地板辐射采暖系统室内热环境的数值模拟与实测分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人们生活水平的不断提高,当今建筑采暖方式的舒适性己逐渐引起人们的重视。低温地板辐射采暖由于其舒适性高、节能、卫生条件好等优点,在北方地区得到大量推广,近年来,夏热冬冷地区也有发展的趋势。目前我国夏热冬冷地区广泛采用空调方式采暖,这种以对流传热为主的采暖方式不仅能耗高,其舒适性也受到用户的广泛批评。地板辐射采暖方式有别于传统的对流采暖方式,因其是以整个地板面为加热面,地板以辐射和对流的形式释放热量,因而研究地板辐射采暖环境下人体的热舒适性,有助于人们更好的了解该系统,为工程设计提供指导。为了较全面地反映地板辐射采暖方式下室内的热环境,本文在分析了地板采暖的传热机理及人体热舒适的基本知识的基础上,采用PMV-PPD评价指标对地板采暖方式下的人体热舒适性进行评价,同时与空调采暖方式进行对比。
     本文利用Airpak软件,以长沙市某套装有空气源热泵地板辐射采暖系统的办公室为研究对象,以实测为边界条件,建立了地板辐射采暖和空调采暖两种数学模型。通过数值模拟的方法,分析和比较了地板辐射采暖与空调采暖方式下的室内热环境(温度场、速度场、PMV、PPD);并以实测值与模拟结果进行了验证,得出了地板采暖和空调采暖室内的热环境特性。结果表明:地板采暖方式室内温度场和速度场分布均匀,热舒适性很好,满足国际标准ISO7730的推荐PMV—PPD值;与空调采暖方式相比,地板采暖方式室内热舒适性具有明显的优势。通过实测值与模拟值对比表明:模拟结果与实测值具有较好的吻合度,验证了采用CFD模拟室内热环境的可行性。
     最后对该采暖办公室进行实测,实测了系统在初始运行、连续运行、间歇运行工况下室内温度、围护结构表面温度、机组供回水温度及能耗情况,得到了夏热冬冷地区空气源热泵地板辐射采暖系统的运行特性及实际采暖效果。实测表明:热泵机组预热时间长,需要约6个小时,供回水温度才达到稳定状态;相比间歇运行,系统连续运行时,室内温度比较稳定,波动较小,室内温热感较好;在达到相同热舒适性条件下,采用间歇运行方式有利于节能。
With the continuous improvement of people's living standards,the comfort of current building heating ways has gradually aroused people’s attention. Low- temperature radiant floor heating system is being widely used in the northern region of China because of its comfort, energy saving, health and other advantages. In recent years, it also has the trend of development in hot summer and cold winter areas. At present, air-conditioning is being widely used for heating in hot summer and cold winter areas. This heating method’heat transfer form is mainly convection, which is high energy consumption, and is being widely criticized by the users because of its bad comfort. Radiant floor heating method is different from the traditional convection heating method, because the entire floor surface releases heat in the form of radiation and convection as the heating surface. Thus researching on the human thermal comfort in radiant floor heating environment can help us have a better understanding of the system; and it can provide guidance for the project design. In order to understand indoor thermal environment in the radiant floor heating way more fully, this paper adopts PMV-PPD evaluation index to evaluate human heat comfort in the floor heating environment, on the basis of analyzing the floor heat transfer mechanism and the basic knowledge of thermal comfort. At the same time, air conditioning heating method is compared.
     This paper makes use of Airpark software, takes one suit of office in Changsha with the air-source heat pump radiant floor heating system as study object, takes measured values as boundary conditions, establishs two kinds of mathematical models of floor heating and air conditioning heating. It uses numerical simulation method, analyses and compares indoor thermal environment (temperature, velocity, PMV(Predicted Mean Vote)-PPD(Predicted Percent Dissatisfied )) of the radiant floor heating mode and air conditioning heating mode. And it compares measured values with simulation results, educes the indoor thermal environment characteristic of the floor heating mode and air conditioning heating mode. The results show that the distribution of indoor temperature field and speed field is uniform in floor heating room, of which thermal comfort is good, and it can meet international standards of ISO7730 recommend PMV-PPD value. Comparing with air-conditioning heating mode, indoor thermal comfort of the floor heating mode has obvious advantage. Comparing with Measured value and simulation results show that the simulation values are in good agreement with the measured values,and simulating indoor thermal environment by the CFD simulation is feasible.
     Finally some factors of thermal enviroment are measured in the heating Office. The temperature of indoor, envelope surface and water-supply and backwater of the heat pump under initial operation, continuous operation and intermittent operation condition are measured, and the operation characteristic and actual heating effects of air-source heat pump radiant floor heating system in hot summer and cold winter area are learned. Measured results indicate: The heat pump unit preheat time is long, needs approximately six hours for the temperature of water-supply and backwater of the heat pump to come to a steady state. During continuous operation, the indoor temperature is more stable with smaller fluctuation, indoor warm feeling is better compared with intermittent operation .Under the same thermal comfort conditions, intermittent operation mode is beneficial to energy conservation.
引文
[1]国客昌.关于辐射采暖的若千问题.暖通空调设计规范专题说明选编,北京:中国计划出版社,1990.l
    [2]王子介.低温辐射供暖与辐射供冷.北京:机械工业出版社,2004,15~150
    [3]王荣光.低温地板辐射采暖.煤气与热力,53-55,1999(4)
    [4]北京市标准DBJ/TO1-49-2000,低温热水地板辐射供暖应用技术规程,2000
    [5]王荣光,沈天行,郑维民.太阳能、地热利用与地板辐射供暖.建筑节能, 37:54一61,2002
    [6] J.R.Carroll.Natural Convection in Panel Heating. Heating and Ventilating,Vol. 45.1948
    [7] S.Sattari,B.Farhanieh.A.Parametric study on radiant floor heating system performance. Renewable Energy 31 (2006):1617–1626
    [8] Gook-Sup Song.Buttock temperature in a sedentary posture on plywood flooring of varying thickness over the ONDOL heating system.J Wood Sci (2004) 50:498–503
    [9]李廷贤等.地表装饰材料和保温层性能对辐射地板热量损失影响的数值研究.暖通空调,2004,34(11):19~23
    [10]王海霞.板式地板采暖传热性能的研究(硕士学位论文).天津大学,2005
    [11]张新刚.低温地板辐射采暖系统的实际运行工况研究(硕士学位论文).天津大学,2004
    [12]张兰双.低温热水地板辐射采暖系统传热分析计算(硕士学位论文).大庆石油学院,2006.
    [13]孙德兴等.低温热水供暖技术推广中尚需研究解决的问题.暖通空调, 2002,32(3):99~102
    [14]亢燕铭,徐惠英,杨养勤.地板辐射采暖的节能效应分析[C].全国暖通空调制冷2000年学术年会论文集.2000.10
    [15]赵志强,贾衡,马豫.低温电热地板辐射采暖实验研究[J].建筑热能通风空调,2002.(1)
    [16] Herbertr,Bailey.An experimental comparison of energy requirements for spaceheating with radiant and convective systems.In:ASHRAE Trans,1980,86 (1):73-78
    [17]亢燕铭等.地板辐射供暖的节能效应分析.暖通空调,2001,31(4):4~6
    [18]刘成林.基于计算机仿真的低温地板辐射采暖系统的节能性分析.节能技术,2002,20(116):20~23
    [19] B.W.Olesen Ph.D.Comparative Experimental Study of Performance of Radiant Floor-Heating Systems and a Wall Panel Heating System Under Dynamic Conditions.ASHRAE Handbook,1994.13(2)
    [20] Haruo,Hanibuehi, Shuichi Hokoi.Basic of Radiative and Convective Heat Exehange in a room with Floor Heating.ASHRAE Transaction,1998
    [21] C.INARD.Les Modeles Zonaux en Thermique du Batiment.France,INSA Lyon,1996
    [22]宗立华.朔料埋管地板辐射供暖的热性能分析.暖通空调,2000,30(1):6~8
    [23]张伟.低温地板采暖与散热器采暖的效果对比分析.太阳能学报,2005,36(3):304~307
    [24]冯晓梅.低温地板辐射供暖条件下室内热环境的数值模拟.平顶山工学院学报,2002,11(4):18~21
    [25]陈占秀.地板辐射供暖房间的三维流动与传热的数值模拟.河北工业大学学报,2006,8(4):50~53
    [26]朱家玲.地板辐射采暖空间温度场的数值模拟.太阳能学报,2005,26(4):493~496
    [27]罗晓熹等.电加热相变蓄热地板供暖房间热特性数值模拟与分析.暖通空调,2004,34(11):5~9
    [28]马良栋等.室内低温地板辐射采暖的温度分布及湍流流动的数值模拟.工程热物理学报,2005,26(3):501~503
    [29]章熙民,任泽霈,梅飞鸣.传热学.中国建筑工业出版社, 1993
    [30]周磊.大换气房间冬季室内热环境舒适性与节能效应研究.东华大学硕士学位论文,2003
    [31] Olesen,B.W,M Scholer and P .O .Fanger.Discomfort Caused by Vertical Air Temperature Differences.Indoor Climate 36.Copenhagen:Danish Building Research Institute , 1979
    [32] Chrenko, F.A.Heated ceiling and Comfort.J. HVAC,Vol.20&Vol.21,1953
    [33] Fanger P.O.Comfort limits for asymmetric thermal radiation.Energy and Building,Vol8, No.3, 1985
    [34] Fanger, P .O.Radiation and discomfort.ASHRAE Journal No.2,1986
    [35] P. O. Fanger,A. K. Melikov,et al. Turbulence and draft. ASHRAE J,1989(4)
    [36] Shin-ichi Tanabe.Effects of Air Temperature,Humidity and Air Movement on Thermal Comfort Under Hot and Humid Conditions.ASHRAE Trans,1994(2): 953
    [37] Marc. E. Fountain, Edward. A. Areas.Air Movement and Comfort.ASHRAE Jouenal, August 1993
    [38]巨永平,马九贤.气流运动及其热舒适关系研究的进展与评述.暖通空调, 1999,29(4): 27~30
    [39] [英]D. A.麦金太尔著,龙惟定等译.室内气候龙惟定等译.上海科技出版社, 1988
    [40]魏润柏,徐文华编著.热环境.中国上海:同济大学出版社,1998
    [41] [匈]L.巴赫基著,傅忠诚等译.房间的热微气候.北京:建筑工业出版社,1987
    [42] Thomas H. Kuehn, James W. Ramsey and James L.Threlkeld.Thermal Environmental Engineering Upper Saddle River.New Jersey: Prentice-Hall Inc,1998
    [43] P. O. Fanger.Thermal Comfort .Malabar.FL:Robert E. Krieger Publishing Company, 1982
    [44]金招芬,朱颖心主编,彦启森主审.建筑环境学.北京:中国建筑工业出版社,2001
    [45] ASHRAE.ASHRAE 1997 Handbook (SI) -Fundamental,1997
    [46]王荣光,沈天行主编.可再生能源利用与建筑节能.机械工业出版社,2004
    [47]陶文铨.传热学基础.电力工业出版社1981.32
    [48]陈钟顽等.传热学专题讲座.北京高等教育出版社35
    [49]冯晓梅、肖勇全.低温地板辐射采暖的动态仿真.建筑热能通风空调,2001,6:15~18
    [50]陆耀庆.供暖通风设计手册.中国建筑工业出版社1985
    [51]杨世铭、陶文铨编.传热学.高等教育出版社,1998
    [52]汤广发.室内气流数值计算及模型实验.湖南大学出版社,1989
    [53]陶文铨.数值传热学.西安交通大学出版社,1988
    [54] Pantankar S V.Numerical heat transfer and fluid flow.New York: Hemisphere Publishing Corp,1980
    [55]陶文铨.计算流体力学与传热学.中国建筑工业出版社,1991
    [56]李万平著.计算流体力学.华中科技大学出版社,2004.2
    [57] [美] S.V帕坦卡著,张政译.传热与流体流动的数值计算[M].北京:科学出版社,1984
    [58] AIRPAK Tutorial Guide Help Fluent Co. ltd. USA. 2001
    [53]陶文铨.数值传热学.西安交通大学出版社,1988
    [59]傅德薰主编.流体力学数值模拟.北京:国防工业出版社,1993
    [60] Fluent Online Help.Fluent Co.Ltd,USA,2001
    [61]全国勘察设计注册公用设备工程师暖通空调专业考试复习教材.中国建筑工业出版社,2005.2
    [62]王恩丞.上海地区空气源热泵地板采暖系统应用研究.建筑热能通风空调,2004,23(6):25-29
    [63]付祥钊.夏热冬冷地区建筑节能技术.北京:中国建筑工业出版社,2002
    [64]蒋能照.空调用热泵技术及应用[M].北京:机械工业出版社,1997

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700