,首次给药在造模后30min,共给药10天;D组造模后按照甲强龙大剂量冲击疗法于造模后30分钟腹腔注射甲强龙187.5mg/kg;伤后1小时即开始按33.75mg/kg计算23小时总量,23小时内分四次腹腔注射。A、B、C组在同一时间给予腹腔注射等量生理盐水,共10天,D组于造模后第二天给予腹腔注射等量生理盐水共9天。于造模后第8小时、1天、3天、7天、14天、28天进行斜板实验、BBB评分神经功能行为学评价。于造模后第8小时、1天、3天、7天、14天、28天每组分别处死6只大鼠,以损伤脊髓为中心上下各5mm取大鼠的脊髓进行检测,3只用于HE.尼氏染色、免疫组织化学及原位杂交检测,3只用于Real-time PCR检测。用HE、尼氏染色观察脊髓的病理形态学变化,用免疫组化法检测代表脊髓内源性神经干细胞的Brdu+细胞和Nestin+细胞的表达,用原位杂交和Real-time PCR检测IhhmRNA和GlilmRNA在大鼠脊髓中的分布和表达变化情况。对检测结果进行统计分析,并对Brdu+和Nestin+细胞、IhhmRNA和GlilmRNA在脊髓中的表达进行相关性分析。
     结果:
     1、大鼠造模损伤脊髓后,C组、D组、E组大鼠的后肢运动功能显著降低,脊髓功能严重损伤,大鼠在斜板上维持的最大角度与BBB评分均明显降低,与A组比较有显著性差异(P<0.01);E组大鼠治疗后在斜板上维持的最大角度呈明显上升趋势,在14天,28天与模型对照组对比有显著差异(P<0.05);D组优于E组,在治疗后第3天至28天时两组比较有显著差异(P<0.01)。E组大鼠在治疗后BBB评分逐渐增加,在3天、14天、28天与C组比较有显著差异(P<0.05或P<0.01),但BBB评分不及D组(P<0.05或P<0.01);
     2、通过大鼠脊髓组织切片进行HE,尼氏染色观察各组大鼠脊髓组织病理学变化。脊髓损伤后可见脊髓水肿,局灶性出血,神经元胞体皱缩、核固缩,尼氏小体开始减少和消失,神经元变性,3天后出现脊髓水肿加重,局灶性出血范围增大,炎性细胞浸润明显,灰质部分组织溶解形成空泡;至7天、14天坏死范围进一步扩大,炎症水肿逐渐减轻,至28天,坏死区周围瘢痕增生,向坏死区填充。川芎嗪能明显减轻脊髓损伤后水肿、炎性细胞浸润及出血程度,保护神经细胞,促进脊髓组织修复;
     3、脊髓损伤后,Brdu+细胞被激活,在脊髓中的表达明显增多,在脊髓白质、灰质及中央管室管膜区均有表达。在第7天达到峰值,随后逐渐减少。川芎嗪能明显促进Brdu+细胞增殖,在损伤后7天、14天、28天,与C组比较有显著差异(P<0.05或P<0.01),而甲强龙则抑制Brdu+细胞增殖,与C组比较有显著性差异(P<0.05或P<0.01)。川芎嗪能显著促进Nestin+细胞表达,在第7天达到峰值,在损伤后7天、14天、28天与C、D组比较有显著性差异(P<0.05或P<0.01),而甲强龙则抑制Nestin+细胞表达;
     4、在正常成年大鼠脊髓中IhhmRNA主要分布在白质区,在室管膜细胞也有少量表达;而GlilmRNA主要表达在胶质细胞的胞质和灰质区神经元除核仁以外的细胞核。脊髓损伤后IhhmRNA与GlilmRNA表达减少,C组与A组在各时间点比较有显著性差异(P<0.05或P<0.01),第3至7天将至最低点,后又逐渐增多,但仍低于正常值。C组、D组和E组在各时间点比较无明显差异(P<0.05)。
     5、经对IhhmRNA、GlilmRNA、Nestin+细胞和Brdu+细胞在脊髓中的表达量进行相关性分析,IhhmRNA与GlilmRNA表达呈正相关,IhhmRNA与Nestin+细胞表达呈负相关。
     结论:1、Ihh在正常成年大鼠的脊髓中有分布,并且主要分布在脊髓的白质区,中央管仅有微量表达;Glil主要表达在神经元核仁以外的细胞核和胶质细胞的胞质中,中央管周围未见表达。2、Ihh/glil信号转导通路对脊髓内源性干细胞的增殖分化起负性调控作用;3、川芎嗪能够对脊髓损伤后内源性神经干细胞增殖分化有促进作用;4、川芎嗪通对脊髓损伤后脊髓内源性神经干细胞增殖分化的影响可能不是通过对Ihh/Glil信号通路的干预达到的。
Objective:To observe the variation of expression and distribution of IhhmRNA and GlilmRNA in the lesion areas after acute injury of spinal cord and to analyze the regulation of Ihh/Glil signal pathways on endogenous neural stem cells to ensure the molecule treatment mechanism of Ligustrazine for spinal cord.
     Methods:The SD (Sprague Dawley)rats were randomly divided into gap group (group A), pseudo surgery group (group B), model group (group C), Methylprednisolone control group (group D) and Ligustrazine treatment group (group E). The rat models of acute spinal cord injury were established by modified Allen's method in the experiment. The rats of group E after molding were given abdominal Ligustrazine Hydrochloride Injection for400mg/kg per day, and the first injection was given after30min after the operation. Adapting Methylprednisolone high dose impulsive therapy, the rats in group D were given187.5mg/kg Methylprednisolone injection in abdomen after30min surgery. After one hour, the total amount of23hours with33.75mg/kg per hour was worked out to averagely inject four times in23hours for the rats. The group A, B and C were given the same amount of physiological saline in abdomen at the same time for ten days while group D was given the same mount with the former three groups in the following nine days after molding on the second day. Oblique board test and BBB evaluation on nerve function were applied to test the postoperative results on the8th hour,1st day,7th day,14th day, and28th day respectively.6rats in each group were sacrificed on the8th hour,1st day,7th day,14th day, and28th day after spinal cord injury. Then the injuried spinal cord about the5mm right and left of it was cut out to be detected,3of them for the HE, Nissl staining, immunohistochemistry and in situ hybridization, and3of them only for Real-time PCR detection. Meanwhile, the experiment adapted HE and Nissl staining methods to observe the morphological changes of spinal cord. Immunohistochemistry was applied to test the expression of Brdu+and Nestin+cells. Besides, in-situ hybridization and Real-time PCR were used to test the distribution and expression of IhhmRNA and GlilmRNA in the spinal cord. All of the test results were statistically analysis, and the correlation analysis were made among the expression of Brdu+and Nestin+cells, IhhmRNA and GlilmRNA in the spinal cord.
     Results:
     Firstly, motor function of hind limbs and the function of spinal cord of the rats decreased significantly after spinal cord injury; The maximum angles the rats maintained on oblique board in the Ligustrazine treatment group were on the uprising trend and there was significant difference compared with model control group on the14th day and28th day(p<0.05); There was significant difference between Methylprednisolone control group and Ligustrazine treatment group (P<0.01), and Methylprednisolone control group is better than Ligustrazine group from3th to28th after spinal cord injury. There was significant difference compared with model control group on the3th day,14th day and28th day according to the BBB score(P<0.05or P<0.01). However, the impact was declined compared with Methylprednisolone control group (P<0.05or P<0.01)
     Secondly, Ligustrazine could remarkably reduce edema, inflammatory cell infiltration and blooding and promote the repair of spinal cord tissues after injury.
     Thirdly, there was significant difference (P<0.01) on the7th day,14th day and28th day after spinal cord injury since Ligustrazine enabled to increase the proliferation of Brdu+cells (compared with group C P<0.05or P<0.01) while Methylprednisolone restrained its proliferation(compared with group C P<0.05or P<0.01). Ligustrazine could conspicuously enhance the expression of Nestin+cells and reach its summit on the7th day and there was significant difference compared with group C and group D on the7th day,14th day and28th day after spinal cord injury(P<0.05or P<0.01) while Methylprednisolone control group revealed minor expression (compared with group C P<0.05or P<0.01)
     Fourthly, there were IhlimRNA and GlilmRNA in the spinal cord of normal adult rats. IhhmRNA mainly distribute in the whiter matter as well as minor expression in ependymocytes. While GlilmRNA are mainly expressed in the cytoplasm of glial cells and the cell nucleolus of gray matter neurons in addition to outside the plasmosome. In the experiment, the expression of IhhmRNA and GlilmRNA decreased to the lowest on the3th day and7th day, and then gradually increased, but still lower than the normal value. There is no obvious difference between among Ligustrazine treatment group, Methylprednisolone control group and model control group at each time point (P>0.05). Fifthly, IhhmRNA is positively correlated with the expression of GlilmRNA and is negatively related to the Nestin+cells according to the partial correlation analysis.
     Finally, The correlation analysis was performed on the expression of IhhmRNA, GlilmRNA, Nestin+cells and Brdu+cells in the spinal cord. IhhmRNA positively correlated with the expression of GlilmRNA, and is negatively related to Nestin+expression.
     Conclusion:Firstly, Ihh distributes in the spinal cord of normal adult rats with main distribution in the white matter and minor in the ventricular zone. Gli1mRNA are mainly expressed in the cytoplasm of glial cells and the cell nucleolus of gray matter neurons in addition to outside the plasmosome. Secondly, Ihh/glil signal transduction pathway negatively regulates the proliferation and differentiation of endogenous neural stem cells. Thirdly, Ligustrazine could promote the proliferation and differentiation of endogenous neural stem cells after spinal cord injury. Fourthly, the influence Ligustrazine exerted on proliferation and differentiation of endogenous neural stem cells may not realize by the intervention of Ihh/Glil signal pathways.
引文
[1]Gage H F. Mammalian neural stem cells[J]. Science,2000,287(5457): 1433-1438.
    [2]HorkyL L, Galimi F, Gage FH, et al. Fate ofendogenous stem/progenitor cells following spinal cord injury[J]. J Comp Neurol,2006,498(4):525-38.
    [3]Ohori Y, Yamamoto S, Nagao M, et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligoden-drogenesis by endogenous neural progenitors in the injured adult spinal cord[J]. Neurosci, 2006; 26(46):11948-11960.
    [4]Meletis K, Barnabe-Heider F, Carlen M, et al. Spinal cord in-jury reveals multilineage differentiation of ependymal cells[J]. PLoS Biol,2008; 6(70): e182.
    [5]Martens DJ, Seaberg RM. van der Kooy D. In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord[J]. Eur Neurosci,2002; 16(6):1045-1057.
    [6]MachadoA G, BakerK B, Schuster D, et al. Chronic electricastimulation of the contralesional lateral cerebellar nucleus enhances recovery of motor function after cerebral ischemia in rats [J].Brain Res,2009,1280:107-16.
    [7]张敬东,刘焯霖.神经干细胞研究[J].中国病理生理杂志,2003,19(4):558-561.
    [8]Hitoshi S, Alexson T, Tropepe V, et al. Notch pathway molecules areessential for the maintenance, but not the generation, of mammalian neural stem cells[J]. Genes Dev,2002,16(7):846-858.
    [9]Baron M. An overview of the Notch signalling pathway[J]. Semin Cell Dev Biol,2003,14(2):113-119.
    [10]Yoo AS, Bais C, Greenwald I. Crosstalk between the EGFR and LIN-12/Notch pathways in C.elegans vulval development[J]. Science,2004, 303(5658):663-666.
    [11]Hammerschmidt M, et al. The world according to hedgehog[J]. Trends Genet,1997,13:14-21.
    [12]Osterlund T et al.Hedgehog signalling:how to get from Smoto Ci and Gli.Trends[J].Cell Biol,2006,16:176-180.
    [13]Cohen M, et al. The hedgehog signaling network. Am [J]. Med Genet A, 2003,123A:5-28.
    [14]Christian JL. BMP, Wntand Hedgehog signals:How far can they go [J]. Curr Opin Cell Bio,2000,12(2):244-249.
    [15]W ichterleH, Lieberam I, Porter JA, et al. Directed differentiation of embryonic stem cells into motor neurons [J]. Cel,l 2002,110(3):385-397.
    [16]赵斌,汉华,王栓科,等.Shh mRNA在成年大鼠慢性压迫性脊髓损伤后的表达及其意义[J].第四军医大学学报,2008,29(24):2267-2270.
    [17]Kesper DA, Didt-Koziel L, Vortkamp A.Gli2 activator function in preosteoblasts is sufficient to mediate Ihh-dependent ssteoblast differentiation, whereas the repressor function of Gli2 is dispensable for endochondral ossification[J].Dev Dyn,2010,239 (6):1818-1826.
    [18]赵恒伍,张锦程,李长有.血管内皮生长因子调节成骨细胞中Ihh和p38MAPK的表达[J].中国医科大学学报,2011,40(2):113-116.
    [19]Hinton RJ, Serrano M, So S. Differential gene expression in the perichondrium and cartilage of the neonatal mouse temporomandibular joint. [J]. Orthod Craniofac Res.2009 Aug;12(3):168-177.
    [20]Aglyamova GV, Agarwala S.Gene expression analysis of the hedgehog signaling cascade in the chick midbrain and spinal cord. [J]. Dev Dyn,2007, 236(5):1363-1373.
    [21]李光辉,李锋,陈超,等.川芎嗪对大鼠脊髓损伤后线粒体功能的保护作用[J].中国中医急症,2005,10(14):991-992.
    [22]沈正祥,吕红斌,李小明,等.川芎嗪对大鼠急性脊髓损伤模型caspase-3和NF表达的影响[J].中南大学学报:医学版,2008,33(8):693-699.
    [23]祁文,黄有荣,刘汝专,等.川芎嗪对大鼠急性脊髓损伤NOS和IL-1B表达的影响[J].中国中医骨伤科杂志,2011,19(8):7-11.
    [24]熊春翔,宗少晖,曾高峰,等.大鼠Allen's脊髓损伤模型的建立及评价[J].广西医科大学学报,2011 Apr; 28(2):215-217.
    [25]Basso DM, Beattie MS, Br esnahan JC. A sensitive and reliable loco mo tor rating scale fo r o pen field test ing inrats[J]. J Neuro trauma,1995,12:1-21.
    [26]Rivlin A S, Tator C H. Objective clinical assessment of motor function after experim-ental spinal cord injury in the rat [J]. J Neurosurg,1977, 47(4):577-81.
    [27]王明新,汪茜,姚共和.中医对脊髓损伤病机的认识[J].湖南中医药导报,2004,10(6):7,11.
    [28]祁开泽.外伤性截瘫的中医药治疗[J].中医药导报,2002,1(4):26-28.
    [29]卢成晓,赵瑞普,王志伟,等.丹参等药物在过伸性脊髓损伤早期的应用[J].河南医药信息,10(4):41-42.
    [30]黎启福,赵金平,王宏新,等.丹参川芎嗪注射液联合甲基泼尼松龙治疗胸腰段急性脊髓损伤[J].齐齐哈尔医学院学报,2012,33(4):450-451.
    [31]肖志满,胡建中,吕红斌,等.川芎嗪对大鼠急性脊髓损伤后巨噬细胞移动抑制因子表达的影响[J].中南大学学报(医学版),2012,37(10):1031-1036.
    [32]肖志满,胡建中,吕红斌,等.芎嗪对大鼠急性脊髓损伤模型NF-xB及I-xBα表达的影响[J].基础医学与临床,2012,32(4):407-412.
    [33]严根福,王健,贾玉柱,等.川芎嗪对急性脊髓损伤大鼠神经细胞早期凋亡的影响[J].浙江中医杂志,2012,47(9):666-668.
    [34]袁泉.川芎嗪对大鼠急性脊髓损伤模型的脊髓功能和细胞凋亡的影响[硕士学位论文].中南大学,长沙,2006.
    [35]郑启新,吴永超.脊髓损伤的细胞移植和基因治疗研究现状与展望[J].中华实验外科杂志,2005,22(2):136-138.
    [36]张远金,李光辉,段军.大剂量甲基强的松龙对大鼠急性脊髓损伤后神经细胞凋亡的影响[J].中华实验外科杂志,2006,23(10):1272.
    [37]王健,贾玉柱,郑纯威.川芎嗪对急性脊髓损伤大鼠神经细胞早期凋亡和Caspase-3mRNA表达的影响[J].中华中医药学刊,2011,29(12):2662-2668.
    [38]孙海燕,贾连顺,陈宣维,等.川芎嗪对大鼠脊髓损伤后脊髓组织c-fos基因蛋白表达的影响[J].2004,12(6):18-21.
    [39]李光辉,李锋,陈超,等.川芎嗪对大鼠脊髓损伤后线粒体功能的保护作用[J].中国中医急症,2005,14(10):991-992.
    [40]李洋.川芎嗪对大鼠脊髓急性损伤段微循环影响的实验性研究,硕士学位论文,中南大学,2007.
    [41]Hu JZ, Huang JH, Xiao ZM, Li JH, Li XM, Lu HB. Tetramethylpyrazine accelerates the function recovery of traumatic spinal cord in rat model by attenuating inflammation[J]. J Neurol Sci,2013,324(1-2):94-9.
    [42]Fan L, Wang K, Shi Z, et al. Tetramethylpyrazine protects spinal cord and reduces inflammation in a rat model of spinal corischemia-Reperfusion injury[J]. J Vasc Surg,2011,54 (1):192-200.
    [43]Boyce VS, Tumolo M, Fischer I, et al. Neurotrophic factors promote and enhance locomotor recovery in untrained spinalized cats[J]. J Neurophysiol, 2007,98(4):1988-1996.
    [44]Boyce VS, Lemay MA. Modularity of endpoint force patterns evoked using intraspinal microstimulation in treadmill trained and/orneurotrophin-treated chronic spinal cats [J]. J Neurophysiol,2009,101(3):1309-1320.
    [45]周赟,胡建中,吕红斌,等.川芎嗪对脊髓急性损伤大鼠神经营养因子表达的影响[J].现代中西医结合杂志,2010,19(9):1058-1060.
    [46]HorkyL L, Galimi F, Gage FH, et al. Fate ofendogenous stem/progenitor cells following spinal cord injury[J]. J Comp Neurol,2006,498(4):525-38.
    [47]Ohori Y, Yamamoto S, Nagao M, et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligoden-drogenesis by endogenous neural progenitors in the injured adult spinal cord[J]. Neurosci, 2006; 26(46):11948-11960.
    [48]Meletis K, Barnabe-Heider F, Carlen M, et al. Spinal cord in-jury reveals multilineage differentiation of ependymal cells[J]. PLoS Biol,2008; 6(70): e182.
    [49]Martens DJ, Seaberg RM. van der Kooy D. In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord[J]. Eur Neurosci,2002; 16(6): 1045-1057.
    [50]Martens DJ, Seaberg RM, vander Ko oy D. In vivo infusions of exog-enous growth factors into the fourth ventricle of the adult mouse brain incr-ease the proliferation of neuraprogenitors around the fourth ventricle and the central cana of the spinal cord[J]. Eur J Neur osci,2002,16:1045-1057.
    [51]Ohori Y, Yamamoto S, Nagao M, et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural prog enitor s in the injur ed adult spinal cord [J]. J Neuro sci,2006, 26:11948-11960.
    [52]Yamamoto S, Yamamoto N, Kitamura T, et al. Proliferation o f par enchymal neural pro genito rs in response to injury in the adult rat spinal cord[J]. Exp Neuro 1,2001,172:11-127.
    [53]Germana A, Sanchez-Ramos C, Guerrera MC, et al. Expression and cell localization of brain-derived neurotrophic factor and TrkBduring zebrafish retinal development[J]. J Anat,2010,217 (3):214-222.
    [54]Mothe AJ,Tator CH. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat[J]. Neuroscienc,2005,131(1):177-187.
    [55]Myckatyn TM, Mackinnon SE, et al. Stem cell tr ansplantation and o ther novel techniques fo r promoting recov eryfrom spina 1 co rd injur y[J]. Tr anspl Immuno 1,2004,12:343-358.
    [56]Armstrong RJ, Barker RA. Neurodegeneration:a failure of neuroreg ener-ation[J]. Lancet,2001,358(9288):1174-1176.
    [57]徐启飞,周初松,靳安民,等.大鼠脊髓损伤后内源性神经干细胞增殖过程中Wnt-1的表达[J].中国脊柱脊髓杂志,2009,19(2):138-142.
    [58]Ille F, Sommer L. Wnt signaling:multiple functions in neural development [J].Cell Mol Life Sci,2005,62 (10):1100-1108.
    [59]Wang YZ, Yamagami T, Gan Q, et al. Canonical Wnt signaling promotes the proliferation and neurogenesis of peripheral olfactory stem cells during postnatal development and adult regeneration. J Cell Sci.2011;124(Pt 9):1553-1563.
    [60]Kneidinger N, Yildirim AO, Callegari J, et al. Activation of the WNT/(3-catenin pathway attenuates experimental emphysema. Am J Respir Crit Care Med.2011;183(6):723-733.
    [61]Verkaar F, Blankesteijn WM, Smits JF, et al. beta-Galactosidase enzyme fragment complementation for the measurement of Wnt/beta-catenin signaling. FASEB J.2010;24(4):1205-1217.
    [62]Lin X, Xu X. Distinct functions of Wnt/beta-catenin signaling in KV development and cardiac asymmetry. Development.2009; 136(2):207-217.
    [63]Prestwich TC, Macdougald OA. Wnt/beta-catenin signaling in adipogenesis and metabolism. Curr Opin Cell Biol.2007;19(6):612-617.
    [64]Wexler EM, Geschwind DH, Palmer TD, et al. Lithium regulates adult hippocampal progenitor development through canonical Wnt pathway activation. Mol Psychiatry.2008;13(3):285-292.
    [65]Katoh M, Katoh M. WNT signaling pathway and stem cell signaling network. Clin Cancer Res.2007;13(14):4042-4045.
    [66]孙芳玲,艾厚喜,张丽,等Eph/ephrin信号通路对损伤后中枢神经功能的影响研究进展[J].中国药理学与毒理学杂志,2012,26(3):424.
    [67]王岩峰,吕刚,赵宇,等.神经干细胞分化过程中Eph/ephrin A3的表达及意义[J].中国医科大学学报,2008,37(1):28-30.
    [68]Wall DS, Mears AJ, McNeill B, et al. Progenitor cell proliferation in the retina is dependent on Notch-independent Sonic hedgehog/Hesl activity[J]. J Cell Biol.2009;184(1):101-112.
    [69]Cruz C, Ribes V, Kutejova E, et al. Foxjl regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling[J]. Development.2010;137(24):4271-4282.
    [70]Belgacem YH, Borodinsky LN. Sonic hedgehog signaling is decoded by calcium spike activity in the developing spinal cord[J]. Proc Natl Acad Sci U S A.2011;108(11):4482-4487.
    [71]Zhang J, Wang B, Xiao Z, et al. Olfactory ensheathing cellspromote proliferation and inhibit neuronal differentiation of neural progenitor cells through activation of Notch signaling. Neuroscience.2008;153(2):406-143.
    [72]Pierfelice TJ, Schreck KC, Eberhart CG, et al. Notch, neural stem cells, and brain tumors. Cold Spring Harb Symp Quant Biol.2008;73:367-375.
    [73]Matsumoto A, Onoyama I, Sunabori T, et al. Fbxw7-dependent degradation of Notch is required for control of "stemness" and neuronal-glial differentiation in neural stem cells. J Biol Chem.2011;286(15):13754-13764.
    [74]De Joussineau C, Soule J, Martin M, et al. Delta-promoted filopodia mediate long-range lateral inhibition in Drosophila. Nature.2003;426 (6966): 555-559.
    [75]高方,张琪,郑敏化,等.转录因子RBP-J介导的信号通路抑制神经干细胞向神经祖细胞的分化[J].Mol Cell Neurosci,2009,40:442-450.
    [76]Ball DW. Achaete-scute homolog-1 and Notch in lung neuroendocrine development and cancer. Cancer Lett.2004; 204(2):159-169.
    [77]Bai G, Sheng N, Xie Z, et al. Id sustains Hesl expression to inhibit precocious neurogenesis by releasing negative autoregulation of Hesl. Dev Cell.2007; 13(2):283-297.
    [78]Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila [J]. Nature,1980,287(5785):795-801.
    [79]Christian JL. BMP, Wntand Hedgehog signals:How far can they go [J]. Curr Opin Cell Bio,2000,12(2):244-249.
    [80]赵斌.内源性Shh对成年大鼠脊髓损伤后神经再生的作用[博士学位论文].兰州:兰州大学,2008.
    [81]胡慧敏,罗卓荆,胡学昱,等.音猬因子体外诱导人骨髓基质干细胞转化为神经元样细胞的研究[J].中国脊柱脊髓杂志,2006,16(5):380-383.
    [82]Mcmahon AP.More surprises in the Hedgehog signaling pathway [J]. Cell, 2000,100(2):185-188.
    [83]Kesper DA, Didt-Koziel L, Vortkamp A.Gli2 activator function in preosteoblasts is sufficient to mediate Ihh-dependent ssteoblast differentiation, whereas the repressor function of Gli2 is dispensable for endochondral ossification[J].Dev Dyn,2010,239 (6):1818-1826.
    [84]赵恒伍,张锦程,李长有.血管内皮生长因子调节成骨细胞中Ihh和p38MAPK的表达[J].中国医科大学学报,2011,40(2):113-116.
    [85]Queiroz KC, Tio RA, Zeebregts CJ, et al. Human plasma very low density lipoprotein carries Indian hedgehog.J Proteome Res.2010,9(11):6052-9.
    [86]Jemtland R, Divieti P, Lee K, et al. Hedgehog promotes primary osteoblast differentiation and increases PTHrP mRNA expression and iPTHrP secretion[J]. Bone,2003,32 (6):611-620.
    [87]韩磊,张晓玲,李晅,等.Hedgehog通路对成骨细胞增殖和分化的作用研究[J].上海口腔医学,2009,18(3):287-290.
    [88]Tang GH, Rabie AB,H覿ggU. Indian hedgehog:A mechanotransduction mediator in condylar cartilage[J]. J Dent Res,2004,83 (5):434-438.
    [89]Aglyamova GV, Agarwala S. Gene expression analysis of the hedgehog signaling cascade in the chick midbrain and spinal cord[J]. Dev Dyn,2007, 236(5):1363-1373.
    [90]Chung AY, Kim S, Kim E,et al. Indian hedgehog B function is required for the specification of oligodendrocyte progenitor cells in the zebrafish CNS[J]. JNeurosci,2013,33(4):1728-1733.
    [91]Litingtung Y, DahnRD, L iY, et al. Shh and Gli3 are dispensable for limb skeleton form at ion bu t regu late d ig it num ber and iden tity[J]. Natu re, 2002,418(6901):979-983.
    [92]Samataki D, Ulloa F, Tsoni SV, et al. A gradient of Gli activity mediates graded Sonic Hedgehog signaling in th eneural tube[J].G enes Dev,2005, 19(5):626-641.
    [93]Purcell P, Joo BW, Hu JK, et al. Temporomandibular joint formation requires two distinct hedgehog-dependent steps[J]. Proc Natl Acad Sci U S A,2009,106(43):18297-18302.
    [94]Kesper DA, Didt-Koziel L, Vortkamp A.Gli2 activator function in preosteoblasts is sufficient to mediate Ihh-dependent ssteoblast differentiation, whereas the repressor function of Gli2 is dispensable for endochondral ossification[J].Dev Dyn,2010,239 (6):1818-1826.
    [95]赵恒伍,张锦程,李长有.血管内皮生长因子调节成骨细胞中Ihh和p38MAPK的表达[J].中国医科大学学报,2011,40(2):113-116.
    [96]Queiroz KC, Tio RA, Zeebregts CJ, et al. Human plasma very low density lipoprotein carries Indian hedgehog[J].J Proteome Res,2010,9(11):6052-9.
    [97]张雪萍.Hedgehog信号转导分子在体外诱导大鼠基质干细胞成软骨和成骨细胞过程中作用的研究[硕士学位论文].济南:山东师范大学,2011.
    [98]Kai XU, Fengjing, Shuwei ZHANG,et al. Blocking Ihh Signaling Pathway Inhibits the Proliferation and Promotes the Apoptosis of PSCs[J].J Huazhong Univ Sci Technol[Med Sci],2009,29(1):39-44。
    [1]Gage H F. Mammalian neural stem cells[J]. Science,2000,287(5457): 1433-1438.
    [2]HorkyL L, Galimi F, Gage FH, et al. Fate ofendogenous stem/progenitor cells following spinal cord injury[J]. J Comp Neurol,2006,498(4):525-38.
    [3]Ohori Y, Yamamoto S, Nagao M, et al. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligoden-drogenesis by endogenous neural progenitors in the injured adult spinal cord[J]. Neurosci, 2006,26(46):11948-11960.
    [4]Meletis K, Barnabe-Heider F, Carlen M, et al. Spinal cord in-jury reveals multilineage differentiation of ependymal cells[J]. PLoS Biol,2008,6(70): e182.
    [5]Martens DJ, Seaberg RM. van der Kooy D. In vivo infusions of exogenous growth factors into the fourth ventricle of the adult mouse brain increase the proliferation of neural progenitors around the fourth ventricle and the central canal of the spinal cord[J]. Eur Neurosci,2002,16(6):1045-1057.
    [6]Hitoshi S, Alexson T, Tropepe V, et al. Notch pathway molecules areessential for the maintenance, but not the generation, of mammalian neural stem cells[J]. Genes Dev,2002,16(7):846-858.
    [7]Baron M. An overview of the Notch signalling pathway[J]. Semin Cell Dev Biol,2003,14(2):113-119.
    [8]Yoo AS, Bais C, Greenwald I. Crosstalk between the EGFR and LIN-12/Notch pathways in C.elegans vulval development[J]. Science,2004, 303(5658):663-666.
    [9]Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila [J]. Nature,1980,287(5785):795-801.
    [10]Chang DT, Lopez A, von Kessler DP, et al. Products, genetic linkage and limb patterning activity of a murine Hedgehog gene.Development.1994, 120(11):3339-3353.
    [11]Hao L, Johnsen R, Lauter G, et al.Comprehensive analysis of gene expression patterns of hedgehog-related genes. BMC Genomics.2006, 7:280-285.
    [12]Omenetti A, Porrello A, Jung Y, et al. Hedgehog signaling regulates epithelialmesenchymal transition during biliary fibrosis in rodents and humans. J Clin Invest.2008,118(10):3331-3342.
    [13]Fleig SV, Choi SS, Yang L, et al. Hepatic accumulation of Hedgehog-reactive progenitors increases with severity of fatty liver damage in mice. Lab Invest.2007,87(12):1227-1239.
    [14]Dae-Hwan Kang, Myoung-Eun Han, Moo-Ho Song, et al. The role of hedgehog signaling during gastric regeneration. Oh. J Gastroenterol.2009, 44:372-379.
    [15]Xu L, Wang X, Wan J, et al. Sonic Hedgehog pathway is essential for neuroblastoma cell proliferation and tumor growth..Mol Cell Biochem. 2012,364(1-2):235-41.
    [16]Osterlund T, Kogerman P. Hedgehog signaling:how to get from Smoto Ci and Gli [J].Trends Cell Biol,2006,16:176-180.
    [17]Cohen MM Jr. The hedgehog signaling network [J]. Am Med Genet A,2003, 123A:5-28.
    [18]Christian JL. BMP, Wntand Hedgehog signals:How far can they go [J]. Curr Opin Cell Bio,2000,12(2):244-249.
    [19]W ichterleH, Lieberam I, Porter JA, et al. Directed differentiation of embryonic stem cells into motor neurons [J]. Cell,2002,110(3):385-397.
    [20]赵斌,汉华,王栓科,等Shh mRNA在成年大鼠慢性压迫性脊髓损伤后的表达及其意义[J].第四军医大学学报,2008,29(24):2267-2270.
    [21]侯天勇,刘缘,龙在云,等.转录调控因子Shh促进胎鼠脊髓神经干细胞体外增殖的效应[J].中国临床康复,2004,8(32):7162-7163.
    [22]Lowry N, Goderie SK, Lederman P, et al. The effect of long-term release of Shh from implanted biodegradable microspheres on recovery from spinal cord injury in mice. Biomaterials[J].2012,33(10):2892-901.
    [23]Bambakidis NC, Petrullis M, Kui X, et al. Improvement of neurological recovery and stimulation of neural progenitor cell proliferation by intrathecal administration of Sonic hedgehog.J Neurosurg.2012,116(5):1114-20.
    [24]Komada M. Sonic hedgehog signaling coordinates the proliferation and differentiation of neural stem/progenitor cells by regulating cell cycle kinetics during development of the neocorte. Congenit Anom (Kyoto). 2012,52(2):72-7.
    [25]Bambakidis NC, Theodore N, Nakaji P, et al. Endogenous stem cell proliferation after central nervous system injury:alternative therapeutic options[J]. Neurosurg Focus,2005,19(3):El.
    [26]赵斌.内源性Shh对成年大鼠脊髓损伤后神经再生的作用[博士学位论文].兰州:兰州大学,2008.
    [27]胡慧敏,罗卓荆,胡学昱,等.音猬因子体外诱导人骨髓基质干细胞转化为神经元样细胞的研究[J].中国脊柱脊髓杂志,2006,16(5):380-383.
    [28]杨琴.Shh信号通路调控大鼠MSCs分化为神经细胞机制的研究[博士学位论文].重庆:重庆医科大学,2008.
    [29]Chen YJ, Sims-Mourtada J, Izzo J, et al. Targeting the hedgehog pathway tomitigate treatment resistance[J]. Cell Cycle,2007,6:1826-1830.
    [30]Bajestan SN, Umehara F, Shirahama Y, et al. Desert hedgehog-patched 2 expression in peripheral nerves during Wallerian degeneration and regeneration[J]. J Neurobio,12006,66:243-255.
    [31]刘靖.Sertoli细胞促进大鼠胚胎中脑神经前体细胞分化的作用及Sertoli 细胞Dhh基因的相关研究[博士学位论文].石家庄:河北医科大学,2005.
    [32]杨彩侠,赵焕英,赵春礼,等.DesertHedgehog诱导大鼠胚胎中脑神经前体细胞定向分化为多巴胺能神经元[J].基础医学与临床,2009,29(4):360-365.
    [33]Kesper DA, Didt-Koziel L, Vortkamp A.Gli2 activator function in preosteoblasts is sufficient to mediate Ihh-dependent ssteoblast differentiation, whereas the repressor function of Gli2 is dispensable for endochondral ossification[J].Dev Dyn,2010,239 (6):1818-1826.
    [34]赵恒伍,张锦程,李长有.血管内皮生长因子调节成骨细胞中Ihh和p38MAPK的表达[J].中国医科大学学报,2011,40(2):113-116.
    [35]Queiroz KC, Tio RA, Zeebregts CJ, et al. Human plasma very low density lipoprotein carries Indian hedgehog.J Proteome Res.2010,9(11):6052-9.
    [36]Hinton RJ, Serrano M, So S. Differential gene expression in the perichondrium and cartilage of the neonatal mouse temporomandibular joint. [J].Orthod Craniofac Res.2009,12(3):168-177.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700