构造应力场影响下的巷道围岩稳定性原理及其控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
构造应力是地壳构造运动在岩体中形成的应力,包括地质历史时期的残余构造应力和现今构造应力;构造应力场是具有成生联系的各种构造形迹在不同部位应力状态的总和。
     构造应力场以水平应力为主,最大、最小水平构造应力一般随深度呈线性变化。构造应力在煤矿开采深度范围内大小分布较为分散,但是其方向性明显,向地壳深部发展,趋向于静水压力状态。
     应用广义平面应变问题的理论模型,FLAC3d三维数值模拟,结合大量现场实测资料,对构造应力场中巷道布置进行了研究。研究表明巷道的稳定性与巷道布置方向关系密切,围岩破碎区范围随巷道轴向与最大构造应力方向夹角α的增大而增大,围岩应力与位移随sin 2α变化。α对巷道的稳定性影响为:在α=0~15°范围内为影响轻微区;在α=15°~75°范围内为影响增长区;在α=75°~90°范围内为影响剧烈区;α=0时对巷道的稳定最有利,α=90°时对巷道的稳定最不利。在兖州与神火矿区的实测证实构造应力方向对巷道布置的影响是明显的。
     应用弹塑性理论,FLAC2d数值模拟,结合现场实测对构造应力场中巷道失稳规律进行研究。研究表明构造应力对巷道围岩稳定性影响是非均称的,随水平构造应力的增加,巷道顶底部的塑性区范围逐渐增大,尤其在巷道的肩角增加更为明显;当侧压系数λ大于极限值后,巷道围岩塑性区迅速扩大,此极限值随巷道围岩强度增加而增加,随埋深增加而减小。
     采用真三轴巷道模拟实验对构造应力场中煤巷锚杆支护进行了模拟研究。研究表明,水平构造应力导致巷道顶底板岩层之间相互滑移并产生离层,降低岩层抗剪能力而使顶底板剪切破坏,使顶板锚杆失去支护作用,顶板岩层逐渐冒落成拱形;两帮煤体向巷道空间呈总体移动趋势,与煤层顶底板岩层间产生明显的相对位移;帮锚杆主要受拉伸作用,控制煤岩体的塑性变形;顶锚杆主要受到剪切作用,控制顶部岩层的滑移、离层,顶板岩层破坏后顶锚杆提供约束力,提高岩体的残余强度。现场实践证明了构造应力作用下巷道顶板岩层的离层滑动,导致顶板岩层与锚杆、锚索的剪切破坏。
     应用弹性理论,结合现场实测对构造应力场内采动巷道研究表明,在构造应力影响下,回采工作面附近采动巷道围岩存在水平、垂直拉应力区。拉应力范围随冒落带高度与周期来压步距的比值的增大而增大,随水平构造应力与垂直应力的比值的增大而增大。处于卸荷区的采动巷道表面位移显著增大,应采用卸荷岩体加固方法对围岩进行控制,以提高其稳定性。
     上述研究成果在现场生产实践得到检验,对高构造应力区巷道布置与围岩控制具有重要的指导意义。
     该论文有图89幅,表19个,参考文献147篇,其中外文文献26篇。
Tectonic stress which includes residual tectonic stress of the geological history and current tectonic stress, is the stress induced by the tectonic movement of the lithosphere in rock masses. Tectonic stress field is summation of the stress state in different place which is induced by all kinds of tectonic trace with genetic relation.
     Tectonic stress field gives priority to the horizontal stress. The biggest and smallest horizontal stress usually vary with the depth linearly. The value of the tectonic stress which inclines to hydrostatic stress when going to the deep of the lithosphere, distributes rather dispersedly in the range of the coal mining depth, but its direction is obvious.
     The dissertation adopts the theoretical model of the generalized strain plane problem, numerical simulation of the FLAC3d and a great deal of local measure data to study the the roadway disposal in the tectonic stress field. The research indicates that the stability of the roadway connects nearly with the disposal direction of the roadway. Fragmentation zone range of the surrounding rock becomes larger with augmentation of the angleαbetween axes direction of the roadway and the biggest tectonic stress direction. Stress and displacement in the surrounding rock varies with sin 2α. The angleαinfluences to the stability of the roadway is as follow: the range ofα=0~15°is the little effect zone, the range ofα=15°~75°is the increasing effect zone, the range ofα=15°~75°is the great effect zone. The roadway is most stable whenα=0, while least stable whenα=90°. The measurement in Yanzhou and Shenhuo mining area approved that direction of the tectonic stress influenced obviously to the disposal of the roadway.
     The dissertation adopts the elastopastic theory, numerical simulation of the FLAC2d and local measure to study the the roadway stability in the tectonic stress field. The research indicates that tectonic stress non-harmoniously influences to the stability of the roadway surrounding rock. The range of plastic zone in the roof and floor of the roadway increases with the augmentation of horizontal tectonic stress, especially in the shoulder of the roadway. While The range of plastic zone in the sides of the roadway decreases with the augmentation of horizontal tectonic stress. The range of plastic zone in surrounding rock of the roadway enlarges rapidly when the lateral pressure coefficientλis bigger than the ultimate value which increases with the augmentation of surrounding rock strength, decreases with the minishment of the depth.
     The dissertation adopts the similarity simulation to simulate the bolt supporting coal roadway in the tectonic stress field. The results indicates that horizontal tectonic stress induces slippage and bed separation between the terranes in the roof and floor of the roadway, therefore, the anti-shearing capacity of the terrane falls to cause the terrane of the roof and floor to shear failure, which cause the roof bolt to lose supporting function, and then the roof terrane falls to arch gradually. Coal mass of the sides moves collectively to the roadway space, which cause obvious displacement between the coal seam and terrane of roof and floor. Sides bolts is mostly subjected to tensile function that control the plastic deformation of the coal or rock mass. Roof bolts is mostly subjected to shearing function that control the slippage and bed separation of the roof terrane. when the roof terrane destroys, Roof bolts offer restraining force to enhance residual strength of the rock mass. The local practice approve that the roof terrane of the roadway will slip and bed separate in the effect of the tectonic stress, which causes the shear failure of the roof terran, bolt and cable.
     Adopting elastic theory and local measure, the reseach of the roadway under mining influence in the tectonic stress and indicates that there is horizontal and vertical tensile stress zone in the surrounding rock of the roadway near the working face. The range of the tensile stress zone increases with the increase of the ratio between the height of the caving zone and periodic weighting step, with the increase of the ratio between the horizontal tectonic stress and vertical stress. The surface displacement of the roadway under mining influence augments remarkably, thus reinforce method of the unloading rock mass must be adopted to control the surrounding rock, in order to enhance the stability of the roadway.
     The upper research results which is proved in the local practice, have great significance in guiding to the roadway disposal and control of the surrounding rock in the high tectonic stress zone.
     There are 89 figures, 26 tables and 147 references including 26 foreign literature in the dissertation.
引文
[1] 黄素逸编著.能源科学导论[M].北京:中国电力出版社,1999.
    [2] 王淮海.我国能源结构与资源利用效率分析[N].中国信息报,2006,4.
    [3] 《中国煤炭工业年鉴》编审委员会.中国煤炭工业年鉴[M].北京:煤炭工业出版社,1978-2007.
    [4] 好页坊.世界与中国的能源数据比较,2006,7.
    [5] Malan D.F., Basson F.R.P. Ultra-Deep Mining: The Increased Potential for Squeezing Conditions[J]. The Journal of the South African Institute of Mining and Metallurgy, 1998:353-362.
    [6] Diering D.H. Tunnels Under Pressure in an Ultra-Deep wifwatersrand Gold Mine[J]. The Journal of the South African Institute of Mining and Metallurgy, 2000:319-324.
    [7] 何满潮,孙晓明著.中国煤矿软岩巷道工程支护设计与施工指南[M].北京:科学出版社,2004.
    [8] 何满潮.深部开采工程岩石力学的现状及其展望[J].第八次全国岩石力学与工程学术大会论文集,科学出版社,2004:88~94.
    [9] 尹传理,李化敏.我国煤矿深部开采问题探讨[J].煤矿设计,1998(8):7-11.
    [10] 冀贞文,王怀新,王同吉.深井巷道围岩变形破坏规律及其控制技术[J].煤炭工程,2004(2):32-34.
    [11] 陈庆宣、王维襄、孙叶编著.岩石力学与构造应力场分析[M].北京:地质出版社,1998.
    [12] 陈炎光、陆士良主编.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [13] 于学馥、郑颖人主编.地下工程围岩稳定分析[M].北京:煤炭工业出版社,1983.
    [14] 钱鸣高,石平五主编.矿山压力与岩层控制[M].徐州:中国矿业大学出版社,2003.
    [15] 蔡美峰主编.岩石力学与工程[M].北京:科学出版社,2002.
    [16] И.А.多尔恰尼诺夫主编.构造应力与井巷工程稳定性[M].北京:煤炭工业出版社,1984.
    [17] 安欧著.构造应力场[M].地震出版社,1992.
    [18] Kuznetsov, S.V.; Trofimov, V.A. Anomalous stress fields near tectonic violations in rock mass [J].Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2002(1):3-11.
    [19] Riccardo Caputo. Stress variability and brittle tectonic structures [J]. Earth-Science Reviews, 2005,70(1-2):103-127.
    [20] 朱焕春,李浩等.论岩体构造应力[J].水利学报,2001(9):81-85.
    [21] 杜炜平,古德生,颜荣贵等.边坡残余构造应力引起的宏观破坏特征及机制[J].中国有色金属学报,2000,10(3):451-454.
    [21] J. S. LEE. The Fundamental Cause of Evolution of the Earth’s Surface Features[J], Acta Geological Sinica, 1926(1).
    [22] 李四光著.地质力学之基础与方法[M].北京:中华书局出版社,1947.
    [23] 李四光著.地质力学概论[M].北京:科学出版社,1973.
    [24] 杨树新等.中国大陆现今构造应力场的回归分析研究[J].岩土力学,2003,第 24 卷增刊:357-360.
    [25] 谭成轩等.构造应力面研究[J].岩石力学与工程学报,2004,23(23):3970-3978.
    [26] 朱守彪,石耀霖.中国大陆及邻区构造应力场成因的研究[J].中国科学-D 辑-地球科学,2006,36(12):1077-1083.
    [27] 边庆凯,王云云.深浅构造的应力状态与运动特征[J].高原地震,2006,18(2):25-32.
    [28] 苏恺之编著.地应力测量方法[M].北京:地震出版社,1985.
    [29] 国家地震局地壳应力研究所情报室 编译.地应力测量理论研究与应用[M].北京:地震出版社,1987.
    [30] Brady H G, Bray J W. The boundary element method for determining stresses and displacement around long opening in a triaxial stress field[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics Abstracts. 1978,15(1), Pages 21-28.
    [31] 郑雨天主编.岩石力学的弹塑粘性理论基础[M].北京:煤炭工业出版社,1988.
    [32] 邹喜正,李华祥.构造应力对巷道布置影响的理论分析[J].煤矿设计,1998,10:17-19.
    [33] 赵继银,张传信.构造应力场对深井巷道围岩稳定的影响[J].金属矿山,2005,5:21-23.
    [34] Gale, W.J.Strata control utilising rock reinforcement techniques and stress control methods, in Australian coal mines [J],Mining Engineer (London),1991,150(352):247-253.
    [35] 蒋金泉,曲华,刘传孝.巷道围岩弱结构灾变失稳与破坏区域形态的奇异性[J].岩石力学与工程学报,2005,24(18):3373-3379.
    [36] 樊克恭,翟德元,刘锋珍.岩性弱结构巷道顶底板弱结构体破坏失稳分析[J].山东科技大学学报,2004,23(2):11-14.
    [37] 樊克恭,翟德元.岩性弱结构巷道破坏失稳分析[J].矿山压力与顶板管理,2004(3):11-14.
    [38] 樊克恭.巷道围岩弱结构损伤破坏效应与非均称控制机理研究[D].泰安:山东科技大学,2003.
    [39] 林崇德.层状岩石顶板破坏机理数值模拟过程分析[J].岩石力学与工程学报,1999,18(4):392-396.
    [40] 何满潮,景海河.软岩工程地质力学研究进展[J].工程地质学报,2000,8(1):46-62.
    [41] 王俊臣,贾明魁,何满潮等.关键部位二次耦合支护技术及其应用[J].煤炭科学技术,1999,27(10):1-3.
    [42] 解联库,李华炜,杨天鸿等.侧向压力作用下巷道围岩破坏机理的数值模拟[J].中国矿业,2006,15(3):54-57.
    [43] 贾蓬,唐春安,王述红等.巷道层状岩层顶板破坏机理[J].煤炭学报,2006,31(1):11-15.
    [44] 刘成岭,梁子振等.软破岩体围岩破坏机理和巷道稳定性研究[J].矿山压力与顶板管理,2002(2):82-83.
    [45] 吕攀峰、韩文峰等.金川岩体各向异性与巷道支护变形破坏关系探讨[J].岩石力学与工程学报,2000,19(2):149-152.
    [46] 蒋金泉,韩继胜,石水奎著.巷道围岩结构稳定性与控制设计[M].北京:煤炭工业出版社,1999.
    [47] 孔德森,蒋金泉,宋振骐.深部平行巷道在构造应力场中的稳定性分析[J].煤,2000,9(5):5-7.
    [48] 张生华.构造应力作用下软岩巷道变形与控制研究[J].矿业工程,2003,1(3):14-18.
    [49] 宋志敏,程增庆等.构造应力区软岩巷道围岩变形与控制[J].矿山压力与顶板管理,2005,4:48-50.
    [50] 侯朝炯,郭励生等.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [51] 郭兰波.美国锚杆支护的应用和发展[M].光爆锚喷通讯,1984,7.
    [52] 郭颂.美国煤巷锚杆支护技术概况[J].煤炭科学技术,1998,26(4).
    [53] W.C.史密斯.美国煤矿井下顶板控制对策[J].中国煤炭,1996,22(12).
    [54] P.Williams,The development of rock bolting in UK coal mining.Mining Engineer,1994.
    [55] R.G.Siddall,W.J.Gale, strata control a new science for old problem, Mining Engineer, 1992(6).
    [56] 陆士良,成家钰.扩大煤巷锚杆支护的技术关键和措施[J].光面锚喷,1998(6).
    [57] 朱浮声.锚喷加固设计方法[M].北京:冶金工业出版社,1993.
    [58] 陆士良,汤雷,杨新安.锚杆锚固力与锚固技术[J].北京:煤炭工业出版社,1998.
    [59] 付国彬.锚杆与围岩相互作用关系及锚固力的研究[D].徐州:中国矿业大学,1999.
    [60] 朱浮声.端头锚固锚杆桁架支护的成拱理论[J].岩石力学与工程学报,1992,11(4).
    [61] 董方庭,朱宏伟等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1).
    [62] 陈庆敏,郭颂,张农.煤巷锚杆支护新理论与设计方法[J].矿山压力与顶板管理 2002(1).
    [54] 勾攀峰,侯朝炯.巷道围岩强度强化的试验研究[J].重庆大学学报,2000.5.
    [63] 朱浮声.锚喷加固设计方法[M].北京:冶金工业出版社,1993.
    [64] 侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19.
    [65] 王辉,高群山.“三锚”联合支护技术在高构造应力区巷道支护中的应用[J].煤炭工程,2006,7:26-27.
    [66] 韦有传.高构造应力区三软煤层巷道锚网支护技术[J].能源技术与管理,2004(1):29-30.
    [67] 王连国,李明远,毕善军.高应力构造复杂区煤巷锚注支护试验研究[J].矿山压力与顶板管理,2004(1):2-4.
    [68] 孙海丰.深部地层高构造应力煤巷锚杆支护研究[J].煤炭技术,2005,24(6):63-64.
    [69] 冯立军,刘丛怀.构造应力区域大断面峒室支护探索与实践[J].水力采煤与管道运输,2006(3):47-49.
    [70] 陆士良,付国彬,汤雷.采动巷道岩体变形与锚杆锚固力变化规律[J].中国矿业大学学报,1999,28(3):201-203.
    [71] 谭云亮,姜福兴,刘传孝.受采动影响巷道两帮破坏范围探测研究[J].煤炭科学技术,1999,27(3):39-41.
    [72] 谭云亮,杨慧明,赵志刚.受采动影响锚固控制上山巷道的稳定性实测研究[J].矿业研究与开发,2006,26(2):27-28.
    [73] 牛志清.受大采高动压影响巷道底鼓机理分析及其防治[J].煤,2005,14(2):23-24.
    [74] 李文平,常颖,孟凡和.海域开采巷道矿压显现分析与支护对策[J].煤矿开采,2006,11(4):73-74.
    [75] 高明中,黄殿武.底板软岩动压巷道围岩应力分布的数值分析[J].安徽理工大学学报,2003,23(3):14-18.
    [76] 吴宇,王连国,李青锋.软岩锚注巷道围岩变形量的时序预测[J].采矿与安全工程学报,2006,23(4):456-459.
    [77] 张建华.大雁二矿软岩煤层回采巷道失稳原因分析[J].煤炭科学技术,2006,36(9):78-80.
    [78] 孙自福.神火矿区三 2 煤层深部煤巷锚杆支护规范化研究[D].徐州:中国矿业大学,2005.
    [79] N. Hast.The state of stresses in the upper part of the earth's crust[J].Engineering Geology,1967,2(1):5-17.
    [80] N. Hast.The state of stresses in the upper part of the earth's crust[J].Tectonophysics,1969,8(3):169-211.
    [81] N. Hast. The state of stresses in the upper part of the earth's crust: A reply[J]. Engineering Geology,1969,3(4): 339-344.
    [82] G. Herget. Variation of rock stresses with depth at a Canadian iron mine[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics,1973,10(1): 37-51.
    [83] G. Herget. Stress assumptions for underground excavations in the canadian shield[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics,1987,24(1): 95-97.
    [84] B. Arjang and G. Herget. In situ ground stresses in the Canadian hardrock mines: An update [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics,1997,34(3-4): 15.e1-15.e16.
    [85] 阿·魏格纳著.大陆和海洋的形成[M].北京:商务出版社,1997.
    [86] 潘绍焕.板块构造学说与地震[J].邮电设计技术,2003(3):59-62.
    [87] 李秋玲.板块构造学说与现代地貌[J].濮阳教育学院学报,2001,14(4):38-39.
    [88] 关世桥.从板块构造学说的创立看当代地学理论研究发展趋势[J].中国煤田地质,2004,16(3):1-3.
    [89] 非一. 板块观点与断块、槽台学说的交融[J]. 地质科学,2001:256.
    [90] 朱炳泉,崔学军.板块构造学说面临的挑战[J]. 大地构造与成矿学,2006,30(3):265-274.
    [91] B. H. G. Brady. An analysis of rock behaviour in an experimental stoping block at the Mount Isa Mine[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics , 1997,14(2): 59-66.
    [92] E. T. Brown and E. Hoek. Trends in relationships between measured in-situ stresses and depth[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics , 1978,15(4): 211-215.
    [93] John A. Hudson and John P. Harrison. In situ stress[J]. Engineering Rock Mechanics , 1997: 41-69.
    [94] J. A. Hudson and C. M. Cooling. In Situ rock stresses and their measurement in the U.K.—Part I. The current state of knowledge[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1988,25(6): 363-370.
    [95] C. M. Cooling, J. A. Hudson and L. W. Tunbridge. In situ rock stresses and their measurement in the U.K.—Part II. Site experiments and stress field interpretation[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1988,25(6): 371-382.
    [96] O. Stephansson, C. Ljunggren and L. Jing. Stress measurements and tectonic implications in Fennoscandinavia[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1991,28(6): 317-322.
    [97] B. Amadei. Measurement of stress change in rock[J]. International Journal of Rock Mechanics and Mining Science & Geomechanics, 1985,22(3): 177-182.
    [98] 陈宗基.关于中国板块动力学及其在国民经济中的一些应用[J].大自然探索,1983(1):12-19.
    [99] ZOBACK M L. First- and second-order patterns of stress in the lithosphere: The world stress map project[J]. J Geophys Res , 1992 ,97 (B8) : 117032~11728.
    [100] 倪兴华主编,地应力研究与应用 [M],北京:煤炭工业出版社,2007。
    [101] 李长洪,张吉良,蔡美峰等.大同矿区地应力测量及其与地质构造的关系[J].北京科技大学学报,2008,30(2):115-119.
    [102] 魏福生,胡国忠,王宏图等.永川煤矿地应力测试及地应力变化特征[J].矿业安全与环保,2007,34(4):1-5.
    [103] 樊银辉,孙晓明,夏书贵.旗山煤矿深部地应力场测试及分析研究[J].煤炭科技,2007(2):1-3.
    [104] 吴玉华,吴基文,赵开全.任楼煤矿地应力测量与分析[J].宿州学院学报,2006,21(5):85-88.
    [105] 张延新,蔡美峰,王克忠.平顶山一矿地应力分布特征研究[J].岩石力学与工程学报,2004,23(23):4033-4037.
    [106] 吴俊松,吴玉华,傅昆岚.祁东煤矿地应力测量成果分析[J].淮南职业技术学院学报,2004,4(3):32-34.
    [107] 张宏伟,刘少伟,方众.东欢坨矿地应力测量及应力场分析[J].辽宁工程技术大学学报,2002,21(1):15-18.
    [108] 庞俊勇,黄醒春,吴忠.鹤壁六矿地应力实测研究[J].中州煤炭,1991(2):9-13.
    [109] 陈昌荣.地质学基础[M].徐州:中国矿业大学出版社,1994.
    [110] 方建勤,彭振斌,颜荣贵.构造应力型开采地表沉陷规律及其工程处理方法[J].中南大学学报(自然科学版),2004,35(3):506-510.
    [111] 贺跃光,颜荣贵.构造应力作用下的地表移动规律研究[J].矿冶工程,2000,20(3): 12-14.
    [112] 王敏中、王炜、武际可.弹性力学教程[M].北京:北京大学出版社,2002.
    [113] Itasca Consulting Group Inc. Fast Lagrangian Analysis of Continua in 3 Dimensions User’s Guide[R], Minnesota:Itasca Consulting Group Inc., 2003.
    [114] 程乐团.神火矿区巷道矿压显现规律及围岩控制技术[M].徐州:中国矿压大学出版社,2006.
    [115] 黄福昌等编著.兖州矿区煤巷锚网支护技术[M].北京:煤炭工业出版社,2000.
    [116] 兖州煤业股份有限公司编著.兖州矿区厚煤层矿井巷道布置[M].北京:煤炭工业出版社,2005.
    [117] 李伟、冯增强编著.南屯煤矿边角煤高效开采技术[M].徐州:中国矿压大学出版社,2007.
    [118] 谭云亮,刘传孝,韩宪军.巷道围岩破坏发育规律诊断研究[J].煤炭学报,2000,25(增):62-66.
    [119] 姜耀东,刘文岗等.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1857-1862.
    [120] 孔德森,蒋金泉等.深部巷道在构造应力场中稳定性分析[J].矿山压力与顶板管理,2000(4):56-58.
    [121] 刘占魁,来兴平,蔡美峰.基于过程分析的地下软弱层状岩石巷道破坏的相似模拟试验研究[J].包头钢铁学院学报,2000,19(1):8~10.
    [122] 周桥.林西矿煤巷锚杆相似模拟实验研究及工程应用[J].华北科技学院学报,2002,4(4):13~15.
    [123] 郜进海,康天合,靳钟铭等.巨厚薄层状顶板回采巷道围岩裂隙演化规律的相似模拟试验研究[J].岩石力学与工程学报,2004,23(19)::3292~3297.
    [124] 柴肇云,康天合,李东勇.载荷系数影响综放大断面开切眼围岩变形相似模拟研究[J].矿业研究与开发,2005,23(19):22~25.
    [125] 王颂华,杨科,张金龙.软岩巷道支护强度优化的相似模拟研究[J].矿业研究与开发,2004,24(3):32~34.
    [126] 林韵梅编著.实验岩石力学[M].北京:煤炭工业出版社,1984.
    [127] 邹喜正、刘长友.安全高效矿井开采技术[M].徐州:中国矿业大学出版社,2007.
    [128] 凌贤长,蔡德所.岩体力学[M]. 哈尔滨工业大学出版社,2002.
    [129] 张农,高明仕.煤巷高强预应力锚杆支护技术及应用[J].中国矿业大学学报,2004,33(5):524~527.
    [130] 沈运才,,王风.“刚性”梁理论在煤巷锚杆支护中的应用[J].矿山压力与顶板管理,2003 (2):41~42.
    [131] 陈庆敏,金太,郭颂.锚杆支护的“刚性”梁理论及其应用[J].矿山压力与顶板管理,2000 (1):2~5.
    [132] 毛光宁摘译.美国锚杆支护综述[J].中国煤炭,2001,27(11):54~58.
    [133] Geoffrey L. Kulak and Peter C. Birkemoe. Field studies of bolt pretension[J]. Journal of Constructional Steel Research, 1993,25(2),95-106.
    [134] 陈庆敏,张农等.岩石残余强度与变形特性的试验研究[J].中国矿业大学学报,1997,26(3):42~45.
    [135] 李晓.岩石峰后力学特性及其损伤软化模型的研究与应用[D].徐州:中国矿业大学,1995.
    [136] W J 盖尔,M W 费布赞吉克.煤矿巷道支护的设计方法[M].国外锚杆支护技术译文集,1997.
    [137] 何炳银.复合顶板巷道锚索的破断及其分析[J].煤炭工程,2007 (4):62~64.
    [138] 西安交通大学高等数学教研室编.复变函数[M].北京:高等教育出版社,1994.
    [139] 徐芝纶编.弹性力学.北京:高等教育出版社[M].2003.
    [140] 李建林著.卸荷岩体力学.北京:中国水利水电出版社[M].2003.
    [141] 段金林,胡志宇,严利咏.地下洞室围岩的卸荷研究[J] .黑龙江水专学报,2005,32(4):81-82.
    [142] 哈秋聆.岩石边坡工程与卸荷非线性岩石(体)力学[J].岩石力学与工程学报.1997,16(4):386–391.
    [143] 周小平.裂隙岩体卸荷本构理论研究及应用[博士学位论文][D].重庆:重庆大学,2000.
    [144] Zhou X P,Ha Q L,Zhang Y X. Analysis of the deformation localization and the complete stress-strain relation for brittle rock subjected to dynamic compressive loads[J]. Int. J. Rock Mech. Min.Sci., 2004,41(2),311–319.
    [145] 任建喜,葛修润,蒲毅彬等.岩石卸荷损伤演化机理 CT 实时分析初探[J].岩石力学与工程学报,2000,19(6):697–701.
    [146] 周小平,哈秋聆,张永兴等.峰前围压卸荷条件下岩石的应力–应变全过程分析和变形局部化研究[J].岩石力学与工程学报,2005,24(18):3236–3245.
    [147] 袁瑞甫,李元辉,赵兴东等.围压卸荷对矿柱破坏模式影响分析[J].矿业研究与开发,2006,26(2):24–26.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700