基于微分几何解耦的汽车主动悬架控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆悬架系统不仅影响着车辆的平顺性,而且影响着车辆操纵稳定性。在平顺性方面,由于四个车轮受到路面的激励,车身的振动是各车轮引起振动的综合结果。在操稳性方面,当车辆转向时,由于前轮转向角的影响,车辆车身的侧倾会加剧;当车辆处于紧急转向工况,由于纵向及横向载荷转移,四个悬架的垂向力会发生改变,从而使各轮胎的抓地性发生改变,对紧急转向时车辆的稳定性造成影响。车辆在不同工况下,控制的目的是不同的。车辆悬架控制系统是一MIMO的非线性控制系统。车辆主动悬架的控制问题,本质上是MIMO系统的控制分配问题,即数学上著名的Morgan问题。微分几何解耦控制理论是解决非线性系统控制问题的有力工具,可以实现对主动悬架控制力的合理分配。
     本课题针对车辆的不同工况,利用微分几何解耦控制理论,对车辆主动悬架控制算法进行研究。
     (1)车辆在直线工况下,主动悬架控制的目的是提高车辆平顺性。提出了不包括阻尼器解耦的EDDC控制算法。悬架系统经过解耦,车身的垂向、侧倾及俯仰运动各自独立。悬架系统被解耦成了多个独立的线性子系统。通过线性子系统的极点配置,车身的垂向、俯仰及侧倾振动大幅衰减,时域仿真、频域仿真及基于dSPACE硬件实时仿真验证了解耦算法的有效性。
     (2)车辆在转向工况下,车身的侧倾控制是主动悬架控制的重点。通过符号运算,在车身侧倾表达式中显式表达了与车辆前轮转角相关的项,明确了前轮转角对侧倾造成的影响;利用EDDC解耦算法,对车身的姿态进行解耦,使车身的各向运动相互独立,并对前轮转角对车身侧倾的干扰项通过解耦来进行抑制;分别在前轮转角输入为阶跃信号及正弦信号的情况下进行了仿真,验证解耦算法的有效性。
     (3)对于紧急转向工况,车辆的横向稳定性是车辆主动悬架控制的重点。建立了包括Burckhardt非线性轮胎模型的整车横向稳定性控制的数学模型,并把该模型表达成仿射非线性的形式,为微分几何解耦控制奠定了基础。
     (4)提出了基于PI制动与主动悬架解耦的车辆横向稳定性联合控制算法。采用PI制动来改善紧急转向时车辆的横摆;以主动悬架的主动作动器为输入,利用解耦算法来调节主动悬架的垂向载荷,改善轮胎的抓地性,从而调节车辆的侧向力,达到减小车身侧偏角的目的。对车辆在干燥路面及湿滑路面下,分别进行了阶跃输入及单移线输入仿真,验证了PI制动与主动悬架解耦联合控制算法的有效性。
The vehicle suspension system influences not only harshness, but also handling stability of the vehicle. In the aspect of harshness, four wheels undergo the excitation from road; the vibration of the vehicle body is the resultant which all the wheels cause. In the aspect of handling stability, due to the influence of the front wheel angle, the roll motion of the vehicle body gets aggravated in steering condition. When the vehicle is in an emergence steering condition, since the longitude and the lateral load transferring, the vertical force of four suspensions alter, so the holding ability of the tires changes correspondingly and that influences the handling stability of the vehicle. The control objectives of the vehicle in different conditions are different. The vehicle suspension control system is a MIMO nonlinear system. The control of vehicle active suspension is essentially the control allocation of a MIMO system, namely the well-known Morgan problem in mathematics. The differential geometry control theory is a powerful tool to solve the control problem of the nonlinear systems and can realize the reasonable allocation of the active suspension force.
     Considering the different working conditions of vehicles, the decoupling control algorithms on the active suspension have been researched by using differential geometry theory in this project.
     (1) In straight line driving condition, the control objective of the active suspension is to improve the harshness of the vehicle. The EDDC (excluding damper decoupling control) algorithm is proposed. The vertical motion, pitch motion and roll motion of the vehicle body are independent of each other by decoupling, and the suspension system is separated into multi independent linear subsystems. Through the pole assigned of the linear subsystem, the vertical motion, pitch motion and roll motion of the vehicle body attenuate greatly. The simulation of the time domain, the frequency domain, and the real time simulation based on dSPACE hardware verify the effectiveness of the decoupling control algorithm.
     (2) In steering condition, the control objective of the active suspension is the roll control of the vehicle body. Through the symbol computing, the items associated with the front wheel corner are expressed explicitly in the roll equation of the vehicle body and makes the influence on the roll motion which caused by the front wheel corner clear. By using the EDDC decoupling algorithm, the posture of the vehicle body is decoupled and makes the motion on each direction independent of each other, and the interference item to the roll motion caused by the front wheel corner is restrained by decoupling. The simulation results of the step and sine input signal verify the effectiveness of the decoupling algorithm.
     (3) In emergency steering condition, the lateral stability is the key objective of the active suspension control. The lateral stability control mathematic model of the whole vehicle which including the Burckhardt nonlinear tire model is established, and the model is expressed in affine nonlinear form. The above lays the foundation for differential geometry decoupling control.
     (4) The union algorithm of the vehicle lateral stability control based on the PI braking and the active suspension decoupling is proposed. Using PI braking strategy the yaw motion of the vehicle in emergency steering condition is improved. Set the actors of the active suspensions as input, using the decoupling algorithm to adjust the vertical load, improve the holding ability of the tires thus its lateral force is adjusted correspondingly, as a result, the aim to decrease the side slip angle of the vehicle is achieved. Simulations are carried out both on the dry and the wet surface road, the step and the sine signal are the input respectively, the results verify the effectiveness of the union control algorithm.
引文
[1]祝辉,陈无畏.汽车悬架、转向和制动系统建模与相互影响分析.农业机械学报,2010,41(01):7-13
    [2]卢少波.汽车底盘关键子系统及其综合控制策略研究:[重庆博士学位论文].重庆:重庆大学,2009,75-76
    [3]Karnopp D C., Crosby M J. and Harwood RA. Vibration control using semi-active force generators. Transactions of the ASME Paper,1974.
    [4]Karnopp D C., Crosby M J. and Harwood R A. Vibration Control Using Semi-Active Force Generators. Transactions of the ASME Paper,1975.
    [5]Gilbert R., Jackson. M. Magnetic Ride Control. GM TechLink4,2002
    [6]方子帆.基于MR阻尼器的半主动悬架控制方法研究:[重庆博士学位论文].重庆:重庆大学,2006,3-4
    [7]Choi, S.B., Lee, S.-K., Park, Y.P.:A hysteresis model for the field-dependent damping force of a magnetorheological damper. J. Sound Vib,2001,245(2): 375-383
    [8]Xiao-min Dong, Miao Yu, Chang-rong Liao. Comparative research on semi-active control strategies for magneto-rheological suspension. Nonlinear Dyn,2010,59(3):433-453
    [9]方子帆,邓兆祥,郑玲等.汽车半主动悬架系统研究进展.重庆大学学报(自然科学版),2003,26(1):104-108
    [10]任勇生,周建鹏.汽车半主动悬架技术研究综述.振动与冲击,2006,25(3):162-165
    [11]张玉春,王良曦,丛华.汽车主动悬挂控制的研究现状和未来挑战.控制理论与应用,2004,21(1):139-144
    [12]刘树博.基于新型优化算法的主动悬架鲁棒输出反馈控制研究:[吉林大学博士论文].长春:吉林大学,2010,2
    [13]刘震.车辆液压主动悬挂系统建模与控制:[国防科技大学博士论文].长沙:国防科技大学,2007,5-6
    [14]Thompson A G. An active suspension with optimal linear state feedback. Vehicle System Dynamics,1976,5(4):187-203
    [15]Thompson AG. Optimal and suboptimal linear active suspension for road vehicles, Vehicle System Dynamics,1984,13(2):61-72
    [16]Hrovat D.Optimal active suspension structures for quarter-car vehicle models. Automatica,1990,26(5):845-860
    [17]兰波,喻凡.车辆主动悬架LQG控制器的设计与仿真分析.农业机械学报,2004,35(1):13-17
    [18]曾志华,章一鸣.车辆主动悬挂的最优控制研究.振动工程学报,1992,5(1):48-52
    [19]陈无畏,沈云鹤,张启群.汽车主动悬架的最优控制及计算机仿真.振动与冲击,1996,15(4):53-58
    [20]CHEN W, XIAO H, Integrated control of automotive electrical power steering and active suspension systems based on random sub-optimal control. Int, J. ofVehicle Design,2006,42(3):370-391
    [21]陈双,宗长富,张立军,尹刚.主动悬架平顺性和侧倾姿态综合控制策略.吉林大学学报(工学版),2011,41(S2):59-64
    [22]来飞,邓兆祥,董红亮.基于统一模型的转向悬架系统最优综合控制方法.汽车工程,2007,29(3):238-242
    [23]王启瑞,刘立强,陈无畏.基于随机次优控制的汽车电动助力转向与主动悬架集成控制.中国机械工程,2005,16(08):743-747
    [24]David J.M. Sampson, David Cebon. Active Roll Control of Single Unit Heavy Road Vehicles, Vehicle System Dynamics,2003,40(4):229-270
    [25]陈无畏,周慧会,刘翔宇.汽车ESP与ASS分层协调控制研究.机械工程学报,2009,45(8):190-196
    [26]Ulsoy AG, Hrovat D, Tseng T. Stability Robustness of LQ and LQG Active Suspensions. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME,1994,116(1):123-131
    [27]王其东,吴勃夫,陈无畏.基于预测控制的主动悬架与电动助力转向集成控制.农业机械学报,2007,38(1):1-5
    [28]黄昆,喻凡,张勇超.电磁式主动悬架模型预测控制器设计.上海交通大学学报,2010,44(11):1619-1624.
    [29]刘少军,钟掘,郭淑娟.最优预见控制设计及在汽车主动悬架系统中的应用.中南工业大学学报,1997,28(2):67-70
    [30]刘显贵.汽车主动悬架与电动助力转向的集成预测控制仿真.清华大学学报(自然科学版),2007,47(S2):1826-1830
    [31]李治国,金达锋,赵六奇等.基于预测控制和频率成型性能指标的主动悬架控制策略研究.汽车工程,2002,24(05):426-429
    [32]宗长富,陈国迎,梁赫奇等.基于模型预测控制的汽车底盘协调控制策略. 农业机械学报,2011,42(2):1-7
    [33]Yu F,Zhang J W,Crolla D A. A study of a Kalman filter active suspension system with using the correlations if front and rear wheel inputs. Proceeding of IMECHE(Part D), Journal of automotive Engineering,2000,214(D5):493-502
    [34]Yoshimura T. Active Suspension of Vehicle Systems using Fuzzy Logic. International Journal of Systems Science,1996,27(2):215-219
    [35]Yoshimura T, Nakaminami K, Kurimoto M, et al. Active suspension of Passenger cars using linear and fuzzy-logic controls. Control Engineering Practice,1999,7(1):41-47
    [36]Ting, C. S., T. H. S. Li, et al. Design of fuzzy controller for active suspension system. Mechatronics,1995,5(4):365-383
    [37]Sharkawy, A. Fuzzy and adaptive fuzzy control for the automobiles' active suspension system. Vehicle System Dynamics,2005,43(11):795-806
    [38]Huang, S. J. and W. C. Lin. A self-organizing fuzzy controller for an active suspension system. Journal of Vibration and Control,2003,9(9):1023-1040
    [39]Lin, J., R. J. Lian, et al. Enhanced fuzzy sliding mode controller for active suspension systems. Mechatronics,2009,19(7):1178-1190
    [40]孙建民,杨清梅.规则自调整模糊控制及其在主动悬架系统中的应用.公路交通科技,2004,21(4):97-100
    [41]陈龙,袁传义,江浩斌等.汽车主动悬架与转向系统的模糊参数自调整集成控制.中国机械工程,2006,17(23):2525-2528
    [42]陈一锴,何杰,张卫华等.模糊PID主动悬架对重型货车侧翻稳定性的改善研究.中国机械工程,2012,23(21):2620-2625
    [43]季新杰,李声晋,芦刚等.新型电动静液作动器主动悬架模糊PID控制.汽车工程,2008,30(5):437-440
    [44]李以农,卢少波,郑玲等.基于灰Fuzzy控制算法的车辆悬架与转向综合控制.系统仿真学报,2009,21(7):1916-1920
    [45]陈龙,聂佳梅,江浩斌等.预测步长自调整的ASS与EPS灰预测模糊集成控制.汽车工程,2009,31(2):104-107
    [46]宋晓琳,方其让,查正邦等.采用模糊理论的七自由度汽车主动悬架控制系统.湖南大学学报(自然科学版),2003,30(6):56-59
    [47]冯金芝,喻凡.基于联合仿真技术车辆有限带宽主动悬架控制系统.上海交通大学学报,2006,40(6):952-957
    [48]唐传茵,李华,周炜等.基于遗传算法和神经网络的车辆主动悬架控制技术.农业机械学报,2009,40(2):6-11
    [49]Cherry A S,Jones RP. Fuzzy logic contron of an automotive suspension system. Control Theory and Applications, IEE Proceedings,1995,142(2):149-160
    [50]Wang, J., D. A. Wilson, et al. Hoo robust-performance control of decoupled active suspension systems based on LMI method. American Control Conference, 2001. Proceedings of the 2001, IEEE. Arlington, VA,2001,2658-2662
    [51]Hyo-Jun Kim. Robust roll motion control of a vehicle using integrated control strategy. Control Engineering Practice,2011,19(8):820-827
    [52]Gaspar, P., I. Szaszi, et al. Design of robust controllers for active vehicle suspension using the mixed μ synthesis. Vehicle System Dynamics,2003,40(4): 193-228
    [53]Yamashita, M., K. Fujimori, et al. Application of Hoo control to active suspension systems. Automatica,1994,30(11):1717-1729
    [54]Du, H. and N. Zhang. control of active vehicle suspensions with actuator time delay. Journal of Sound and Vibration,2007,301(1-2):236-252
    [55]孙涛,喻凡,柳江等.基于混合不确定建模的主动悬架鲁棒μ综合控制分析.上海交通大学学报,2006,40(6):936-941
    [56]宋刚,林家浩,吴志刚.考虑参数不确定性的主动悬架鲁棒H2/H∞混合控制.动力学与控制学报,2008,6(2):156-164
    [57]孙涛,冯金芝,喻凡.车辆悬架不确定性对行驶平顺性能影响的鲁棒保守性分析.振动与冲击,2008,29(8):52-55+176
    [58]陈虹,赵桂军,孙鹏远等.H2和H∞主动悬架统一的理论框架与比较.汽车工程,2003,25(1):1-6
    [59]李克强,董珂,永井正夫.多自由度车辆模型主动悬架及鲁棒控制.汽车工程,2003,25(1):7-11
    [60]李伟,张孝祖,李辉.转向工况下主动悬架H2/H∞鲁棒控制研究.机械设计,2010,27(3):24-27
    [61]刘树博,赵丁选,尚涛.主动悬架非脆弱H2/广义H2静态输出反馈最优控制.四川大学学报(工程科学版),2011,43(1):240-246
    [62]方敏,史明光,陈无畏.汽车主动悬架多目标H2/H∞混合控制.农业机械学报,2005,3(03):4-7+18
    [63]李以农,郑玲,罗铭刚.汽车主动悬架H2/H∞多目标控制线性矩阵不等式方法.重庆大学学报,2010,33(4):1-8
    [64]Lu Shaobo, Li Yinong, Seung-Bok Choi et al. Integrated Control on MR Vehicle Suspension System Associated with Braking and Steering Control. Vehicle System Dynamics,2011,49(1):361-380
    [65]C. Poussot-Vassal, O.Sename, L.Dugard et al, Attitude and handling improvements through gain-scheduled suspensions and brakes control. Control Engineering Practice,2011,19 (3):252-263
    [66]March C, Shim T. Integrated control of suspension and front steering to enhance vehicle handling. Proc. IMech E, Part D:J. Automobile Engineering,2007, 221(4):377-391
    [67]Smakman H. Functional integration of active suspension with slip control for improved lateral vehicle dynamics. Proc.AVEC00, Ann Arbor, Michigan, USA, 2000
    [68]Hac A, Bodie M O. Improvements in vehicle handling through integrated control of chassis systems. Int. J. Vehicle Autonomous Systems,2002,1(1): 83-110
    [69]Kou Y. Integration chassis control (ICC) systems of mando. SAE Paper 200420122044,2004
    [70]Nouillant C, Assadian F, Moreau X, et al. A cooperative control for car suspension and brake systems. International Journal of Automotive Technology, 2002,3(4):147-155
    [71]陈无畏,王妍,王其东等.电动助力转向与主动悬架系统多变量自适应集成控制.振动工程学报,2005,18(3):360-365
    [72]陈无畏,孙启启,初长宝.汽车电动助力转向与主动悬架系统的H∞集成控制.振动工程学报,2007,20(1):45-51
    [73]王其东,宋宜亮.车辆防抱制动系统与主动悬架系统集成协调控制算法的仿真.合肥工业大学学报(自然科学版),2007,30(12):1610-1614
    [74]袁传义,陈龙,江浩斌等.主动悬架与电动助力转向系统模糊集成控制.江苏大学学报(自然科学版),2007,28(1):29-32
    [75]郭建华,李幼德,李静.汽车防抱死系统与主动悬架联合控制研究.中国机械工程,2007,18(24):3014-3018
    [76]王金湘,陈南,殷国栋.基于多主体的车辆底盘集成控制扩展框架仿真研究.汽车工程,2012,34(8):701-707
    [77]来飞,邓兆祥.含非线性轮胎模型的汽车四轮转向与主动悬架集成控制.中国公路学报,2009,22(3):113-120
    [78]董红亮,邓兆祥,来飞等.路面激励下主动悬架和四轮转向的协调控制.哈尔滨工程大学学报,2009,30(4):428-435
    [79]Alleyne A. A systematic approach to the control of electrohydraulic servosys-tems. Proceedings of the American control conference,1998,2:833-837
    [80]Sheen JJ, Bishop RH. Adaptive nonlinear control of spacecraft. Proceedings of the American control conference,1994,3:2867-2871
    [81]雷延花,陈士橹.基于微分几何方法的大迎角导弹解耦控制.飞行力学,2003,21(4):39-41
    [82]Burgio G. Zegelaar P. Integrated vehicle control using steering and brakes, International Journal of Control,2006,79(5):534-541
    [83]B.Zhang, S. Anwar. Yaw stability control of a steer-by-wire equipped vehicle via active front wheel steering.Mechatronics,2009,19(6):799-804
    [84]陈无畏,徐娟等.整车非线性系统的输入输出解耦及解耦比例微分控制.机械工程学报,2007,43(2):64-70
    [85]Lin, J. S. and C. J. Huang. Nonlinear backstepping active suspension design applied to a half-car model. Vehicle System Dynamics,2004,42(6):373-393
    [86]Yagiz, N. and Y. Hacioglu. Backstepping control of a vehicle with active suspensions. Control Engineering Practice,2008,16(12):1457-1467
    [87]Fialho, I. and G. J. Balas. Road adaptive active suspension design using linear parameter-varying gain-scheduling. Control Systems Technology, IEEE Transactions on,2002,10(1):43-54
    [88]Sam, Y. M., J. H. S. Osman, et al. A class of proportional-integral sliding mode control with application to active suspension system. Systems & control letters, 2004,51(3):217-223
    [89]lsidori A. Nonlinear control systems.3th ed. London:Springer-Verlag,1995, 105-195
    [90]胡跃明.非线性控制系统理论与应用.北京:国防工业出版社,2005,89-133
    [91]刘学超.平面磁集成电压调整模块建模方法及磁耦合微分几何解耦控制:[华南理工大学博士论文].广州:华南理工大学,2006,75-86
    [92]张永林,钟毅芳.车辆路面不平度输人的随机激励时域模型.农业机械学报,2004,35(2):9-12
    [93]DUGOFF H, FANCHER P S, SEGAL L. An analysis of tire traction properties and their influence on vehicle dynamic performance. SAE Paper 70037,1970
    [94]Bakker, E., Pacejka, H and Lidner, L., A new tire model with application in vehicle dynamics studies. SAE paper 890087,1989
    [95]王其东,王霞,陈无畏等.汽车主动前轮转向和防抱死制动协调控制.农业机械学报,2008,39(3):1-5
    [96]刘力,罗禹贡,江青云等.基于广义预测理论的AFS-DYC底盘一体化控制,汽车工程,2011,33(1):52-56
    [97]李果,刘华伟,王旭.汽车转向/防抱死制动协同控制.控制理论与应用,2010,27(12):1769-1704
    [98]杨福广,阮久宏,李贻斌等.4WID_4WIS车辆横摆运动AFS-ARS-DYC模糊控制.农业机械学报,2011,42(10):6-12
    [99]张晨晨,夏群生,何乐.质心侧偏角对车辆稳定性影响的研究.汽车工程,2011,33(4):277-282
    [100]陈无畏,周慧会,刘翔宇.汽车ESP与ASS分层协调控制研究.机械工程学报,2009,45(8):190-196
    [101]C. Poussot-Vassal, O.Sename, L.Dugard et al, Attitude and handling improvements through gain-scheduled suspensions and brakes control. Control Engineering Practice,2011,19(3):252-263
    [102]U.Kiencke and L.Nielsen, Automotive Control Systems:For Engine, Driveline and Vehicle, Springer-Verlag, Berlin and Heidelberg,2000
    [103]Aleksander Hac, Melinda D. Simpson. Estimation of Vehicle Side Slip angle and Yaw Rate.SAE Paper 2000-01-0696. USA:SAE,2000

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700