天津近岸海域生态环境特性及其空间决策支持系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着海岸带地区经济的快速发展和开发活动的加剧,近岸海域生态环境面临着巨大的压力。近岸海域水生态环境特性的研究,对认识海洋生态过程和改善近岸海域水环境状况具有重要的意义。
     由于近岸海域生态环境的复杂性、动态性和时空特异性,其生态环境研究面临诸多挑战。本文以半封闭的渤海湾天津近岸海域为背景,系统地讨论了近岸海域生态环境因子的时空分析、综合评价和模拟预测方法,并在此基础上对天津近岸海域生态环境特性进行了研究,建立了天津近岸海域生态环境空间决策支持系统,可为今后天津近岸海域的生态环境研究和管理提供技术支持,促进近岸海域生态环境的健康发展。
     首先,针对近岸海域生态环境的动态性和时空特异性,对近岸海域生态环境的时空分析方法和近十年来天津近岸海域富营养化的时空分布特性进行了研究。结果表明,富营养化及相关环境因子年际变化基本呈现先下降、后回升的趋势,空间上呈现近岸高、远海低的特征,时空趋势变化主要受陆源排放的影响。
     其次,面对常规生态环境质量评价方法中存在的反映信息不全面、容易失真等问题,本文研究了多级灰关联综合评价法,并对近年来天津近岸海域生态环境质量进行了评价。结果表明,天津近岸海域环境质量整体不容乐观,四个功能区水质差异明显,天津汉沽农渔业区和东南部农渔业区污染最为严重。
     然后,针对传统生态动力学模型在处理海洋生态环境模拟中不确定性问题的局限性,建立了结构方程模型(SEM)和贝叶斯网络(BN)相结合的不确定性推理模型,并利用该模型对天津近岸海域的浮游植物生物量的动态变化进行了模拟研究,以探索和验证环境因子与叶绿素间的因果关系,模型取得了良好效果。
     最后,基于天津近岸海域生态特性的研究,建立了天津近岸海域生态环境空间决策支持系统,为天津近岸海域生态环境提供了综合的研究平台。在此过程中,对传统的数据管理和模型集成方式进行了改进,提出生态空间数据一体化管理机制和模型插件式集成模式,为高效管理天津近岸海域生态空间数据、提高研究平台的可扩展性和生态模型的复用率提供了新的思路。
With the development of economy and the increase of pollutant emission alongcoastal areas, the coastal ecological environment is facing tremendous pressure. Thestudy on coastal ecological characteristics is of great significance for theunderstanding of marine ecological processes, protecting coastal aquatic ecosystemand marine management.
     Due to the complexity of the coastal eco-environment, the study of coastalecological environment faces with many challenges. In order to promote the healthydevelopment of the Tianjin coastal ecological environment, we studied the ecologicalcharacteristics of Tianjin coastal area systematically and developed the Tianjin coastalecological environment spatial decision support system.
     Firstly, the spatiotemporal distribution characteristics of eutrophication in Tianjincoastal waters were analysed using the properly selected temporal-spatial analysismethods. The results indicate that the annual variation of eutrophication showsdownward trend in the earlier stage and upward trend later, and shows the spatialvariation trend of decreasing from near-shore to off-shore. The spatial and temporaltrends mainly influenced by the land-source discharges.
     Secondly, in order to overcome the shortcomings of the traditional ecologicalenvironment quality evaluation method, such as reflecting the one-sided informationand tending distortion, this study proposed a multi-level gray relationalcomprehensive evaluation method to evaluate the ecological environment quality ofTianjin coastal waters. The result shows that the overall quality of the environment isnot optimistic, and the environmental qualities of the four functional areas aresignificantly different from each other.
     Thirdly, in view of the limitations of the traditional eco-hydrodynamics modelsto treat the uncertainty in the eco-environment, an uncertainty reasoning model, basedon linking structural equation modeling (SEM) with Bayesian network (BN), wasdeveloped. The SEM-BN model was applied to study the phytoplankton dynamics inTianjin coastal area, with satisfied results being obtained.
     Finally, based on the characteristics of Tianjin coastal ecological environment,the Tianjin coastal ecological environment spatial decision support system was developed to provide an integrate research platform for studying Tianjin coastalecological environment. Meanwhile, the traditional data management and modelintegration approach was improved for efficient management of ecological data andecological models.
引文
[1] Mcintyre A D. Human impact on the oceans: The1990s and beyond[J]. MarinePollution Bulletin,1995,31(4):147-151.
    [2] Seitzinger S, Kroeze C. Global distribution of nitrous oxide production and Ninputs in freshwater and marine and coastal ecosystems[J]. Global BiochemicalCycles,1998,12(1):93-113.
    [3] Shahidul I M, Masaru T. Impacts of pollution on coastal and marine ecosystemsincluding coastal and marine fisheries and approach for management: a reviewand synthesis[J]. Marine Pollution Bulletin,2004,48(7):624-649.
    [4] Zhai X M, Hawkins S J. Interaction of aquaculture and waste disposal in thecoastal zone[J]. Journal of Ocean University of Qingdao,2002,1(1):8-12.
    [5]黄良民,黄小平,宋星宇,等.我国近海赤潮多发区域及其生态学特征[J].生态科学,2003,22(3):252-256.
    [6] Hallegraeff G M. A review of harmful algal blooms and their apparent globalincrease[J]. Phycologia,1993,32(2):79-99.
    [7]国家海洋局.2012年中国海洋环境质量公报[EB/OL]. http://www.nmdis.gov.cn/gongbao/huanjing/201304/t20130401_26428.html,2013-04-01.
    [8]穆迪.渤海湾营养盐对浮游生态动力学特性影响研究[D].天津:天津大学,2012.
    [9]孟伟庆,王秀明,李洪远,等.天津滨海新区围海造地的生态环境影响分析[J].海洋环境科学,2012,31(1):83-87.
    [10]聂红涛,陶建华.渤海湾海岸带开发对近海水环境影响分析[J].海洋工程,2008,26(3):44-50.
    [11] Sun Tao, Tao Jianhua. Experimental and numerical study of wave-inducedlong-shore currents on a mild slope beach[J]. China Ocean Engineering,2005,19(3):469-484.
    [12]天津市海洋局.2011年天津市海洋环境质量公报[EB/OL]. http://www.tjoa.gov.cn/text Content. aspx?cid=7686&tid=98,2012-7-19.
    [13]赵海萍.渤海湾浮游细菌及水层生态水动力学模拟[D].天津:天津大学,2006.
    [14]阚文静,张秋丰,石海明,等.近年来渤海湾营养盐变化趋势研究[J].海洋环境科学,2010,29(2):238-241.
    [15] Renken H, Mumby P J. Modelling the dynamics of coral reef macroalgae using aBayesian belief network approach[J]. Ecological Modelling,2009,220(9):1305-1314.
    [16]王勇,焦念志.营养盐对浮游植物生长的上行效应的研究方法[J].海洋科学,2000,24(11):16-18.
    [17] Sokal R R, Rohlf F J. Biometry[M]. New York: Freeman,1981.
    [18] Draper N R, Smith H. Applied regression analysis[M]. USA: John Wiley&SonsInc.,1998.
    [19] Poole R W. An introduction to quantitative ecology[M]. New York: McGraw-Hill,1974.
    [20] Estrada M, Marrase C, Latasa M, et al. Variability of deep chlorophyll maximumcharacteristics in the Northwestern Mediterranean[J]. Mar Ecol Prog Ser,1993,92:289-300.
    [21] Nikolaidis G, Patoucheas D P, Moschandreou K. Estimating breakpoints of Chl-ain relation with nutrients from Thermaikos gulf (Greece) using piecewise linearregression[J]. Fresenius Environmental Bulletin,2006,15(9B):1189-1201.
    [22]张乃星.过量氮和磷引起的富营养化对海水无机碳源汇强度的影响[D].青岛:中国科学院研究生院(海洋研究所),2008.
    [23]田梓杨,黄洪辉,齐占会,等.大鹏澳海湾养殖生态环境的化学计量分析[J].中国水产科学,2012,19(5):881-888.
    [24] Fang J, Barcelona M J, Alvarez P J J. A direct comparison between fatty acidanalysis and intact phospholipid profiling for microbial identification[J]. OrganicGeochemistry,2000,31(9):881-887.
    [25]伯绍毅,石金辉,高会旺,等.冬,春季东海气溶胶和雨水中尿素氮的研究[J].环境科学,2009,30(1):15-22.
    [26] Primpas I, Karydis M, Tsirtsis G. Assessment of clustering algorithms indiscriminating eutrophic levels in coastal waters[J]. Global Nest Journal,2008,10(3):359-365.
    [27]杨佰娟,郑立,韩笑天,等.红外光谱技术结合聚类分析用于海洋绿藻分类研究[J].海洋环境科学,2011,30(5):724-726.
    [28]张涛,庄平,章龙珍,等.长江口中华鲟自然保护区底层鱼类的群落结构特征[J].生态学报,2011,31(6):1687-1694.
    [29]彭立,苏春江,徐云,等.水文尺度问题及尺度转换研究进展[J].西北林学院学报,2007,22(3):179-184.
    [30]薛小杰,蒋晓辉,黄强,等.小波分析在水文序列趋势分析中的应用[J].应用科学学报,2002,20(4):426-428.
    [31]王秀杰,费守明.小波分析方法在水文径流模拟中的应用[J].水电能源科学,2007,25(6):1-3.
    [32]毛天宇,戴明新,彭士涛,等.近10年渤海湾重金属(Cu, Zn, Pb, Cd, Hg)污染时空变化趋势分析[J].天津大学学报,2009,42(9):817-825.
    [33] Riley G A, Stommel H M, Bumpus D F. Quantitative ecology of the plankton ofthe western North Atlantic[M]. USA: Bingham Oceanographic Laboratory,1949.
    [34] Horwood J. Algal production in the west-central North Sea[J]. Journal ofPlankton Research,1982,4(1):103-124.
    [35] Baretta J W, Ebenh h W, Ruardij P. The European regional seas ecosystem model,a complex marine ecosystem model[J]. Netherlands Journal of Sea Research,1995,33(3):233-246.
    [36] Kelly-Gerreyn B A, Anderson T R, Holt J T, et al. Phytoplankton communitystructure at contrasting sites in the Irish Sea: a modelling investigation[J].Estuarine, Coastal and Shelf Science,2004,59(3):363-383.
    [37] Fasham M J R, Ducklow H W, McKelvie S M. A nitrogen-based model ofplankton dynamics in the oceanic mixed layer[J]. Journal of Marine Research,1990,48(3):591-639.
    [38] Guillaud J F, Andrieux F, Menesguen A. Biogeochemical modelling in the Bay ofSeine (France): an improvement by introducing phosphorus in nutrient cycles[J].Journal of Marine Systems,2000,25(3):369-386.
    [39] Skogen M D, Svendsen E, Berntsen J, et al. Modelling the primary production inthe North Sea using a coupled three-dimensional physical-chemical-biologicalocean model[J]. Estuarine, Coastal and Shelf Science,1995,41(5):545-565.
    [40] Grégoire M, Lacroix G. Study of the oxygen budget of the Black Sea watersusing a3D coupled hydrodynamical-biogeochemical model[J]. Journal of MarineSystems,2001,31(1):175-202.
    [41] Cugier P, Ménesguen A, Guillaud J F. Three-dimensional (3D) ecologicalmodelling of the Bay of Seine (English Channel, France)[J]. Journal of SeaResearch,2005,54(1):104-124.
    [42]赵亮.渤海浮游植物生态动力学模型研究[D].青岛:青岛海洋大学,2002.
    [43]穆迪.渤海湾营养盐对浮游生态动力学特性影响研究[D].天津:天津大学,2012.
    [44] Lenhart H J, Mills D K, Baretta-Bekker H, et al. Predicting the consequences ofnutrient reduction on the eutrophication status of the North Sea[J]. Journal ofMarine Systems,2010,81(1):148-170.
    [45] Arango H G, Robertson D. Introduction[EB/OL]. http://www.ocean-modeling.org/index.php,2011.
    [46] Spillman C M, Imberger J, Hamilton D P, et al. Modelling the effects of Po Riverdischarge, internal nutrient cycling and hydrodynamics on biogeochemistry of theNorthern Adriatic Sea[J]. Journal of Marine Systems,2007,68(1-2):167-200.
    [47]吴增茂,俞光耀,张志南,等.胶州湾北部水层生态动力学模型与模拟Ⅱ.胶州湾北部水层生态动力学的模拟研究[J].青岛海洋大学学报(自然科学版),1999,29(3):90-96.
    [48]李清雪.渤海湾浮游生物氮吸收动力学研究[J].河北建筑科技学院学报,2001,18(2):1-4.
    [49]赵海萍,陶建华,李清雪.渤海湾海域硝化、亚硝化细菌的生态研究[J].海洋技术,2005,24(4):44-49.
    [50]高庆春.渤海湾赤潮监控区细菌对浮游生态系统影响的研究[D].天津:天津大学,2007.
    [51]穆迪.渤海湾生态水质动力学模型研究[D].天津:天津大学,2006.
    [52]胡好国,万振文,袁业立.南黄海浮游植物季节性变化的数值模拟与影响因子分析[J].海洋学报,2004,26(6):74-88.
    [53] Zadeh L. Fuzzy logic, neural networks and soft computing[J]. Communications ofthe ACM,1994,37(3):77-84.
    [54]王攀,万君康,冯珊.创建计算智能的新方法-软计算的若干问题研究[J].武汉理工大学学报,2004,28(4):618-621.
    [55] Salski A. Fuzzy clustering of fuzzy ecological data[J]. Ecological Informatics,2007,2(3):262-269.
    [56]曹宇峰,林春梅,孙霞.模糊数学法在海洋水质评价中的应用[J].海洋技术,2011,30(2):118-122.
    [57] Kotta J, Aps R, Orav-Kotta H. Bayesian inference for predicting ecological waterquality under different climate change scenarios[J]. Transactions on Ecology andthe Environment,2009,217(1):173-184.
    [58] Ibrahim A, YoonKyung C, Kenneth H R. An evaluation of automated structurelearning with Bayesian networks: Anapplication to estuarine chlorophylldynamics[J]. Environmental Modelling&Software,2011,26(2):163-172.
    [59] Hugh W, Friedrich R. Towards a genetic artificial neural network model fordynamic prediction of algal abundance in freshwater lakes[J]. EcologicalModelling,2001,146(1):69-84.
    [60]杨红,戴桂香,赵瀛,等.基于BP人工神经网络的长江口外海生态综合评价及其成因分析[J].海洋环境科学,2012,31(6):893-896.
    [61]李祚泳,张欣莉,丁晶.水质污染损害指数评价的普适公式[J].水科学进展,2001,12(2):160-164.
    [62]向先全,陶建华.基于模糊识别和遗传神经网络的渤海湾叶绿素a预测研究[J].海洋环境科学,2011,30(2):239-242.
    [63]陈文伟.决策支持系统及其开发[M].北京:清华大学出版社,2000.
    [64]王家耀,周海燕,成毅.关于地理信息系统与决策支持系统的探讨[J].测绘科学,2003,28(1):1-4.
    [65]张超,陈丙咸,乌肠伦.地理信息系统[M].北京:高等教育出版社,2000.
    [66]周勇,田有国.基于GIS的区域土壤资源管理决策支持系统[J].系统工程理论与实践,2003,(3):140-144.
    [67]常晋义.空间决策支持系统的结构及应用研究[J].大同高专学报,1996,10(1):88-93.
    [68]张元教.基于GIS的空间决策支持系统理论及其应用[D].南京:河海大学,2001.
    [69] Camara A S, Cardoso da Silva M, Carmona Rodrigues A. Decision supportsystem for estuarine water-quality management[J]. Journal of Water ResourcesPlanning and Management,1990,116(3):417-432.
    [70] Karen P F. A methodology for supporting decision making in integrated coastalzone management[J]. Ocean&Coastal Management.1998,39(1):51-62.
    [71] Pelizaro C, McDonald, D. Spatial (GIS-based) decision support system for theWesternport region[J]. Applied GIS,2006,2(3):1-21.
    [72] Hrishikesh P, Sucharita G, Les K, et al. MIDAS: A Spatial Decision SupportSystem for Monitoring Marine Management Areas[J]. International RegionalScience Review,2011,34(2):191-214.
    [73]颜尤明.福建省海洋捕捞业管理地理信息系统设计[J].福建水产,2005,12(4):9-21.
    [74]孙林,肖洪钧,杨德权,等.决策支持系统在海洋渔业捕捞中的应用[J].信息技术,2009,11(4):45-52.
    [75]李阳东,朱国平,田思泉.利用ArcGIS Mobile技术开发海洋渔业数据采集系统[J].海洋技术,2011,30(4):82-86.
    [76]陈平.海上溢油事故应急反应系统整体框架的分析研究[J].中国水运,2007,5(11):10-11.
    [77]郭红,余涛,顾行发.基于ArcEngine的海洋溢油监测管理信息系统研究[J].计算机工程与设计,2011,32(3):1092-1095.
    [78]安伟,王永刚,王新怡,等.中国近海海上溢油预测与应急决策支持系统研发[J].海洋科学,2010,34(11):78-83.
    [79]廖国祥,熊德琪,姜玲玲,等.溢油污染生物资源损害评估地理信息系统的开发[J].武汉理工大学学报(交通科学与工程版),2008,32(4):746-749.
    [80]黄添强,王钦敏,邬群勇.环境调控空间决策支持系统的设计与实现-福建海岸带环境调控决策支持系统[J].福州大学学报(自然科学版),2002,30(5):538-542.
    [81] Sun Jian, Tao Jianhua. Relation matrix of water exchange for sea bays and itsapplication[J]. China Ocean Engineering,2006,20(4):529-544.
    [82] Tao Jianhua, Li Qingxue, Falconer R A. Modelling and assessment of waterquality indicators in a semi-enclosed shallow bay[J]. Journal of HydraulicResearch,2001,39(6):611-617.
    [83] Tang Danling, Kawamura H. Satellite evidence of harmful algal blooms andrelated oceanographic features in the Bohai Sea during autumn1998[J]. Advancesin Space Research,2006,37(4):681-689.
    [84]秦延文,孟伟,郑丙辉,等.渤海湾水环境氮、磷营养盐分布特点[J].海洋学报,2005,27(2):172-175.
    [85] Raabe T, Yu Zhigang, Zhang Jing, et al. Phase transfer of nitrogen species withinthe water column of the Bohai Sea[J]. Journal of Marine Systems,2004,44(3-4):213-232.
    [86] Wang Xiulin, Cui Zhengguo, Guo Quan, et al. Distribution of nutrients andeutrophication assessment in the Bohai Sea of China[J]. Chinese Journal ofOceanology and Limnology,2009,27(1):177-183.
    [87]邹景忠,董丽萍,秦保平.渤海湾富营养化和赤潮问题的初步探讨[J].海洋环境科学,1983,2(2):41-54.
    [88]天津市水务局.天津市水资源公报:2001-2010[EB/OL].http://www.tjsw.gov.cn/pub/tjwcb/hangyegb/index.html,2002-2011.
    [89]褚健婷,夏军,许崇育,等.海河流域气象和水文降水资料对比分析及时空变异[J].地理学报,2009,64(9):1083-1092.
    [90]薛小杰,蒋晓辉,黄强,等.小波分析在水文序列趋势分析中的应用[J].应用科学学报,2002,20(4):426-428.
    [91] Chang H. Spatial analysis of water quality trends in the Han River basin, SouthKorea[J]. Water Research,2008,42(13):3285-3304.
    [92] Yue Sheng, Wang Chunyuan. The Mann-Kendall test modified by effectivesample size to detect trend in serially correlated hydrological series[J]. WaterResources Management,2004,18(3):201-218.
    [93] Nie Hongtao, Tao Jianhua. Eco-environment status of the bohai bay and theimpact of coastal exploitation[J]. Marine Science Bulletin,2009,11(2):81-96.
    [94]秦延文,张雷,郑丙辉,等.渤海湾岸线变化(2003-2011年)对近岸海域水质的影响[J].环境科学学报,2012,32(9):2149-2159.
    [95]阚文静,张秋丰,石海明,等.近年来渤海湾营养盐变化趋势研究[J].海洋环境科学,2010,29(2):238-241.
    [96]郭伟,朱大奎.深圳围海造地对海洋环境影响的分析[J].南京大学学报(自然科学版),2005,41(3):286-296.
    [97]吴光红,李万庆,郑洪起.渤海天津近岸海域水污染特征分析[J].海洋学报,2007,29(2):143-149.
    [98]袁中智.基于GIS的近岸海域水环境时空分析[D].武汉:武汉大学,2005.
    [99] Shim B O, Chung S Y, Kim H J, et al. Intrinsic random function of order kkriging of electrical resistivity data for estimating the extent of saltwater intrusionin a coastal aquifer system[J]. Environmental Geology,2004,46(5):533-541.
    [100] Froeschke J, Stunz G W, Wildhaber M L. Environmental influences on theoccurrence of coastal sharks in estuarine waters[J]. Marine Ecology ProgressSeries,2010,407:279-292.
    [101] Monestiez P, Dubroca L, Bonnin E, et al. Geostatistical modelling of spatialdistribution of Balaenoptera physalus in the Northwestern Mediterranean Seafrom sparse count data and heterogeneous observation efforts[J]. EcologicalModelling,2006,193(3):615-628.
    [102]王立华,李继龙,葛常水,等.利用GIS技术进行海洋环境质量评价的研究[J].海洋环境科学,2003,22(4):44-48.
    [103] Bardgett R D, Anderson J M, Behan-pelletier V, et al. The influence of soilbiodiversity on hydrological pathways and the transfer of materials betweenterrestrial and aquatic ecosystem[J]. Ecosystems,2001,4(5):421-429.
    [104]戚晓红,刘素美,张经,等.东海赤潮高发区沉积物中营养盐再生速率的研究[J].应用生态学报,2003,14(7):1112-1116.
    [105]王而力,王嗣淇.西辽河不同粒级沉积物对磷的吸附特征[J].中国环境科学,2012,32(6):1054-1061.
    [106]王宏,李建芬,裴艳东,等.渤海湾西岸海岸带第四纪地质研究成果概述[J].地质调查与研究,2011,35(2):81-97.
    [107]刘娟.渤海化学污染物入海通量研究[D].青岛:中国海洋大学,2006.
    [108]王红莉,姜国强,陶建华.渤海湾水环境系统多级灰关联评价[J].海洋技术,2004,23(4):48-52.
    [109]冯长根,李彦周.综合评价方法在环境评价中的应用[J].安全与环境学报,2008,8(5):112-115.
    [110]刘鲁君,叶亚平.县域生态环境质量考评方法研究[J].环境监测管理与技术,2000,12(4):13-17.
    [111]付会,孙英兰,孙磊,等.灰色关联分析法在海洋环境质量评价中的应用[J].海洋湖沼通报,2007,(3):127-131.
    [112]赵光影,华德尊.灰色聚类法在地表水环境质量评价中的应用[J].北方环境,2005,30(2):84-86.
    [113]姚焕玫.基于GIS技术的湖泊水质污染综合评价的研究[D].武汉:武汉大学,2005.
    [114]夏军.区域水环境及生态环境质量评价[M].武汉:武汉水利电力大学出版社,1999.
    [115] Chen Q. Cellular Automata and Artificial Intelligence in EcohydraulicsModelling[M]. London: Taylor&Francis Group,2004.
    [116] Lee J, Huang Y, Dickman M, et al. Neural network modelling of coastal algalblooms[J]. Ecological Modelling,2003,159:179-201.
    [117] Recknagel F. ANNA-artificial neural network model for predicting speciesabundance and succession of blue green algae[J]. Hydrobiologia,1997,349(1-3):47-57.
    [118] Uusitalo L. Advantages and challenges of Bayesian networks in environmentalmodelling[J]. Ecological Modelling,2007,203(3-4):312-318.
    [119] Aguilera P A, Fernández A, Reche F, et al. Hybrid Bayesian network classifiers:Application to species distribution models[J]. Environmental Modelling&Software,2010,25(12):1630-1639.
    [120] Dlamini W M. A Bayesian belief network analysis of factors influencing wildfireoccurrence in Swaziland[J]. Environmental Modelling&Software,2010,25(2):199-208.
    [121] Barton D N, Saloranta T, Moe S J, et al. Bayesian belief networks as ameta-modelling tool in integrated river basin management-Pros and cons inevaluating nutrient abatement decisions under uncertainty in a Norwegian riverbasin[J]. Ecological Economics,2008,66(1):91-104.
    [122] Pollino C, Woodberry O, Nicholson A, et al. Parameterisation and evaluation of aBayesian network for use in an ecological risk assessment[J]. EnvironmentalModelling&Software,2007,22(8):1140-1152.
    [123] Renken H, Mumby P J. Modelling the dynamics of coral reef macroalgae using aBayesian belief network approach[J]. Ecological Modelling,2009,220(9-10):1305-1314.
    [124] Cooper G. Computational complexity of Probabilistic inference using BayesianBelief Network[J]. Artificial Intelligence,1990,42(2):393-405.
    [125] Dagum P, Chavez R M. Approximating probabilistic inference in bayesian beliefnetworks[J]. Pattern Analysis and Machine Intelligence, IEEE Transactions on,1993,15(3):246-255.
    [126] Renooij S, Witteman C L M. Talking probabilities: communicating probabilisticinformation with words and numbers[J]. UU-CS,1999,22:169-194.
    [127] Campos L M, Huete J F. A new approach for learning belief networks usingindependence criteria[J]. International Journal of Approximate Reasoning,2000,24(1):11-37.
    [128] Heckerman D, Geiger D, Chickering D M. Learning Bayesian networks: thecombination of knowledge and statistical data[J]. Machine Learning,1995,20(3):197-243.
    [129]李艳美.基于贝叶斯网络的数据挖掘应用研究[D].西安:西安电子科技大学,2008.
    [130] Mitchell T M. Machine Learning[M]. Beijing: China Machine Press,2003.
    [131] Neal R M, Hinton G E. A view of the EM algorithm that justifies incremental,sparse, and other variants[M]. Berlin: Springer Netherlands,1998.
    [132] Lauritzen S L. The EM algorithm for graphical association models with missingdata[J]. Computational Statistics&Data Analysis,1995,19(2):191-201.
    [133] Myllym ki P, Silander T, Tirri H, et al. B-course: A web-based tool for Bayesianand causal data analysis[J]. International Journal on Artificial Intelligence Tools,2002,11(3):369-387.
    [134] Marcot B G, Holthausen R S, Raphael M G, et al. Using Bayesian beliefnetworks to evaluate fish and wildlife population viability under landmanagement alternatives from an environmental impact statement[J]. ForestEcology and Management,2001,153(1):29-42.
    [135] Marcot B G, Steventon J D, Sutherland G D, et al. Guidelines for developing andupdating Bayesian belief networks applied to ecological modeling andconservation[J]. Canadian Journal of Forest Research,2006,36(12):3063-3074.
    [136] Uusitalo L, Kuikka S, Romakkaniemi A. Estimation of Atlantic salmon smoltcarrying capacity of rivers using expert knowledge[J]. ICES Journal of MarineScience: Journal du Conseil,2005,62(4):708-722.
    [137] Alameddine I, Cha Y, Reckhow K H. An evaluation of automated structurelearning with Bayesian networks: An application to estuarine chlorophylldynamics[J]. Environmental Modelling&Software,2011,26(2):163-172.
    [138] Chickering D M. Learning equivalence classes of Bayesian-network structures[J].The Journal of Machine Learning Research,2002,2:445-498.
    [139]黄解军.贝叶斯网络结构学习及其在数据挖掘中的应用研究[D].武汉:武汉大学,2005.
    [140] Pearl J. Graphs, causality, and structural equation models[J]. SociologicalMethods&Research,1998,27(2):226-284.
    [141] Arhonditsis G B, Paerl H W, Valdes-Weaver L M, et al. Application of Bayesianstructural equation modeling for examining phytoplankton dynamics in the NeuseRiver Estuary (North Carolina, USA)[J]. Estuarine, Coastal and Shelf Science,2007,72(1-2):63-80.
    [142] Scheines R, Hoijtink H, Boomsma A. Bayesian estimation and testing ofstructural equation models[J]. Psychometrika,1999,64(1):37-52.
    [143] Liu Yong, Guo Huaicheng, Yang Pingjian. Exploring the influence of lake waterchemistry on chlorophyll-a: A multivariate statistical model analysis[J].Ecological Modelling,2010,221(4):681-688.
    [144] Gelman A, Meng X L, Stern H. Posterior predictive assessment of model fitnessvia realized discrepancies[J]. Statistica Sinica,1996,6:733-759.
    [145] Anderson R D, Vastag G. Causal modeling alternatives in operations research:Overview and application[J]. European Journal of Operational Research,2004,156(1):92-109.
    [146] Gupta S, Kim H W. Linking structural equation modeling to Bayesian networks:Decision support for customer retention in virtual communities[J]. EuropeanJournal of Operational Research,2008,190(3):818-833.
    [147] Druzdzel M J, Simon H A. Causality in Bayesian belief networks[C]//InProceedings of the Ninth Annual Conference on Uncertainty in ArtificialIntelligence. Washington, USA,1993:3-11.
    [148] Arhonditsis G B, Stow C A, Steinberg L J, et al. Exploring ecological patternswith structural equation modeling and Bayesian analysis[J]. Ecological Modelling,2006,192(3-4):385-409.
    [149]向先全.基于水信息技术的渤海湾水生态环境特性及模拟研究[D].天津:天津大学,2011.
    [150] Wang Hongli, Feng Jianfeng, Li Shengpeng, et al. Statistical analysis andprediction of the concentration of harmful algae in Bohai Bay[J]. Transactions ofTianjin University,2005,11(4):308-312.
    [151] Hinga K R. Effects of pH on coastal marine phytoplankton[J]. Marine EcologyProgress Series,2002,238(28):281-300.
    [152] Fl der S, Jaschinski S, Wells G, et al. Dominance and compensatory growth inphytoplankton communities under salinity stress[J]. Journal of ExperimentalMarine Biology and Ecology,2010,395(1-2):223-231.
    [153] Lopes J F, Cardoso A C, Moita M T, et al. Modelling the temperature and thephytoplankton distributions at the Aveiro near coastal zone, Portugal[J].Ecological Modelling,2009,220(7):940-961.
    [154] Vitousek P M, Howarth R W. Nitrogen limitation on land and in the sea: how canit occur[J]. Biogeochemistry,1991,13(2):87-115.
    [155] Hecky R, Kilham P. Nutrient limitation of phytoplankton in freshwater andmarine environments: A review of recent evidence on the effects of enrichment[J].Limnology and Oceanography,1988,33(4):796-822.
    [156] Dugdale R C. The effects of varying nutrient concentration on biologicalproduction in upwelling regions[J]. Sta,1985,14:8-9.
    [157] Nyberg J B, Marcot B G, Sulyma R. Using Bayesian belief networks in adaptivemanagement[J]. Canadian Journal of Forest Research,2006,36(12):3104-3116.
    [158] Myllymaki P, Silander T, Tirri H, et al. B-course: A web-based tool for Bayesianand causal data analysis[J]. International Journal on Artificial Intelligence Tools,2002,11(3):369-388.
    [159] Howes A L, Maron M, Mcalpine C A. Bayesian networks and adaptivemanagement of wildlife habitat[J]. Conservation Biology,2010,24(4):974-983.
    [160] Wei Hao, Sun Jun, Moll A, et al. Phytoplankton dynamics in the BohaiSea-observations and modelling[J]. Journal of Marine Systems,2004,44(3-4):233-251.
    [161] Brzezinski M A. The SI:C:N ratio of marine diatoms: interspecific variability andthe effect of some environmental variables[J]. Journal of Phycology,1985,21(3):347-357.
    [162] Conley D J, Malone T C. Annual cycle of dissolved silicate in Chesapeake Bay:implications for the production and fate of phytoplankton biomass[J]. MarineEcology Progress Series,1992,81(2):121-128.
    [163] Catherine A, Troussellier M, Bernard C. Design and application of a stratifiedsampling strategy to study the regional distribution of cyanobacteria(Ile-de-France, France)[J]. Water Research,2008,42(20):4989-5001.
    [164] Tolvanen H, Kalliola R. A structured approach to geographical information incoastal research and management[J]. Ocean&Coastal Management,2008,51(6):485-494.
    [165] Ye Lin, Han Xinqin, Xu Yaoyang, et al. Spatial analysis for spring bloom andnutrient limitation in Xiangxi bay of three Gorges Reservoir[J]. EnvironmentalMonitoring and Assessment,2007,127(1-3):135-145.
    [166]张建奋.基于构建的GIS软件开发研究[D].杭州:浙江大学,2003.
    [167]宋关福,钟耳顺.组件式地理信息系统研究与开发[J].中国图象图形学报,1998,3(4):313-317.
    [168]徐晓甫.基于GIS的渤海湾生态系统研究[D].天津:天津大学,2009.
    [169] Stelzenmuller V, Lee J, Garnacho E, et al. Assessment of a Bayesian BeliefNetwork-GIS framework as a practical tool to support marine planning[J].Marine Pollution Bulletin,2010,60(10):1743-1754.
    [170]黄杰.海洋环境综合数据时空建模与可视化研究[D].杭州:浙江大学,2008.
    [171]赵会兵.基于SQL Server2008的空间分析研究[D].湘潭:湖南科技大学,2010.
    [172]肖邱勇,李光强.空间数据库性能对比实验分析[EB/OL]. http://www.cnki.net/kcms/detail/11.2127.TP.20130313.0946.010.html,2013-03-13
    [173]邵全琴.海洋GIS时空数据表达研究[D].北京:中国科学研究院,2001.
    [174]王跃山.数据同化-它的缘起、含义和主要方法[J].海洋预报,1999,16(1):12-21.
    [175] Naoum S, Tsanis I, Fullarton M. A GIS pre-processor for pollutant transportmodelling[J]. Environmental Modelling&Software,2005,20(1):55-68.
    [176] Ng S M Y, Wai O W H, Li Y S, et al. Integration of a GIS and a complexthree-dimensional hydrodynamic, sediment and heavy metal transport numericalmodel[J]. Advances in Engineering Software,2009,40(6):391-401.
    [177]Allen G, Bogden P, Creager G, et al. Towards an integrated GIS-based coastalforecast workflow[J]. Concurrency and Computation: Practice and Experience,2008,20(14):1637-1651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700