中国南方黄牛系统地位、抗热特性及HSP70-1、SCD1和DGAT1基因的遗传效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究利用12个通用的微卫星标记和mtDNA D-loop区遗传变异研究中国黄牛的遗传多样性;借助血液生化自动分析仪分析热应激条件下6个血液指标在3个南方黄牛群体(雷琼牛,BMY牛和云南高峰牛)和一个北方黄牛群体(中国西门塔尔牛)内的变化规律,探讨中国南方黄牛热应激条件下的血相变化;采用PCR-SSCP技术检测3个南方黄牛群体抗热应激基因HSP70-1基因的单核苷酸多态性,与中国西门塔尔牛的遗传多样性进行比较,并与血液生理生化指标进行关联分析;运用PCR-SSCP技术检测中国西门塔尔牛及3个南方黄牛群体(雷琼牛、云南高峰牛和BMY牛)SCD1基因和DGAT1基因的遗传变异,并与中国西门塔尔牛的肉质性状进行关联分析;运用荧光定量PCR技术分析雷琼牛HSP70-1基因C3343T位点形成的3种基因型在血液组织中表达量的差异,以探讨这一位点对雷琼牛的耐热性状调控的分子机理。主要研究结果如下:
     1.利用12个微卫星标记在7个黄牛品种(雷琼牛、BMY牛、云南高峰牛、鲁西黄牛、闽南黄牛和渤海黑牛和中国西门塔尔牛)中总共检测209个等位基因,20个品种特有等位基因,其中云南高峰牛检测到的等位基因数最多(180个),雷琼牛检测到的等位基因数最少(85个)。平均杂合度以中国西门塔尔牛最高,为0.8344,多态信息含量和有效等位基因数分别以云南高峰牛最高,分别为0.8840和10.0559,表明这两个群体的遗传变异程度高。基于DA和(σμ)2两种遗传距离的聚类分析表明,雷琼牛、云南高峰牛、闽南黄牛和BMY牛四个南方黄牛群体相互间遗传距离较近,而与中原黄牛和培育品种的亲缘关系相对较远,证明了南方黄牛群体区别于中原黄牛和培育品种的系统地位和遗传分化,也揭示了不同南方黄牛群体间存在不同程度的遗传分化水平。
     2.中国黄牛mtDNA D-loop表现出很高的多态性;核苷酸位点突变类型有转换、颠换两种类型。碱基转换以T←→C形式为主,占62.96%,G+C平均含量为38.7%,A+T平均含量为61.3%。共检测到核昔酸多态位点62个,其中转换58个,颠换4个。云南高峰牛和渤海黑牛核苷酸变异度最高,共发现44个变异位点,发生转换的碱基数目最多,为43个;雷琼牛群体中核苷酸变异数最低,共32个变异位点;其余3个群体核苷酸变异总数居中,BMY牛和闽南黄牛42个,中国西门塔尔牛41个。品种间遗传分化明显。
     3.通过对31条mtDNA D-loop区全序列测定并做序列比对之后,共发现20种单倍型,总群体单倍型比例为64.52%。通过对所测定序列进行NJ法聚类,共发现2个单倍型组,分别代表了中国黄牛的不同母系起源系统:欧洲普通牛起源系统和瘤牛起源系统。从分子水平验证了中国南方黄牛的瘤牛血缘。同时也发现了中国黄牛不同品种间以及品种内存在不同程度的分歧,表明了我国黄牛资源具有丰富的遗传多样性,而且一些地方黄牛品种具有独特的单倍型,应当加以保护。
     4.通过对血清K+浓度,血清谷丙转氨酶浓度,血清谷草转氨酶浓度,血清碱性磷酸酶浓度,红细胞南K+浓度和血红蛋白浓度等6个血液指标在三个南方黄牛群体和一个北方群体中的变化规律分析发现,南方黄牛群体血清K+浓度和血清酶浓度极显著高于北方群体,雷琼牛红细胞K+显著最低于其他群体,谷丙转氨酶浓度在不同地域品种间的差异极显著,由此可见,红细胞钾和碱性磷酸酶可以作为黄牛耐热特性的指标。
     5.在3个南方黄牛品种和1个对照品种HSP70-1基因中总共检测到14个突变,其中5个突变(A329G、T576C、C1199G、A1221C和C1334T)位于5′-调控区,9个突变(A1501G、C1745T、A1926G、C2540T、C2720T、A3035G、A3062G、 A3108G)位于外显子区。雷琼牛和云南高峰牛A329G、C1334T、C1745T、A3035G和C3343T为中度多态位点,其余位点为低度多态位点;中国西门塔尔牛A329G和C1334T为中度多态位点。
     6.雷琼牛HSP70-1基因C1334T位点对血红蛋白浓度影响显著,云南高峰牛A1221C位点对谷草转氨酶浓度影响显著,BMY牛A329G位点对血红蛋白浓度影响显著,各群体的其他位点对血液指标效应不显著。外显子区突变位点中,雷琼牛云南高峰牛和BMY牛C3343T位点变异对红细胞钾和碱性磷酸酶效应显著(P<0.05)。
     7.通过荧光定量PCR技术发现HSP70-1基因C3343T位点形成的3种基因型(CC、CT和TT)在雷琼牛血液组织的表达量存在差异。TT基因型个体HSP70-1基因的表达量是CC基因型的1.361倍,CT基因型个体HSP70-1基因的表达量是CC基因型的1.282倍,进一步验证了HSP70-1基因作为南方黄牛耐热特性候选基因的可能性。
     8.通过对中国西门塔尔牛SCD1基因和DGAT1基因遗传变异及其效应分析发现,SCD1基因C878T位点CC基因型个体肌间脂肪含量显著高于TT基因型个体(P<0.05),大理石花纹评分低于TT型个体(P>0.05),剪切力值显著低于TT型个体(P<0.05);SCD1基因T762C位点TT基因型个体肌间脂肪含量显著高于CC基因型个体(P<0.05),大理石花纹评分和剪切力值低于CC基因型个体(P>0.05)。DGAT1基因10433和10434bp处AA/GC双碱基突变碱基突变GC/GC基因型个体肌间脂肪含量显著高于AA/AA型个体(P<0.05),大理石花纹评分和剪切力值性状差异不显著(P>0.05)。单倍型分析发现,CTGC型个体肌间脂肪含量和剪切力值显著高于其他单倍型个体(P<0.05),分别提高了5.7%和14.6%。综合分析显示SCD1基因和DGAT1基因是肉牛肉质性状的候选基因,揭示了SCD1和DGAT1基因多基因聚合在分子选育中的应用前景。同时分析发现南方黄牛群体中SCD1基因C878T位点和T762C位点有利基因型的频率均高于中国西门塔尔牛,进一步揭示了南方黄牛群体作为肉牛育种素材的应用前景。
The level of genetic differentiation and genetic structure in seven Chinese cattle populations (Luxi cattle, Bohai cattle, Minnan cattle, and Chinese Simmental cattle) were analyzed based on12microsatellite markers and mtDNA D-loop region; To explore the variations of blood indices resistant against heat shock of Chinese cattle in Chinese southern tropical and subtropical region (Leiqiong cattle, BMY cattle, Yunnan highpump cattle), six blood indexes (concentration of serum K+, red blood cell K+, ALT, AST, ALP), using Chinese Simmental cattle as controlled population; PCR-SSCP method was used to detect the SNPs of the HSP70-1Gene in three southern cattle breed of China, Leiqiong cattle, BMY cattle, Yunnan highpump cattle, using Chinese Simmental cattle as controlled populations, and we analyzed its relationship with blood indexes in four cattle populations (Leiqiong cattle, BMY cattle, Yunnan highpump cattle and Minnan catttle), as well in order to lay the foundation for Marker-assisted Selection (MAS) of heat resistance for Chinese cattle; PCR-SSCP method was used to detect the SNPs of the SCD1gene and DGAT1gene in Chinese Simmental cattle using three southern cattle breed of China (Leiqiong cattle, BMY cattle, Yunnan highpump cattle) as controlled populations, and we analyzed their relationships with fat related traits in Chinese Simmental cattle as well in order to lay the foundation for Marker-assisted Selection (MAS) for Chinese Simmental cattle; In order to find out the molecule mechanism that the mutation C3343T had significant effect heat resistance traits, FQ-PCR method was used to study the expression level in Leiqiong cattle blood among3genotypes which were formed by the mutation C3343T in the HSP70-1gene, and the expression level in blood tissue in Leiqiong cattle was also studied. The main results of our research were listed as follows:
     1. Based on12microsatellite markers, a total of209distinct alleles were observed across the7breeds (Leiqiong cattle, BMY cattle, Yunnan highpump cattle, Luxi cattle, Minnan cattle, Bohai Black cattle and Chinese Simmental), and20of these alleles were unique to only one breed. Yunnan highpump cattle carried the largest at180, and Leiqiong cattle had lowest number of alleles at85. The average heterozygosity was highest in Chinese Simmental cattle, and PIC value and Ne were highest in Yunnan highpump cattle, indicating Chinese Simmental cattle and Yunnan highpump cattle populations had higher genetic diversity. The result of coefficient of gene differentiation (GST), genetic diversity and cluster analysis achieve the unanimous basically, indicating these indexes are suitable for the researches on the genetic polarization. Cluster analysis based on DA and (σμ)2genetic distance showed that LQ, YN, MN and BMY cattle were close to each other, while farther away from other poputions, indicating unique phenogenetic status and genetic diversity of Chinese southern cattle.
     2. The complete mitochondrial D-loop sequence,910bp in length, evinces high polymorphism, and nucleotide mutations types are along with the following types, transition, transversion, insertion, deletion and coexistence of transition and transversion. The nucleotide transitions existed mainly in T←→C with the value of62.96%, and A←→G with the value of37.04%. In the all six populations, the average content of G+C%was amount to38.7%, and A+T%amount to61.3%. Sixty-two nucleotide mutations were found in all, and of all variable positions,58mutations were transitions, while4mutations were transversion. Yunnan high pump cattle and Bohai Blank cattle contain the most mutations in all populations, amounting to43, while Leiqiong cattle had the least mutations, amounting to32. And the other three populations had the medium mutation, BMY cattle and Minnan cattle own42mutations, and Chinese Simmental cattle own41mutations.
     3. Twenty haplotype had been found in total when sequence alignment had been made among31sequences of mtDNA D-loop regions, indicating the ratio of haplotype to the size of population was64.52%. Two groups of haplotype had been found in cluster analysis of NJ method, representing the two maternal origin system of Chinese cattle, Group I standing for Bos taurus origin, and Group Ⅱ for Bos indicus origin. Our study validated the Bos indicus blood origin of Southern Chinese cattle once more. Differences had been found in our study among different groups and within group, indicating abundant mitochondrial genetic diversity among interbreeds and individuals in Chinese cattle and some populations had special haplotype, which should be protected appropriately, validating Bos indicus blood of Chinese sourthern cattle. Differences exist in breeds and populations, indicating rich genetic resources in Chinese sourthern cattles. Some populations have special haplotype. which shoud be protected approprietly.
     4. Sourthern Chinese cattle had higher Concentration of RBC K+, GOT, GPT and ALP than controlling cattle, and concentration of glutamic-oxaloacetic transaminase was significant difference in different populations in different regions. RBC K+and ALP can be used as indices for heat resitance of cattle.
     5. Fourteen mutations had been detected in three southern populations and one controlled population, in which five mutations (A329G, T576C, C1199G,A1221C and C1334T) were in5'-flanking and nine mutations (A1501G、C1745T、A1926G、 C2540T、C2720T、A3035G、A3062G、A3108G) in coding region in HSP70-1gene. A329G, C1334T, C1745T, A3035G and C3343T were moderate polymorphism sites in Leiqiong cattle and Yunnan highpump cattle, other sites were lower polymorphism; A329G and C1334T in Chinese Simmental cattle were moderate polymorphism sites, other sites were lower polymorphism; while all sites in BMY cattle were lowe polymorphism.
     6. The effect of C1334T site of HSP70-1gene on Hemoglobin was significant in Leiqiong cattle, the effect of A329G site of HSP70-1gene on Hemoglobin was significant in BMY cattle, and other sites in all populations had no significant effect on the blood indexex. As to the nine mutations in codn rengion, C334T site had significant effect on red blood cell K+and ALP concentration in LQ, YN and BMY cattle (P<0.05).
     7. Using FQ-PCR method, it showed that the expression level differs in Leiqiong cattle blood among three genotypes (CC, CT and TT) which were formed by the mutation C3343T in the HSP70-1gene. The expression level of genotype TT individuals in HSP70-1gene was1.361times higher than that in genotype CC individuals in Leiqiong cattle and the expression level of genotype CT individuals were1.282times higher than that in genotype CC individuals, further verifying that HSP70-1gene was suitable to be used as candidate gene of heat resistant trait in Chinese southern cattle.
     8. C878T (C was favorable gene) and T762C (T was favorable gene) in SCD1and DGAT1(GC was favorable gene) gene had significant effect on meat traits in Chinese Simmental cattle (P<0.05). elevating MIF by5.1%,4.2%and13.1%. respectively. The haplotype of CTGC of site C878T and T762C in SCD1gene and duble nucleitide mutation AA/GC in DGAT1gene had evidence effect on intermuscle fat trait and shearing force trait in Chinese Simmental cattle (P<0.05). improved by5.7%and14.6%respectively. Therefore, SCD1gene and DGAT1gene were candidate genes for fat traits in Chinese Simmental, indicating wide applying prospects of two genes in combinded inbreeding of beef. At the same time, the cattle populations in Southern of China own higher frequencies of tow sites of SCD1gene than Chinese Simmental cattle indicating that these populations have great popential in beef performance.
引文
[1]施立明.遗传多样性及其保存[J].生物科学信息.1990,2(4):158-164.
    [2]葛颂主编.遗传多样性及其检验方法[G].北京:科学出版社,1994:123-140.
    [3]马月辉,曹红鹤,陈幼春,王栋.部分黄牛品种(群体)遗传多样性分析[J].中国农业科学,2003,36(6):696-699.
    [4]Wang M Q, Weigend S, Barre-Dirie A et al. Analysis of two Chinese yak (Bos grunniens) populations using bovine microsatellite primers[J]. Journal of Animal Breeding and Genetics.2003,120:237-244.
    [5]常洪著.动物遗传资源学.北京:科学出版社,2009,35.
    [6]杨章平、常洪,李相运等.新遗传资源西藏瘤牛生态形态特征的研究[J].中国农业科学,2002,35(11):1396-1400.
    [7]FAO-DAD-IS, FAO-domestic animal diversity information system, http://www. fao.org/dad-is.
    [8]马月辉,徐桂芳,王端云等.中国畜禽遗传资源信息动态研究[J].中国农业科学,2002,35(5):89-92.
    [9]中国牛品种志编写组.中国牛品种志.上海:上海科学技术出版社,1988.
    [10]Kappes S M, Keele J W, Stone R T, et al. A second -generation linkage map of the bovine genome [J]. Genome Research,1997,7:235-249.
    [11]Bruford M W and Wayne P K. Microsatellite and their applications to population genetic studies [J]. Current Opinion in Genetics and Development,1993,3: 939-943.
    [12]Queller D C, Strassmann J E and Colin R H. Microsatellite and kinship [J]. Trends in Ecology and Evolution,1993,8:285-288.
    [13]Mateus J C, Penedo M C T, Alves V C, et al. Genetic diversity and differentiation in Portuguese cattle breeds using microsatellite [J]. Animal Genetics,2003,35: 106-113.
    [14]Ibeagha-Awemu E M and Erhardt G. Genetic structure and differentiation of 12 African Bos indicus and Bos taurus cattle breeds, inferred from protein and microsatellite polymorphisms [J]. Journal of Animal Breeding and Genetics,2005, 122:12-20.
    [15]Mateus J C, Penedo M C T, Alves V C, et al. Genetic diversity and differentiation in Portuguese cattle breeds using microsatellite [J]. Animal Genetics,2003,35: 106-113.
    [16]Ibeagha-Awemu E M and Erhardt G. Genetic structure and differentiation of 12 African Bos indicus and Bos taurus cattle breeds, inferred from protein and microsatellite polymorphisms [J]. Journal of Animal Breeding and Genetics, 2005,122:12-20.
    [17]Marlin-Burriel I, Garcia-Muro E. Zaragoza P. Genetic diversity analysis of six Spanish natwe Cattle breeds using microsatellites [J]. Animal Genetics,1999,30: 177-182.
    [18]MacHugh D E, Lofors R T, Bradley D G, et al. Microsatellite DNA variation with and among European Cattle breed [J]. Proceedings:Biological Sciences,1994, 256:25-31.
    [19]MacHugh D E, Loftus R T, Cunningham P, et al. Genetic structure of seven Euroopean cattle breeds assessed using 20 microsatellite markers [J]. Animal Genetics,1998,29:333-340.
    [20]Kruger K, Gaillard C, Stranzinger G and Rieder S. Phylogenetic analysis and species allocation of individual equids using microsatellite data[J]. Journal of Animal Breeding and Genetics,2005,122(Suppl.1):78-86.
    [21]Kim K S, Yeo J S and Choi C B. Genetic diversity of north-east Asian cattle based on microsatellite data [J]. Animal Genetics.33:201-204.
    [22]Freeman A R, Meghen C M, MacHugh D E, et al. Admixture and diversity in West African cattle populations [J]. Molecular Ecology.2004,13:3477-3487.
    [23]Kantanen J, Olsaker I, Holm L E, et al. Genetic diversity and population structure of 20 North European cattle breeds [J]. Jounal of Heredity.2000,91:446-457.
    [24]Jordana J, Alexandrino P, Beja-Pereira A, et al. Genetic structure of eighteen local south European beef cattle breeds by comparative F-statistics analysis [J]. Journal of Animal Breeding and Genetics.2003,120:73-87.
    [25]Loftus R T, Ertugrul O, Harba A H, et al. A microsatellite survey of cattle from a center of origin:the Near East [J]. Molecular Ecology.1999.8:2015-2022.
    [26]MacHugh D E, Shriver M D, Loftus R T, et al. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus) [J]. Genetics.1997,146,1071-1086.
    [27]Anderson S, de Bruijn M H, Coulson A R, et al. Complete sequence of bovine mitochondrial DNA. Conserved features of the mammalian mitoehondrial genome [J]. Journal of Molecular. Biology.,1982,156 (4):683-717.
    [28]陈宏,Leib.,F.家畜线粒体(mtDNA)的研究.黄牛杂志,1995,21(2):7-13.
    [29]曾晴贤.台湾缨口鳅之线粒体基因组和台湾产平鳍鳅科鱼类之分子演化的研究.[D].台北:国立台湾大学动物学研究所,1992.
    [30]Brown W M. Evolution of mitochondrial DNA. In:Evolution of Genes and Proteins. (Nei, M.& Koehn, R. K., eds), Sinauer, Sunderland, Massachusetts,1983.
    [31]李丽娜,陆师义.mtDNA概述.生物学通报[J].1987,(11):5-7.
    [32]BrownV.M.etal. RaPid evolution of animal mitochondrial DNA[J]. Proceedings of the national academy of Sciences of the United States of America,1979,76: 1967-1971.
    [33]AviseJ.C., LansmanR.A. Polymorphism of mitochondrial DNA in populations of high animals.in "Evolution of Genes and Proteins", Nei M. and R.K.Koehn(eds.), Sunderland.1983
    [34]Lansman R.A.Critieal experiment test of the possibility of "Pantemal leakage of mitoehondrial DNA [J]. Proceedings of the national academy of Sciences of the United States of America,1983,80:1969-1971
    [35]David I.B., BackerA.W. Matenal and cytoplasmic inheritance of mtDNA in xenopus [J]. Development Biology.1972,29:152-161.
    [36]Hutchinson C.A. Maternal inheritance of mammalian mitochondrial DNA [J]. Nature,1980,251:536-538.
    [37]张文平,张志和,沈富军等.华南虎、东北虎、孟加拉虎的D-loop和ND5序列及其在系统进化分析中的应用[J].四川动物,2005,24(1):315-318.
    [38]Brown V. M. Polymorphism in mitochondrial DNA of Humans as revealed by restriction endonuelease analysis [J]. Proceedings of the national academy of Sciences of the United States of America,1983,76:1967-1971.
    [39]AVise J.C..Mitoehondrial DNA and evolutionary genetics of higher animals [J]. Philosophical Transaction of the Royal Society of Lodon. B, Biological Sciences, 1986,312:328-334.
    [40]HarrisonR G. Animal mitoehondrial DNA as a genetic maker in population and evolutionary biology [J].Trends in Ecology and Evolution,1989,4:6-11.
    [41]Wlson A C L, Cann SM, Carr M. Mitochondrial DNA and two prospectives on evolutionary genetics [J]. Biology Journal of the Linnean Society,1985, 26(4):375-400.
    [42]Meyer A. Evolution of mitochondrial DNA in fishes. In:Hochachka P W. Mommsen T P eds., Biochemistry and Molecular Biology of Fishes, Vol.2. Amsterdam:Elsevier Science Publishers,1993,1-38.
    [43]Mortiz C. Applications of mitochondrial DNA analysis in conservation:a critieal review [J]. Molecular Ecology,1994,401-411.
    [44]WatanableT. Pig mitoehondrial DNA Polymorphism in native Philippine cattle based on restriction endonuclease cleavage pattems [J]. Biochemical Genetics.1989,27(7-8):431-438.
    [45]Loftus, R.T., MaeHugh, D.E., Bradley, D.Q., et al. Evidence for two independent domestications of cattle [J]. Proceedings of the national academy of Sciences of the United States of America,1994,91:2757-2761.
    [46]Tananka T, MatsuiM, Takenaka O. Phylogenetic relationships of Japanese brown frogs (Rana:Ranidae) assessed by cytochrome b genes sequences [J]. Bioch. Syst. Ecol,1996,24(4):299-307.
    [47]Lau, C.H., Drinkwater, R.D., Yusoff, K. Genetic diversity of Asian water buffalo (Bubalus bubalis):mitochondrial DNA D-loop and cytochrome b sequence variation [J]. Animal Genetics,1998.29:253-64.
    [48]Kim, K-Ⅱ, Yang, Y-H., Lee, S-S. Phylogenetic relationships of Cheju horses to other horse breeds as determined by mtDNA D-loop sequence Polymorphism [J]. Animal Genetics,1999,2:102-108.
    [49]Chen H., Leibenguth F. Restriction endonuclease analysis of mitochondrial DNA of three farm animal species:cattle, sheep and goat [J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,1995, 111(4):643-649.
    [50]Mannen H, Tsuji S, Loftus RT, et al. Mitochondrial DNA Variation and Evolution of Japanese Black Cattle [J]. Genetics,1998,150:1169-1175.
    [51]Mannen H, KojimaT, Oyama K., et al. Effect of mitochondrial DNA variation on carcass traits of Japanese cattle [J]. Journal of Animal Science,1998,91:27-37.
    [52]Mannen H, NagataY, Tsuji S. Mitochondrial DNA reveal that domestic goat(Capra hireus) are genetically affected by two subspecies of bezoar (Capra aegagurus) [J]. Biochemistry Genetics,2001,39(5-6):145-54.
    [53]Bell B.R. Effects of cytoplasmic in heritance on production traits of dairy cattle [J]. Journal of Dairy Science,1985,687:2038-2051.
    [54]Botetteher R J., Freeman A.E., Johnston S.D. et al. Relationship between polymorphism for mitochondrial eleoxyribonucleic acid and yield traits of Holestein cows [J]. Journal of Dairy Science,1996,79(4):647-654.
    [55]Carroll, S.B. Homeotic genes and the evolution of arthropods and chordates [J]. Nature,1995,376:479-485.
    [56]K L Kim等著,郭军摘译,马月辉校.通过线粒体DNA D-loop环序列多态性决定亚洲和欧洲猪品种间的系统发育关系[J]. Animal Genetics,2002, 33:19-25.
    [57]涂正超.动物线粒体DNA多态性及其在畜牧科学中的应用[J].黑龙江畜牧兽医,1994,12:38-40.
    [58]赵兴波,李宁,吴常信.奶牛产乳性状的核外基因效应[J].高科技通讯,2000,1(10):97-99.
    [59]Ron M, Genis I, Ezra E. et al. Mitochondrial DNA polymorphism and determination of effects on economic traits in dairy cattle [J]. Animmal Biotechnology, 1992,3(2):201-219
    [60].Ron M,Yoffe O and Weller J I, Sequence variation in D-loop mtDNA of cow lineages selected for high and low maternal effects on milk production [J]. Anim Genetics,1993,24(3):183
    [61]Bond U, Schlesinger M J. Heat shock proteins and development [J]. Molecular genetics of development,1987,24 (1):12-19.
    [62]Juliann G K, George C T. Heat shock protein 70 kD:molecular biology, biochemistry and physiology [J]. Pharmacology and Therapeutics,1998,80(2): 184-185.
    [63]Gabai V L, Meriin A B, Mosser D D, et al. HSP70 prevents activation of stress kinase-a novel pathway of cellular thermo tolerance [J]. Journal of Biological Chemistry,1997,272(29):18033-18037.
    [64]Linquist S, Craig E A. The heat shock proteins [J]. Annual Review of Genetics, 1998,22:631-633.
    [65]Mosser D D, Caron A W, Bourget L. The chaperone function of hsp70 is required for protection against stress-induced apoptosis. Molecular Cell Biology,1997, 17(9):5317-5327.
    [66]Sorger P K, Lewis M J, Pelham H R. Heat shock factor is regulated differently in yeast and HeLa cells [J]. Nature,1987,329(1):81-84.
    [67]Hendriek J P, Hartl F U. Molecular chaperone function of heat-shock proteins [J]. Annual Review of Biochemistry,1993,62:349-384.
    [68]Kimura Y, Yahara I, Lindquist S. Role of the protein chaper on YDJ1 in establishing HSP902 mediated signal transduetion pathways [J]. Science,1995, 268(5215):1362-1365.
    [69]Li X, Su R T C, Hsul H et al. The molecular chaperone calnexin associates with the vacuolar H-ATPase from oat seedlings [J]. Plant Cell,1998,10(1):119-130.
    [70]Bodsky J L. Post-transational protein tarnslocation:not all hsc70s are created equal [J]. TIBS.1996,21(3):122-126.
    [71]Frydman J, Nimmesgern E, Ohtsuka K, et al. Folding of nascent polypeptide chains in a high molecular mass as sembly with molecular chaperones [J]. Nature,1994,370(6485):111-117.
    [72]Baroueh W, Parsad K, Greene L, et al. Auxiiin-induced interaction of the molecular chaperone Hsc70 with clathrin baskets [J]. Biochemistry,1997,36(14): 4303-4308.
    [73]Hartl F U. Molecular chaperones in cellular protein folding [J]. Nature 1996, 381(6583):571-580.
    [74]Boston R S, Viitanen P V, Vierling E. Molecular chaperones and protein folding in plant[J]. Plant Molecular Biology,1996,32(1-2):191-222.
    [75]黄昌澎主编.家畜气候学[M].南京:江苏科学技术出版社,1989:85.
    [76]Srikandakumar J E H. Effect of heat stress on milk production rectal temperature, respiratory rate and blood chemistry in Holstein, Jersey and Australian Milking Zebu cows [J]. Tropical Animal Health and Production,2004,36(7):685-692.
    [77]Stott G H, Williams R J. Heat shock proteins and molecular chaperones [J]. Dairy Science,1962,45-49.
    [78]赵刚,付美芬,赵开典等.不同杂交组合及云南瘤牛抗蜱性能研究[J].云南省肉牛和牧草研究中心科研论文集(1983-2003).134-137.
    [79]BlockC J.Chase C, HansenP J. Inheritance of resistance of Bovine preimplantationembryos to heat shock:Relative impertance of thematemal versus paternal contribution [J]. Molecular Reproduction and Development,2002,63(1): 32-37.
    [80]Favatier F, Bornman L, Hightower L E, Gunther E, Polla B S. variation in hSP gene expression and HSP polymorphism:do they contribute to differential disease susceptibility and stress tolerance [J]. Cell Stress Chaperones,1997,2:141-155.
    [81]Deguehi Y, ishimoto S. Enhanced expression of the heat shock protein gene in peripheral blood mononudear cells of patients with active systemic lupus erythematosus [J]. Annals of the Rheumatic Distances,1990,49:893-895.
    [82]Dhlion V B, McCallum S, Norton PI. Differential heat shock protein over expression and its clinical relevance in systemic lupus erythematosus [J]. Annals of the Rheumatic Distances,1993,52:436-442.
    [83]Shimizu S, Nomura K, Ujihara M. An allele specific abnormal transcript of the heat shock protein 70 gene inpatients with major depression [J]. Biochemistry and molecular cell biology of diabetic complications,1996,219:745-752.
    [84]赵焕英,包金风.实时荧光定量PCR技术的原理及其应用研究进展[J].中国组织化学与细胞化学杂志.2007,16(4):492-497.
    [85]Zimmermann B, Holzgreve W, Wenzel F, et al. Novel real-time quantitative PCR test for trisomy [J]. Clinical Chemistry,2002,48(2):362-363.
    [86]Galbiati S, Smid M, Gambini D, et al. Fetal DNA detection in maternal plasma throughout gestation [J]. Human Genetics,2005,117(2-3):243-248.
    [87]Magnus L, Charles H. Dynamic range and reproducibility of hepatitis B virus (HBV) DNA detection and quantification by cobas Taqman HBV, a real-time semiautomated assay [J]. Journal of Clinical Microbiology,2005,43:4251-4254.
    [88]Nathalie D, Axelle D, Veronique S, et al. Quantification of Human immunodeficiency virus type 1 pro viral load by a TaqMan real-time PCR assay [J]. Journal of Clinical Microbiology,2001,39:1303-1310.
    [89]Nieuwenhuis E J, Jaspars L H, Castelijns J A, et al. Quantitative molecular detection o f minimal residual head and neck cancer in lymphnode aspirates [J]. Clinical Cancer Research,2003,9(2):755-761.
    [90]Liew M, Pryor R, Palais R, et al. Genotyping of single nucleotide polymorphisms by high-resolution melting of small amplicons [J]. Clinical Chemistry,2004, 50(7):1156-1164.
    [91]张聚良,王岭,凌瑞等.VEGF-C在乳腺癌组织中的表达及临床意义[J].现代肿瘤医学,2005,13(4):477-479.
    [92]邱昌伟,邓干臻,李成叶等.实时荧光定量RT-PCR检测犬乳腺肿瘤血管内皮生长因子(VEGF)基因方法的建立及初步应用[J].中国兽医学,2008,28(3):314-318.
    [93]王金良,郭显坡,魏凤等.SYBR Green实时荧光定量PCR检测猪流行性腹泻病毒方法的建立及应用[J].中国兽医学报,2010,30(10):1286-1290.
    [94]韩猛立,杨井泉,姚守秀等.牛IFN-α、IFN-β及IFN-γ mRNA实时SYBR Green 1定量RT-PCR检测方法的建立及应用[J].中国预防兽医学 报,2010,32(10):762-768.
    [95]赵丽红,高艳霞,李秋凤等.奶牛乳腺上皮细胞HSP70 mRNA荧光实时定量P CR标准曲线的建立[J].河北农业大学学报,2010,33(5):89-93.
    [96]朱燕,罗欣,徐增莲等.中国黄牛背最长肌中capnl mRNA表达与嫩度的关系[J].南京农业大学学报.2006,29(2):89-93.
    [97]屠云洁,苏一军,王克华等.利用实时荧光定量RT-PCR检测鸡A-FABP和H-FABP基因的差异表达[J].中国畜牧杂志,2010,46(7):1-4.
    [98]Mele M, Conte G, Castiglinoi, et al. Stearoyl-coenzyme A desaturase gene polymorphism and milk fatty acid composition in Italian Holsteins [J]. Journal of Dairy Science,2007,90(9):4458-4465.
    [99]Enoch H G, Catala A, Strittmatter P. Mechanism of rat microsomal stearoyl-CoA desaturase [J]. The Journal of Biological Chemistry.1976,251:5095-5103.
    [100]Lengi A J, Corl B A. Identification and characteration of a novelbovine stearoyl-CoA desaturase isoform with homology to human SCD5 [J]. Lipids, 2007,42(6):499-508.
    [101]Campbell E M, Gallagher D S, Davis S K, et al. Rapid communication:mapping of the bovine stearoyl-CoA desaturease (SCD) gene to BTA26 [J]. Journal of Animal Science,2001,79:1954-1955.
    [102]Jiang Z, Michal J J, Tobey D J, et al. Significant associations of stearoyl-CoA desaturase (SCD1) gene with fat deposition and composition in skeletal muscle [J]. International Journal of Biological Sciences,2008,4(6):345-351.
    [103]Kaestner K H, Ntambi J M, Kelly T J, et al. Differentiation-induced gene expression in 3T3-L1 preadipocytes·Characterization of a differentially expressed gene encoding stearoyl-CoA desaturase[J]. Journal of Biological Chemistry,1988, 263(33):17291-17300.
    [104]Zhang L, Ge L, Parimoo S, et al. Human stearoyl-CoA desaturase:alternative transcripts generated from a single gene by usage of tandem polyadenylation sites[J]. The Biochemical Journal,1999,340:255-264.
    [105]Ren J, Knorr C, Huang L, et al. Isolation and molecular characterization of the porcine stearoyl-CoA desaturase gene [J]. Genetics,2004,340(1):19-30.
    [106]Lengi A J, Corl B A. Identification and characteration of a novelbovine stearoyl-CoA desaturase isoform with homology to human SCD5 [J]. Lipids, 2007,42(6):499-508.
    [107]Nishizuka Y. Intracellular signaling by hydrolysis of phospholipids and activation of protein kinase C. Science,1992,258 (5082):607-614.
    [108]Cases S, Smith S J, Zheng Y W, et al. Identification of a gene encoding an acyl CoA:diacylglycerol acyltransferase, a key enzyme in triacylglycerol synthesis. Cell Biology,1998,95 (22):131018-131023.
    [109]Thaller G, Kramer W, Winter A, et al. Effects of DGAT1 variants on milk production traits in German cattle breeds. Journal of Animal Science,2003,81(8): 1911-1918.
    [110]Winter A, van Eckeveld M, Bininda-Emonds O R, et al. Genomic organization of the DGAT2/MOGAT gene family in cattle (Bos taurus) and other mammals [J]. Cytogenet Genome Research,2003,102(1-4):42-47.
    [111]Schennink A, Heck J M L, Bovenhuis H, et al. Milk fatty acid unsaturation: genetic parameters and effects of stearoyl-desaturase (SCD1) and acyl CoA: diacylglycerol acyltransferase 1 (DGAT1) [J]. Journal of Dairy Science,2008,91: 2135-2143.
    [112]贾晋,马妍,孙东晓等.中国荷斯坦牛DGAT1基因与产奶性状关联分析.畜牧兽医学报[J].2008,39(12):1661-1664.
    [113]萨姆布鲁克.分子克隆实验指南,第二版,1999,科学出版社:北京:第483-486.
    [114]FAO. Measurement of domestic animal diversity(MoDAD):recommended microsatellite markers, new microsatellite sets-recommendations of joint JSAG/FAO Standing Committee..2004.
    [115]Ritz L R, Glowatzki M L and E.A. MacHugh D E, Phylogenetic analysis of the tribe Bovini using microsatellite [J].2000,178-185.
    [116]章明,聚类分析软件(Ver 1.2),1999.
    [117]Francis CY, Y. RC and A.T. B, POPGENE (1.32) 2000.2000.
    [118]Nei M and Roychoudhury A K. Genetic variation within and between the three major races of man, Caucasoids, Negroids, and Mongoloids [J]. The American Journal of Human Genetics,1974,26:421-443.
    [119]根井正利.王家玉译.分子群体遗传学与进化论.北京:农业出版社,1983.
    [120]Bostein. D, White R. L. Construction of a genetic linkage maps in man using restriction fragment length polymorphisms [J]. The American Journal of Human Genetics,1980,32:314-331.
    [121]Raymond M and R. F., Genepop (1.2):population genetics software for exact tests and ecumenicism.1995,248-249.
    [122]Raymond M and R. F, Genepop (3.3). Population genetics softwore for exact tests and Ecumenicism.2001.
    [123]Michel Raymond and Francois Rousset. An exact test for population differentiation[J]. Evolution,1995,1280-1283.
    [124]Nei, M. Analysis of gene diversity in subdivided populations [J]. Proc. Natl. Acad. Sci., USA,1973,70:3321-3323.
    [125]Ota T. DISPAN:Genetic Distance and Phylogenetic Analysis. Pennsylvania State University,1993.
    [126]Nei M, Tajima F and Tateno Y. Accuracy of estimated phylogenetic tree from molecular data [J]. Jounal of Molecilar Evolution,1983,19:153-170.
    [127]Goldstein D B, Linares A R, Cavalli-Sforza L L,et al. An evaluation of genetic distances for use with microsatellite loci. Genetics.1995,139:463-471.
    [128]Nei M and Kumar S. Molecular evolution and phylogenetics. New York:Oxford University Press,2000,269.
    [129]Felsenstein J. Confidence limits on phylogenies:An approach using the bootstrap. Evolution,1985,39:783-791.
    [130]Olivier L. Populations (1.2.28).2002. http://www.cnrs-gif.fr/pge/bioinfo/ populations.
    [131]Page R D M. TREEVIEW:An application to display Phylogenetic trees on personal computer [J]. Computer Applications in the Biocsciences,1996,12: 357-358.
    [132]Minch E, Ruiz-Linares A, Goldstein D B, et al. Microsat (vers.1.2):a computer program for calculating varirous statistics on microsatellite allele data. http:// lotka.stanford.edu/microsat/microsat.html.
    [133]Guldbrandtsen B, Tomiuk J and Loeschcke V. POPDIST, version 1.1.1:A program to calculate population genetic distance and identity measures [J]. Journal of Heredity.2000,91:178-179.
    [134]Felsenstein J. PHYLIP (Version 3.65). Department of Genetics, University of Washington. Seattle,2005.
    [135]Takezaki N, Nei M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA [J]. Genetics.1996,144:389-399.
    [136]Bowcock A M. Ruiz-Linares A, Tomfohrde J, et al. High resolution of human evolutionary trees with polymorphic microsatellite[J]. Nature,1994,368:455-457.
    [137]Kwiatkowski D J, Henske E P, Weimer K, et al. Construction of a GT polymorphism map in human [J]. Genomics.1992,12:229-240.
    [138]Weber J L and Wong C. Mutation of human short tandem repeats [J]. Hum. Mol. Genetics.1993,2:1123-1128.
    [139]Cavalli-Sforza L L and Edwards A W F. Phylogenetic analysis:Models and estimation procedures [J]. American Journal of Human Genetics,1967,19: 233-257.
    [140]Goldstein D B, Ruiz-Linares A, Feldmann M et al. Genetic absolute dating based on microsatellite and origin of modern humans [J]. Proceeding of the National Academy of Sciences of the USA,1995,96:672-677.
    [141]Shriver M, Jin L, Boerwinkle E. A novel measure of genetic distance for highly polymorphic tandem repeat loci [J]. Molecular Biology Evolution,1995,12: 914-920.
    [142]主编陈幼春,中国黄牛生态种特征及其利用方向[M].1990,中国农业出版社.
    [143]Anderson S, de Bruijn M H L, Coulson A B, et al. Complete sequence of bovine mitochondrial DNA conserved features of the mammalian mitochondrial genome[J].Journal of Molecular Biology,1982,156:683-717.
    [144]Chenna, Ramu, Sugawara, et al. Multiple sequence alignment with the Clustal series of programs [J]. Nucleic Acids Research,2003,31(13):3497-5000.
    [145]Kumar S, Tamura K, and Nei M. MEG A3:integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment [J]. Briefings in Bioinformatics,2004,5:150-163.
    [146]Rozas J, Rozas R.DnaSP version 3:an integrated program for molecular population genetics and molecular evolution analysis [J]. Bioinformatics,1999, 15:174-175.
    [147]Loftus R T, MaeHugh D E, Bradley D G, et al. Evidence for two independent domestication in cattle [J]. Proceedings of the national academy of Sciences of the United States of America,1994,91:2575-2761.
    [148]分子系统学-原理方法及应用.黄原著.北京:中国农业出版社,1998,63-67.
    [149]聂龙,陈永久,王文等.海南黄牛和徐闻黄牛线粒体DNA的多态性及其品种分化关系[J].动物学研究,1996,17(3):269-274.
    [150]刘若余,杨公社,夏先林等.贵州思南黄牛线粒体DNA D-loop区全序列多态性分析[J].草食家畜,2006,130(1),17-19.
    [151]雷初朝.中国四个畜种(黄牛、水牛、牦牛、家驴)线粒体DNA遗传多样性研究[D].西北农林科技大学.
    [152]陈幼春.中国黄牛的分类,集于中国黄牛生态种特征及其利用(陈幼春主编),北京农业出版社(ISBN 7-109-01920-9/S.1276),1990,3-25..
    [153]布仁.温湿度数乳牛产乳量的影响[J].中国奶牛,2002,(6):23-24.
    [154]Wei J. Gong, Kentc. Golic Losss of Hsp70 in Drosophila is PLeiotropis, With Effecs on Thermotolerance, Neurodegeneration [J]. Genetics,2006,172:275-286.
    [155]王枫,郭俊生.HSP70高表达对K562细胞耐热力的影响[J].中国公共卫生,2000,16(7):587-588.
    [156]Vaiman D, Mercier D, Moazami-Goudarzi K, et al. A set of 99 cattle microsatellites characterization synteny mapping and polymorphism [J]. Mammalian Genome,1994,5(5):288-297.
    [157]范石军.热应激对产蛋鸡体组织的过氧化损伤及抗氧化的营养素的协同保护效应[D].哈尔滨:东北农业大学,1998.
    [158]康松非.临床生物化学[M].北京:人民卫生出版社,1989:78-79.
    [159]龚锌.热负荷对SD大鼠AST、CK和LKH影响[J].中国公共卫生学报,1996,15(2):95-96.
    [160]吴易雄.家禽血液生化指标与生产性能的关系研究综述[J].贵州畜牧兽医,2002,26(3):121.
    [161]Olbrichs E, Martz F A, Tumbleson M E, et al. Serum biochemical and hematological measurements of heat tolerant (ZEBU) and cold tolerant [J]. Journal of Animal Science,1971,33:655-658.
    [162]Vysotskaya R V. Changes in activity of liposomal enzymes in hens during exposure to high temperature [J]. Referativnyi Zhurual,1979,58:140.
    [163]刘庆华,王根林.热应激对奶牛血液流变学指标及血清无机离子浓度和酶活性的影响[J].福建农林大学学报(自然科学版).2007,36(3):284-287.
    [164]苏光华,肖兵南,燕海峰等.红细胞钾作为南方中国荷斯坦牛耐热性遗传标记的研究[J].中国牛业科学,2006,32(4):9-11.
    [165]Deyhim F, Teeterr G. Effect of heat stress and drinking water salt supp laments on plasma electrolytes and aldosterone concentration in broiler chickens [J]. International Journal of Biometeorology,1995,38 (4):216-217.
    [166]Borges SA, Fischer DA Silvaa V, et al. Physiological responses of broiler chickens to heat stress and dietary electrolyte balance [J]. Poultry Science,2004, 83(9):1551-1558.
    [167]秦开田,郑诚.抗热应激剂对肉鸡生产性能及血浆主要离子浓度的影响[J].华南农业大学学报,1997,18(增刊):73-78.
    [168]史彬林,闰素梅.奶牛耐热性评定指标的研究[J].中国奶牛,1996,2:20-22.
    [169]Evans J V, King J W. Genetic control of sodium and potassium concentrations in the red blood cells of sheep [J]. Nature,1955,176(4473):171.
    [170]Gangwar P.C著.张开洲译.夏季水牛喷水降温和水浴对红血球钾浓度的影响[J].家畜生态.1984(1):69-72.
    [171]陈强.奶牛HSP70基因5′-侧翼区PCR-SSCP分析及其与生产性能的关系[M].南京农业大学硕士学位论文,2007.
    [172]程维杰,李秋玲,王洪梅等.荷斯坦牛HSP70-1基因遗传多态性与乳腺炎抗性关系分析[J].新疆农业科学,2008,45(6):1187-1191.
    [173]程维杰,李秋玲,孙延鸣.中国荷斯坦牛HSP基因遗传多态性与其耐热性的关系分析[J].华北农学报,2009,24(4):41-45.
    [174]李长龙.猪ADD1基因的克隆及其与肉质性状关系的研究[M].东北农业大学,2004.
    [175]陈凤花,王琳,胡丽华.实时荧光定量RTPCR内参基因的选择[J].临床检验杂志.2005,23(5):393-395.
    [176]孙培明,吴晓东,赵永刚.肉鸡HSP70的基因克隆、原核表达及单克隆抗体制备[J].中国农业科学,2008,41(7):2154-2161.
    [177]刘延鑫,李大齐,崔群维等.奶牛HSP70基因表达及其连锁微卫星标记与耐热性状的相关性[J].遗传,2010,32(9):935-941.
    [178]王枫,赵法,郭俊生.HSP70高表达对K562细胞热耐力的影响[J].中国公共卫生-2000,16(7),587-588.
    [179]邹丽丽,陶争荣,张存.HSP70在急性热应激蛋鸭脾脏表达变化的研究[J].2010,46(3),6-9.
    [180]Cai Y F, Liu Q H, Xing G D, et al. Polymorphism of the promoter region of Hsp70 gene and its relationship with the expression of HSP70mRNA, HSF1mRNA, Bcl-2 mRNA and Bax-A mRNA in lymphocytes in peripheral blood of heat shocked dairy cows[J]. Asian-Aust Journal of Animal Science,2005, 18(5):734-740.
    [181]王根林.养牛学[M].北京:中国农业出版社,2000.
    [182]Li Z, Zhang Z, He Z, et al. A partition-ligation-combination- subdivision EM algorithm for haplotype inference with multiallelic markers:update of the SHEsis (http://analysis.bio-x.cn) [J]. Cell Research 2009,19(4):519-23.
    [183]Smith S B, Yang A, Larsen Tw, et al. Positional analysis of triacylglycerols from bovine adipose tissue lipids varying in degree of unsaturation [J]. Lipids,1998,33: 197-207.
    [184]Shanklin J, Whittle E, Fox B G. Eight histidine residues are catalytically essential in a membrane-associated iron enzyme, stearoyl-CoA desaturase, and are conserved in alkane hydroxylase and xylene monooxygenas e[J]. Biochemistry 1994,33:12787-12794.
    [185]Taniguchi M., Utsugi, T, Oyama K, et al. Genotype of stearoyl-CoA desaturase is associated with fatty acid composition in Japanese Black cattle. Mammalian.Genome,2004,15:142-148.
    [186]Moioli B, Contarini G, Avalli A, et al. Short communication:Effect of stearoyl-coenzyme A desaturase polymorphism on fatty acid composition of milk [J]. Journal of Dairy Science,2007,90 (7):3553-3558.
    [187]Macciotta N P, Mele M, Conte G, et al. Association between a polymorphism at the stearoyl-CoA desaturase locus and milk production traits in Italian Holsteins [J]. Journal of Dairy Science,2008,91(8):3184-3189.
    [188]Macciotta N P, Mele M, Pagnacco G, et al. Stearoyl-CoA desaturase gene polymorphism and milk production traits in Italian Holsteins. Journal of Dairy Science,2007,90:4458-4465.
    [189]Barton L, Kott T, Bures D, et al. The polymorphisms of stearoyl-CoA desaturase (SCD1) and sterol regulatory element binding protein-1 (SREBP-1) genes and their association with the fatty acid profile of muscle and subcutaneous fat in Fleckvieh bulls [J]. Meat Science,2010,85:15-20.
    [190]Sun D, Jia J, Ma Y, et al. Effect of DGAT1 and GHR on milk yield and milk composition in the Chinese dairy population [J]. Animal Genetics,2009,40: 997-1000.
    [191]Spelman R J, Ford C A, McElhinney P, Gregory G C and Snell R G. Characterization of the DGAT1 gene in the New Zealand dairy population [J]. Journal of Dairy Science,2002,85:3514-3517.
    [192]Naslund J, Fikse W F, Pielberg G R et al. Frequency and effect of the bovine Acyl-CoA:Diacylglycerol Acyltransferase 1 (DGAT1) K232A polymorphism in Swedish dairy cattle[J]. Journal of Dairy Science,2008,91:2127-2134.
    [193]Schennink A, Stoop W M, Visker M H P W, et al. DGAT1 unterlies large genetic variation in milk fat composition of dairy cows[J]. Animal Genetics,2007, 38:467-473.
    [194]Milanesi E, Nicoloso L, Crepaldi P. Stearoyl CoA desaturase (SCD) gene polymorphisms in Italian cattle breeds [J]. Journal of Animal Breeding and Genetics,2008,125,63-67.
    [195]Oikonomou G, Angelopoulou K, Arsenos G, et al. The effects of polymorphisms in the DGAT1, leptin and growth hormone receptor gene loci on body energy, blood metabolic and reproductive traits of Holstein cows [J]. Animal Genetics, 2008,40:10-17.
    [196]Kaupe B. Winter A. Fries R. et al. DGAT1 polymorphism in Bos indicus and Bos taurus cattle breeds[J]. Journal of Dairy Research,2004.71:182-187.
    [197]Pareek C S, Czarnik U, Zabolewicz T, et al. DGAT1 K232A quantitative trait nucleotide polymorphism in Polish Black-and-White cattle[J]. Journal of Applied Genetics,2005,46:85-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700