基于碳酸盐定量分析的粉煤灰水泥石碳化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土内部孔溶液的pH值通常为12.5~13.5,在这种碱性环境中钢筋表面形成厚约2~6nm的钝化膜,起着保护钢筋的作用。混凝土的碳化,逐渐使其内部pH值降低,完全碳化混凝土的pH值约为8.5~9.0甚至更低,使混凝土中的钢筋脱钝化,易于产生锈蚀。铁锈的体积一般要增长2~4倍,造成钢筋截面膨胀,混凝土保护层开裂,构件承载能力降低,结构延性降低,进而导致混凝土结构破坏,因此碳化被认为是影响混凝土耐久性的主要因素之一。
     粉煤灰在水泥混凝土中大量应用,改善了混凝土的性能,节约水泥,有利于环保、节能,是混凝土可持续发展的必然趋势。但是,粉煤灰在发挥火山灰效应的同时,会消耗混凝土中的氢氧化钙,具有降低混凝土抗碳化能力和钢筋抗锈蚀能力的可能。因此,进一步研究进而提高粉煤灰混凝土的抗碳化能力,克服其在混凝土中应用的负面效果具有理论与实践意义。
     本论文通过净浆试件的加速碳化试验,分层测定碳化试件中碳酸盐的含量,绘制“碳酸盐含量—深度”曲线,较系统、深入的对粉煤灰水泥石的抗碳化性能及各影响因素进行了研究,主要得出以下结论:
     ①碳化产物CaCO3主要以方解石为主。XRD分析和DSC分析均表明碳化产物几乎不含有文石和球霰石或含量较少;完全碳化区(即酚酞不显色区域)仍有少量Ca(OH)2晶体未被碳化,主要是因为这些晶体被C-S-H凝胶包裹,很难参与碳化反应;
     ②水泥石的抗碳化性能随粉煤灰掺量的增加而变差。大掺量(50%和70%)粉煤灰水泥石的抗碳化性能很差,限制了其在实际工程中的应用;
     ③大掺量粉煤灰水泥石的碳化程度随水胶比的增大而加重;
     ④湿度越小,碳化程度越严重,尤其当湿度小于40%时,其完全碳化区长度和部分碳化区长度均有明显的增大。试验中并未产生相关文献[8,19,102]所述的:“湿度过低时(≤20%),碳化反应因缺水而受到限制的现象;湿度较大时(≥80%),虽然碳化反应很快,但由于气体向水泥石内部的扩散十分缓慢,使得部分碳化区长度较小”;
     ⑤碳化前,水泥石在60℃下烘干24小时,使孔隙中水分蒸发,填充水甚少,加速碳化后,试件的碳化十分严重(碳酸盐含量较高),且出现了碳化不均匀现象,酚酞显色区域性不明显,即无明显的完全碳化区、碳化反应区(部分碳化区)和未碳化区之分,CaCO3含量曲线也没有明显的下降段;
     ⑥水泥石的抗碳化性能与养护龄期之间无明显的规律性,似乎养护龄期增长对大掺量粉煤灰水泥石的抗碳化性能并无改善;
     ⑦龄期为28天的试件,密封与饱和Ca(OH)2溶液两种养护制度下的碳化情况无明显差异,这可能是由于28天的龄期内,密封养护并未出现水化缺水现象,两种养护制度下水泥的水化程度基本相同,水泥石内部孔隙率及孔结构也未出现显著差异,因此CO2的扩散速度及碳化速度差异不大;
     ⑧随着碳化时间的延续,碳化深度(即完全碳化区)不断增大,部分碳化区的长度也不断增大,且其可能与完全碳化区的长度存在一定的比例关系或某种特定关系,并可以利用模型公式加以计算,但其仍有待进一步深入研究;
     ⑨高温养护和粉煤灰的磨细对大掺量粉煤灰水泥石的抗碳化性能有较好的改善效果;补足碱对大掺量粉煤灰水泥石抗碳化性能的改善作用不大,单掺NaOH时甚至出现抗碳化性能变差的现象。
     本论文中所采用的试验方法及装置为笔者及课题组成员共同设计发明,其有如下创新点:
     ①采用净浆试件对水泥石碳化进行试验研究,消除了骨料对碳化及碳酸盐含量测定的影响;
     ②自制了碳酸盐含量测定装置,由于自制装置控制措施较好,其精密性和精确性较相关文献[82-83]均佳;
     ③对碳化试件由表及里逐层做碳酸盐含量测定,并绘制“CaCO3含量-深度”曲线,以此来研究水泥石碳化情况,该方法能清晰的反映出水泥石碳化情况,区分出完全碳化区和碳化反应区并能测量其长度;
     ④用密封袋做CO2气体的容器,用过饱和盐溶液控制袋内湿度,用温湿度计监控湿度、温度变化,自制水泥石加速碳化装置;该装置的特点是:1) CO2浓度高;2)装置操作简单,便于控制。
The pH of pore solutions in concrete is commonly in the range of 12.5 to 13, in this alkaline environment, passive film with depth of about 2~6nm was formed on the surface of steel bars and protected steel bars from corrosion. Carbonation of concrete gradually decreases the pH, when the carbonation is completed, the pH is down to about 8.5~9.0 even lower, thus the steel bars in concrete were depassivated and prone to ccorrosion. The volume of steel rust was generally increased two to four times, as a result, the cross-section of rebars expanded thus cracking appeared in concrete cover, the load-bearing capacity of the concrete member and the ductility of the structure were decreased, even the concrete structure was failed. Therefore, carbonation is considered as one of the major factors which affect the durability of concrete.
     Fly ash is widely used in concrete, which inproved properties of concrete, reduced amount of cement, benefited environment protection and energy saving, thus is the inevitable trend to the sustainable development of the concrete. However, while playing the role of pozzolanic effect, fly ash can consume Ca(OH)2 in concrete ,gradually reduced the ability of carbonaion resistance and corrosion resistance. So theoretically and practically, it is worthy further investigating carbonation property of fly ash concrete , finding out the measurements to improve the carbonation resistance and overcoming the disadvantages when used in concrete.
     In this paper, Samples of cement paste were chosen for the accelerated carbonation tests, and calcium carbonate content in the sample was measured and plotted as a function of depth on specimens, effectuating a systematically and comprehensively investigation on the carbonation resistance of fly ash blended cement paste and how those relative characteristics affect its performance. The following conclusions can be drawn:
     ①A combination of XRD and DSC suggested that calcite constituted most part of the carbonation product while little aragonite and vaterite were ensued from carbonation. It was observed that a small amount of calcium hydroxide crystals still remain in the fully carbonated zone, which was mainly because these crystals have been encapsulated in the C-S-H gel, it is difficult to taking part in the combination reaction.
     ②Carbonation resistance of cement paste decreased with the increase in fly ash content. Cement pastes contain high-contents of fly ash (50% and 70% in mass) exhibit severe carbonation which limited the use of fly ash in practical.
     ③At high fly ash content, apparently, the carbonation extent of cement paste increased linearly with water-binder ratio.
     ④Carbonation coefficient increased with the decrease in relative humidity, moreover, especially when relative humidity is lower than 40%, both the fully carbonated zone and the partial carbonated zone extended significantly. This observation was inconsistent with the conclusion as described in some published works[8,19,102]: when in low relative humidity(lower than 20%), the carbonation process would be limited from lacking of water; when in high relative humidity(higher than 80%), the presence of a liquid phase facilitates the carbonation reaction significantly, however, the carbonation process would be blocked from lacking of carbon dioxide and the extent of the partial carbonated zone is pretty small, since the carbon dioxide gas diffusion coefficient is rather low on this condition.
     ⑤As regards specimens dried in a furnace at 60℃for 24 hours before the carbonation test, water was vaporized out of the pore solution gradually and little remained, carbonation turned out to be severe(suggested by a relatively high carbonate content) and non-uniform. According to the phenolphthalein test, a fairly rough border line of the carbonated zone was revealed, that is, boundaries between the fully carbonated zone and the partial carbonated zone were vague. Quantitative analysis also indicated that calcium carbonate content did not drop significantly with the increase in depth.
     ⑥The specimens in this study did not show strong correlations between carbonation performance and age of cement pastes; it seemed that prolonged curing does not improve the carbonation resistance of cement paste blended with a high content of fly ash.
     ⑦At the age of 28 days, the amount of carbonates and the depth of carbonation did not differ much for specimens under sealed or saturated solution of Ca(OH)2 curing, probably indicating that there were enough water for hydration even for sealed curing specimens at the age of 28 days and testing specimens curing under these two regimes were alike, that is, they were of similar degree of hydration and the amount of porosity and pore structure did not differ much, therefore, the carbon dioxide gas diffusion coefficient and carbonation rate were alike.
     ⑧As the carbonation process went on, the depth of the fully carbonation region extended gradually, as well as the partially carbonation region. It is likely that, there is a certain relationship between the depth of the fully carbonation region and of the partially carbonation region, moreover, this kind of relationship could be calculated in the light of an analytical model. Further investigation on this issue is to be conducted.
     ⑨The use of fine fly ash and high curing temperature significantly improved the carbonation resistance of blended cement paste with a high content of fly ash, while additive alkali showed little effect, what's more, the solely addition of NaOH even aggravated the circumstance.
     The testing method and its relating apparatus used in this experiment are designed and devised by the author and his colleagues, the innovations are as follows:
     ①Aggregate is known to affect the carbonation process and the measured calcium carbonate content; therefore, for better investigation on the mechanism of carbonation, tests were carried on cement paste so as to eliminate the effects brought by aggregate.
     ②The apparatus applied for the quantitative analysis of carbonates is especially developed by the author and his colleagues. The developed apparatus has a better control over testing environment, and practically, it advanced in precision and accuracy than the other apparatus applied in references[82-83].
     ③The developed quantitative analysis apparatus has allowed us to measure the amount of the carbonates in the testing specimens at different depths. Samples of cement paste were chosen, and calcium carbonate content was measured and plotted as a function of depth on specimens, clearly illustrating the carbonation performance of cement paste. This method enables us to differentiate and quantify the fully carbonation region from the partially carbonation region undetectable by the phenolphthalein spray test. Therefore, apparently, this method is superior to the classical phenolphthalein spray.
     ④The accelerated carbonation also took place in an especially developed chamber, using a sealed bag as the carbonate dioxide gas container. The humidity in the chamber was controlled by saturated salt solution and a hygrometer was used to monitor the relative humidity and the temperature.
引文
[1] Tatsuhiko Saeki,J.M. Monteiro Paulo.A model to predict the amount of calcium hydroxide in concrete containing mineral admixture [J].Cement Concrete Res 2005,35(10):1914–1921.
    [2]杨静.混凝土的碳化机理及其影响因素[J] .混凝土,1995(6):23—28.
    [3]刘秉京.混凝土结构耐久性设计[M].北京:人民交通出版社,2007:4—5.
    [4] Daniel Constantiner.Factors affecting concrete pore solution (A) Alkali fixation inducedby drying and carbonation and (B) Alkali released from feldspars [D] .Purdue university. 2003.
    [5]叶铭勋.混凝土碳化反应的热力学计算.硅酸盐通报,1989(2):15—19.
    [6]曾政权,甘孟瑜,刘咏咏,等.大学化学(第3版)[M] .重庆:重庆大学出版社,2007: 340—360.
    [7] (苏)B.M.莫斯克文(МосквинВ.М.),Ф.М.伊万诺夫,С.Н.阿列克谢耶夫Е,等.混凝土和钢筋混凝土的腐蚀及其防护方法[M].北京:化学工业出版社,1988:47—262.
    [8]金伟良,赵羽习.混凝土结构耐久性[M] .北京:科学出版社,2002:16—46.
    [9]柳俊哲.混凝土碳化研究与进展(1)—碳化机理及碳化程度评价[J] .混凝土,2005(11): 10—23.
    [10]柳俊哲、吕丽华、李玉顺.混凝土碳化研究与进展(2)—碳化速度的影响因素及碳化对混凝土品质的影响[J] .混凝土,2005(12):10—17.
    [11] Olga Shtepenko a,Colin Hills,Adrian Brough,et al.The effect of carbon dioxide onβ-dicalcium silicate and Portland cement [J] .Chemical Engineering Journal,2006,118: 107—118.
    [12] J. Khunthongkeaw,S. Tangtermsirikul,T. Leelawat.A study on carbonation depth prediction for fly ash concrete [J].Construction and Building Materials,2006,20(9):744-753.
    [13] C.L.Page,K.W.J.Treadaway.Aspects of the electrochemistry of steel in concrete[J] .Nature, 1982,297:109—114.
    [14] Peter M.A,Muntean A.,Meier S.A,et al.Competition of several carbonation reactions in concrete: A parametric study [J].Cement and Concrete Research,2008,38(12):1385—1393.
    [15]杨林德,潘洪科,祝彦知,等.多因素作用下混凝土抗碳化性能的试验研究[J].建筑材料学报,2008,11(3):345—348.
    [16]冯乃谦.新实用混凝土大全[M].北京:科学出版社,2005.
    [17] Jianzhuang Xiao,Bin Lei.Effects of recycled coarse aggregates on the carbonation evolution of concrete [J].Key Engineering Materials,2010,417-418:697-700.
    [18]沙慧文.粉煤灰混凝土的碳化和钢筋锈蚀原因及防止措施[J].工业建筑,1989,1(6):7—10.
    [19]陆秀峰,刘西拉,覃维祖.自然环境条件下混凝土孔隙水饱和度分布[J].四川建筑科学研究,2007,33(5):114—121.
    [20] Yoon In-Seok,?opuroglu Oguzhan,Park Ki-Bong.Effect of global climatic change on carbonation progress of concrete [J].Atmospheric Environment,2007,41(34):7274—7285.
    [21] Lo Y.,Lee H.M.Curing effects on carbonation of concrete using a phenolphthalein indicator and Fourier-transform infrared spectroscopy [J] .Source: Building and Environment,2002,37(5):507—514.
    [22]阿列克谢耶夫著,黄可信,吴兴祖译.钢筋混凝土结构中钢筋腐蚀与保护[M].北京:中国建筑工业出版社,1983.
    [23]日本建筑学会建筑设计标准委员会编著,张富春译.建筑物的损伤和耐久性对[M].北京:建筑工业出版社,1988:23—28.
    [24] L Yingyu,W Guidong.The mechanism of carbonation of mortar and the dependence of carbonation on pore structure. In:Proc Katharine and Bryant M ather Int Conf on Concrete Durability [J].Atlanta,1987,22:1915—1943.
    [25] Houst Y F,Wittmann F H.Influence of porosity and water contenton the diffusivity of CO2and O2 through hydrated cement paste [J].Cement and Concrete Research,1994,24:1165—1176.
    [26] Saetta A V,Schrefler B A,Vitaliani R V.The carbonation of concrete and the mechanism of moisture,heat and carbon dioxide flow through porous materials [J].Cement and Concrete Research,1993,23:761—772.
    [27] Parrott L J.Carbonation in a 36 year old in-situ concrete [J].Cement and Concrete Research,1989,19:649—656.
    [28]叶绍勋.混凝土碳化反应的热力学计算[J].硅酸盐通报,1989 (2):2—5.
    [29] Papadakis V G,Vayenas C G,Fardis M N.Experimental investigation and mathematical modeling of the concrete carbonation problem [J].Chemical Engineering Science,1991,46:1333—1338.
    [30] Kwon Seung-Jun,Song, Ha-Won.Analysis of carbonation behavior in concrete using neural network algorithm and carbonation modeling [J].Cement and Concrete Research,2010,40(1):119—127.
    [31] Tian Hao,Li Guoping,Liu Jie,et al.Experimental research on carbonation of forced concrete specimens [J].Journal of Tongji University,2010,38(2):200—204+213.
    [32] Jianzhuang Xiao,Bin Lei,Zhang Ch Source.Effects of recycled coarse aggregates on the carbonation evolution of concrete [J].Key Engineering Materials,2010,417-418:697—700.
    [33] LIU Zhi-yong,SUN Wei.THEORETICAL CARBONATION MODEL RELATED WITHPORE SOLUTION pH VALUE FOR STEEL BAR DEPASSIVATION IN CONCRETE[J].Journal of the Chinese Ceramic Society,2007,35(7):899—903.
    [34] Tuutti K.Corrosion of steel in concrete[J].C B I Research,1984(4):20—28.
    [35]朱琪,黄慎江.混凝土材性对混凝土结构耐久性影响分析[J].工程与建设,2007,21(1):91—94.
    [36] Ho D W S,Lewis R L.The carbonation of concrete and its prediction [J].Cement and Concrete Research,1987,17:489—504.
    [37] Dhir R K,Hewlett P C,Chan Y N.Near surface characteristics of concrete:prediction of carbonation resistance[J].Magazine of Concrete Research,1989,41:137—143.
    [38] Baccay M.A,Otsuki N,Nishida T,et al.Influence of cement type and temperature on the rate of corrosion of steel in concrete exposed to carbonation [J].Corrosion,2006,42(9): 811—821.
    [39]刘斌.大掺量粉煤灰混凝土的抗碳化性能[J].混凝土,2003(3):44—48.
    [40]陈伟,田亚坡,周紫晨.粉煤灰混凝土抗碳化性能及显微硬度分析[J].武汉理工大学学报,2009,31(11):48—51.
    [41] Tatsuhiko Saeki,Kenji Sasaki,Kenta Shinada.Estimation of chloride diffusion coefficent of concrete using mineral admixtures [J] .Journal of Advanced Concrete Technology,2006,4(3):385—396.
    [42]杨长辉,吕春飞,陈科.碱矿渣水泥砂浆抗碳化性能研究[J] .混凝土,2009(8): 100—102.
    [43] FANG Yong-hao,XUAN Wen,WANG Rui,et al.MECHANICAL PROPERTIES AND DURABILITY OF ALKALI ACTIVATED PHOSPHOR SLAG FLY ASH CEMENT CONCRETE [J].Journal of the Chinese Ceramic Society. 2009,37(7):1235—1238.
    [44] Sakai E,Kosuge K,Teramura S,et al.Durability of concrete[M].1991,ACISP-126: 989—1000.
    [45]张德成,张云飞,程新.硫铝酸盐水泥基混凝土抗碳化性能的研究[J].硅酸盐通报, 2008,27(2):258—263.
    [46] Kobayashi K,Uno Y.Influence of alkakion carbonation of concrete(part 1)-preliminary tests with mortar speciments[J].Cement and Concrete Research,1999,19:821—826.
    [47] Lo T.Y.,Tang W.C.,Nadeem A.Comparison of carbonation of lightweight concrete with normal weight concrete at similar strength levels [J].Construction and Building Materials,2008,22(8):1648—1655.
    [48]史琛,何廷树,王振军.高效减水剂对混凝土碳化性能影响的机理研究J].混凝土,2009(8):69—71.
    [49] Nagatakis,et al.Effect of curing conditions on the carbonation of concrete with fly ash and the corrosion of reinforcement in long-term test[J].A C I S P-91,1986 (1):521—540.
    [50] Ewertson C.The influence of curing conditions on the permeability and durability of concrete,result from a field exposure test[J].Cement and Concrete Research,1993,23:683—688.
    [51] N.I.Fattuhi,胡利娟,李海涛.养护方式对混凝土碳化作用的影响[J].建材发展导向,1989,(03):44—47.
    [52] Reardon E I , James B R , Abouchar J . High pressure carbonation of cementitious grout[J].Cement and Concrete Research,1989,19:385—399.
    [53]张令茂,文江辉.混凝土自然碳化及其与人工加速碳化的相关性研究[J].西安建筑科技大学学报(自然科学版),1990,22(3):207—214.
    [54]李果,袁迎曙,耿欧.气候条件对混凝土碳化速度的影响[J].混凝土,2004(11);49—51.
    [55] Ho D W S,Harrison R S.Influence of surface coating on carbonation of concrete[J].Journal of Materials in Civil Engineering,1990(2):35—44.
    [56]张令茂.混凝土表面覆盖的碳化延迟系数的研究[J] .西安建筑科技大学学报(自然科学版),1989,21(1):34—40.
    [57]王立久,孙炳全.混凝土碳化深度时依性无损测试方法探讨[J].建筑材料学报,2008,11(5):626—630.
    [58] Sharobm K G , Tzzawa E . Study on carbonation of mortar beem subjected to cracking[J].Proceedings of the Japan Society of Civil Engineering,1989,408:167—174.
    [59] Atis Cengiz Duran.Carbonation-porosity-strength model for fly ash concrete [J].Journal of Materials in Civil Engineering,2004,16(1):91—94.
    [60]潘永灿,刘家彬,荀勇.粉煤灰海工高性能混凝土耐久性试验[J].哈尔滨工业大学学报,2009,41(6):179—182.
    [61]方永浩,宣文,王锐.碱–磷渣–粉煤灰混凝土力学性能和耐久性[J].硅酸盐学报,2009,37(7):1235—1239.
    [62]张云升.弯拉应力下粉煤灰混凝土的多维碳化及寿命预测模型[J].东南大学学报,2006,36(Ⅱ):226—233.
    [63]刘亚芹.混凝土碳化引起的钢筋锈蚀实用计算模式[D].上海:同济大学,1997.
    [64]单旭辉.高性能混凝土试验研究[D].北京:北京交通大学,2006.
    [65]涂永明,吕志涛.应力状态下混凝土的碳化试验研究[J].东南大学学报,2003,33(5): 573—576.
    [66]金祖权,孙伟,张云升,等.荷载作用下混凝土的碳化深度[J].建筑材料学报,2005,8(2):179—183.
    [67]陈道普.风对混凝土碳化速度影响的研究[D].上海:同济大学,2006.
    [68] Villain Géraldine,Thiery Micka?l,Platret Gérard.Measurement methods of carbonation profiles in concrete: Thermogravimetry, chemical analysis and gammadensimetry [J].Cement and Concrete Research,2007,37(8):1182—1192.
    [69] Baert Gert,Poppe Anne-Mieke,De Belie Nele.Strength and durability of high-volume fly ash concrete [J].Structural Concrete,2008,9(2):101—108.
    [70]朱艳芳,王培铭.大掺量粉煤灰混凝土的抗碳化性能研究[J].建筑材料学报,1999(4):112—118.
    [71] Kelestemur Oguzhan,Aksoy Mustafa,Yildiz Servet.Corrosion behavior of tempered dual-phase steel embedded in concrete [J].International Journal of Minerals, Metallurgy and Materials,2009,16(1):43–50.
    [72]钱觉时,孟志良,张兴元.大掺量粉煤灰混凝土抗碳化性能研究[J].重庆建筑大学学报,1999,21(1):5—9.
    [73]艾红梅.大掺量粉煤灰混凝土配合比设计与性能研究[D].大连:大连理工大学,2005.
    [74]俞然刚,陈金平.磨细矿粉和预水化粉煤灰在混凝土中的应用[J].混凝土,2007(3): 49—52.
    [75]蔡路,陈太林.混凝土碳化机理研究[J].广东建材,2006(10):88—90.
    [76]白轲,杨元霞.浅析混凝土碳化机理及其影响因素[J].粉煤灰综合利用,2008(2): 54—56.
    [77]吴胜兴.钢筋混凝土结构锈裂损伤研究综述[J] .工程力学,2002(增刊):10—24.
    [78]王春芬,牛荻涛,董振平.干旱地区桥梁保护层混凝土的耐久性研究[J].工业建筑,2006,36(4):65—68.
    [79]国际法制计量组织.饱和盐溶液标准相对湿度值[Z].OIML R 121.北京:全国物理化学计量技术委员会,2000:1—6.
    [80]赵素英,王良恩,黄诗煌.单一含盐溶液饱和蒸汽压的测定关联及应用[J].四川大学学报(工程科学版),2002,34(5):115—118.
    [81]万朝均,张廷雷,陈璐圆,等.水泥基材料抗碳化性能的测试装置及方法:中国,200910191152.3[P].2010-04-14.
    [82]关云梅.气体体积法测定岩心中碳酸盐的含量[J].石油与天然气化工,1995(4):292—294.
    [83]梁生荣,张君涛,何力,等.润滑油金属清净剂中碳酸盐含量的测定方法[J].石油炼制与化工,2005,36(8):65—68.
    [84]孙毓庆,胡育筑.分析化学(第二版)[M].北京:科学出版社,2006:8—18.
    [85] Thomas G,Spiro William M,Stigliani.环境化学[M].北京:清华大学出版社,2007.
    [86]董继先,吴春英.流体传动与控制[M].北京:国防工业出版社,2008.
    [87]林玮,路新瀛.基于混凝土孔溶液pH的最小水泥用量探讨[J].混凝土与水泥制品,2002(3):9—12.
    [88] Ewa T. Stepkowska,J. L. Pérez-Rodríguez,M. J. Sayagués,et al.Calcite, vaterite and aragonite forming on cement hydration from liquid and gaseous phase [J].Journal of Thermal Analysis and Calorimetry. 2003,73:247—269.
    [89] Ewa T. Stepkowska.HYPOTHETICAL TRANSFORMATION OF Ca(OH)2 INTO CaCO3 IN SOLID-STATE REACTIONS OF PORTLAND CEMENT[J].Journal of Thermal Analysis and Calorimetry. 2005,80:727—733.
    [90]杨锡武.粉煤灰对水泥水化的影响[J] .中外公路,1993(04):49—53.
    [91]高全全,张虎元.大气二氧化碳浓度升高对混凝土碳化的影响[J].混凝土,2007(4): 17—19.
    [92] Yang C C,Cho S W,Wang L C.The relationship between pore structure and chloride diffusivity from ponding test in cement-based materials[J].Materials Chemistry and Physics,2006,100(3):203—221.
    [93]陆平.水泥材料科学导论[M].上海:同济大学出版社,1989:164—213.
    [94]左演声,陈文哲,梁伟.材料现代分析方法[M].北京:北京工业大学出版社,2000:100-119.
    [95]杨南如,岳文海.无机非金属材料图谱手册[M].武汉:武汉工业大学出版社,2000: 1—250.
    [96]陈敬中.现代晶体化学—理论与方法[M].北京:高等教育出版社,2004:287—310.
    [97]朱劲松,叶青,章天刚.粉煤灰掺量对常用预拌混凝土抗碳化能力的影响[J].新型建筑材料. 2008(5):4—7.
    [98]宋少民,李红辉,邢峰.大掺量粉煤灰混凝土抵抗碳化和钢筋锈蚀研究[J].武汉理工大学学报,2008,30(8):38—42.
    [99] Jiang Linhua,Lin Baoyu,Cai Yuebo.Model for predicting carbonation of high-volume fly ash concrete [J].Cement and Concrete Research,2008,30(5):699—702.
    [100]施惠生,方泽锋.粉煤灰对水泥浆体早期水化和孔结构的影响[J].硅酸盐学报,2004,32(1):95—98.
    [101]刘伟,邢锋,谢友均.水灰比、矿物掺合料对混凝土孔隙率的影响[J].低温建筑技术,2006(1):9—12.
    [102]张誉,蒋利学,张伟平,等.混凝土结构耐久性概论[M].上海:上海科学技术出版社. 2003.:50—60.
    [103]朱瑶、赵振国.界面化学基础[M].北京:化学工业出版社,1996:1—36.
    [104]鲁新宇,刘建兰,冯鸣.物理化学[M].北京:化学工业出版社,2008.
    [105] Al-Khayat, H.,Haque, M.N.,Fattuhi, N.I.Concrete carbonation in arid climate [J].Materials and Structures/Materiaux et Constructions,2002,35(251):421—426.
    [106]陈洪,李雨民.固体表面的化学过程机制研究—2007年诺贝尔化学奖评介[J].北京工商大学学报(自然科学版),2008,26(1):17—21.
    [107]甄开吉.表面化学[M].吉林:吉林大学出版社,1995.
    [108] A.Gerdes,F.H.Wittmann.Evolution of pH Value of the Pore Solution after Realkalisation of Carbonated Concrete[J].Journal of Building Materials,2003,6(2):111—117.
    [109]杨庆贤.液体饱和蒸汽压与液面曲率半径的关系[J].大学物理,1985(11):1—4.
    [110]蔡传国.混凝土养护方式对碳化深度影响的试验研究[J].市政技术,2008,26(2):149-171.
    [111] Wang Li-Jiu Sun Bing-Quan.Study of time dependent rule and nondestructive test method of concrete carbonation depth [J].Journal of Building Materials,2008,11(5):626—630.
    [112] Géraldine Villain,Micka?l Thiery,Gérard Platret.Measurement methods of carbonation profiles in concrete:Thermogravimetry chemical analysis and gammadensimetry [J].Cement and Concrete Research,2007,37 (2):1182—1192.
    [113]乐建元.粉煤灰混凝土碳化深度预测模型[D].武汉:武汉理工大学,2008.
    [114] Ha-Won Song,Seung-Jun Kwon,Keun-Joo Byun a,et al.Predicting carbonation in early-aged cracked concrete[J].Cement and Concrete Research,2006,26(5):979—989.
    [115]高仁辉,鸿根,魏程寒.粉煤灰对硬化浆体表面氯离子浓度的影响[J].建筑材料学报,2008,11(4):420—424.
    [116]张武满,巴恒静,高小建,等.粉煤灰与应力水平对混凝土渗透性的影响[J].江苏大学学报,2008,29(4):356—359.
    [117] Sisomphon Kritsada,Franke Lutz.Carbonation rates of concretes containing high volume of pozzolanic materials [J].Cement and Concrete Research,2007,37(12):1647—1653.
    [118]李东旭,朱建平,李宗津.碱对粉煤灰水泥早期电阻率、孔结构和微观结构的影响[J].硅酸盐学报,2008,36(S1):170—175.
    [119] MICHAEL G,STEPHEN K,MARIA D.Zeolite formation in alkali-activated cementitious systems[J].Cem Concr Res,2004,34:949—955.
    [120] FEMANDEI-JIMENEZ A,PALOMO A,CRIADO M.Microstructure development of alkali-activated fly ash cement: a descriptive model [J].Cem Concr Res,2005,35: 1204—1209.
    [121] FEMANDEI-JIMENEZ A,PALOMO A.Composition and microstructure of alkali-activated fly ash binder: Effect of the activator [J] .Cem Concr Res,2005,35(10):1984—1992.
    [122]何智海,刘宝举,程智清,等.蒸汽养护条件下水泥-粉煤灰复合胶凝材料的水化性能研究[J].混凝土,2005(12):11—34.
    [123] Lo T.Y.,Nadeem A.,Tang W.C.P.,et al.The effect of high temperature curing on the strength and carbonation of pozzolanic structural lightweight concretes [J].Construction and BuildingMaterials,2009,23(3):1306—1310.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700