气悬浮立式转子动平衡技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国工程物理研究院在进行某空间装置质量特性综合测量设备的研制中,对该空间装置在低转速下的立式动平衡测量精度提出了很高要求。由于安全的原因,测量时空间装置的转速不能太高,而低转速下高精度的立式转子动平衡技术仍是一个有待深入研究的难题。因此,本论文在中国工程物理研究院科学技术基金的资助下,专题探索低转速下新的立式动平衡测量原理、测控装置的研制技术与方法。
     通过分析各种动平衡测量原理和方法、关键技术与研究趋势,针对低转速下测量信号强度变弱的问题,本文提出一种新型的立式动平衡测量原理——气悬浮立式转子动平衡测量原理,并研制开发出相应的测控装置,重点对动不平衡量分离算法模型、动平衡测量装置的设计方法、系统结构、转子悬浮稳定性控制和测控数据处理等关键技术进行深入研究。本文在原理和工程应用中的主要研究成果和特色如下:
     (1)根据立式动平衡测量要求和气体静压支承特点,提出了气悬浮立式转子动平衡测量方法。其技术原理是转子被气体静压球面轴承稳定悬浮并由均匀水平分布的气流驱动而匀速转动,转子的动不平衡量将导致转子偏离水平位置,通过测量转子的偏移量即可计算转子的动不平衡量。
     (2)提出一种气悬浮动平衡测量时在两个校正面上的不平衡分量与转子静、偶不平衡量之间关系的双面分离算法,建立了静、偶不平衡量与转子倾斜偏移量之间的线性关系方程。通过理论计算与实验分析得出线性参数后,即可根据转子偏移量直接计算出转子的静、偶不平衡量,无需进行校验转子标定。转子静、偶不平衡量在静止和转动时分别测量与校正,实现了静、偶不平衡量的直接分离,避免了两者之间的干扰。
     (3)根据气悬浮动平衡测量的基本原理和工程需求,研究了用于动平衡测量的支承、驱动、气压分布测量、精密恒压供气、传感器标定等实验装置和机构的相应设计技术。重点设计了结构独特的双环缝球面节流器,并采用有限元分析技术对球面节流器在不同压力差时的变形情况进行了数值模拟。采用气涡流驱动方式,使转子转速更加恒定。设计的二自由度球面测头能测量球面节流器内部任意点的压力,进而得到
    
    摘要
    气体静压球面轴承间隙内的压力分布。
     (4)气体静压球面轴承是整个实验装置的核心,其设计过程是一个多参数、多
    约束的复杂优化问题。本文将遗传算法用于球面半径、支承角度、供气压力等主要结
    构参数的优化,在此基础上进行了气体静压球面轴承的详细设计。实验结果验证了其
    优化设计方法正确,效果好。
     (5)分析了供气压力波动幅值与频率对转子空间姿态的影响。讨论了转子自激
    振动成因,根据劳斯一霍尔维茨稳定性判据,提出了防止悬浮转子自激振动的解决方
    法以指导球面节流器的结构设计。建立了以计算机为调节器的自适应P田控制系统,
    实现了气体压力的直接数字闭环控制。
     (6)针对低转速下弱信号降噪问题,采用剔除脉冲干扰和二次磨光法进行数据
    预处理,并将遗传算法应用于信号处理,进行了有限冲激响应数字滤波和多频率信号
    的信号参数识别的应用研究。为提高传感器的精度,采用多传感器数据融合技术标定
    位移传感器,建立了传感器指标与影响因素间的联系。
     (7)在以上原理和实验装置研究的基础上,采用统一建模语言和虚拟仪器开发
    工具,建立了气悬浮动平衡测量和气压分布测量软件系统。采取了噪声屏蔽、软件检
    错等必要的抗干扰措施,提高了测试系统的精度。所研制的实验装置和软件系统除了
    能够完成动平衡实验,还可以进行转子悬浮稳定性、测量装置工程应用等实验。通过
    多次实验结果的分析,表明所建立的测控系统,具有适应性强、使用灵活方便、复用
    性好的特点。
    关键词:空间装里的质量特性动平衡技术气悬浮立式转子气体静压球面轴承
     动平衡测量装盖双面分离算法自适应pID控制多传感器数据融合技术
During the developing quality characteristics colligation measuring equipment for the flight equipment in Chinese Academy of Engineering Physics (CAEP), high requirements are put forward to vertical dynamic balancing measuring accuracy of the flight equipment at low rotation speed. The rotation speed must be low for the sake of safety. So far, it is still a difficult problem for accurate dynamic unbalance measuring at low rotation speed over the world. In order to solve the question in this paper, a new dynamic balancing measuring principle for vertical rotor, designing technology and a new measuring and controlling device at low rotation speed are researched and developed by supporting of the Science & Technology Foundation of CAEP.Based on the analysis of measuring principles and methods, key technologies and research tendency of vertical rotor dynamic balancing, a new measuring principle model of air-suspending vertical rotor dynamic balancing is researched and a set of experiment devices used to solve the problem of weak signal processing at low rotation speed are developed. Some key techniques are discussed, such as dynamic unbalance separation algorithm model, designing method of air-suspending dynamic balancing measuring system for vertical rotor, system frame, rotor suspending stability controlling, data transaction, etc. The main achievements and creative ideas of the paper in principle and engineering application are as follows:(1) According to vertical dynamic balancing measuring demand and characteristic of air static pressure suspending, the theoretic model for air-suspending dynamic balancing of vertical rotor is established. The rotor is suspended by an air static pressure ball bearing and drove by well-distributed air flow. Dynamic unbalance makes the rotor slant, and
    
    dynamic unbalance of the rotor can be calculated by measuring its slant displacement.(2) Algorithm of calculating dynamic unbalance on two correction planes for the new measuring principle is presented, and static unbalance and couple unbalance are separated on two correction planes. The lineal relationship function between dynamic unbalance and slant displacement is established. After the lineal parameters are determined through theoretic calculation and experiment analysis, dynamic unbalance can be calculated, so verification rotor is unnecessary. Static unbalance and couple unbalance can be measured at different status, and they are separated directly, so interference can be avoided.(3) Based on air suspending dynamic balancing principle, a set of experiment devices for vertical rotor are designed, such as supporting device, driving device, measuring device for air pressure, exactitude air pressure controlling device, displacement sensor demarcation device, etc. Designing of dual-ring slot spherical throttle is keystone. FEA software is applied to calculate spherical throttle distortion under different air pressure, which can instruct to design spherical throttle. The rotor can rotate at constant speed because it is drove by non-contact well-distributed air flow. Pressure at any point in the throttle is measured by two-dimension spherical sensor, and pressure distribution can be determined.(4) The air static pressure ball-bearing is core of the experiment devices, and its designing is a complex process with multi-parameters and multi-restrictions. Genetic algorithm is applied to optimize its structural parameters, such as spherical radius, bearing angle, air feed pressure, etc. Based on these parameters, air static press ball bearing is designed in detail. Experiment results have verified that the new optimization designing method is correct and measuring effect is satisfactory.(5) Influence of supporting air pressure variation to space attitude of the rotor is analyzed. The stability controlling techniques for vertical rotor are studied. Reasons of self oscillation are analyzed, and solutions are put forward to instruct throttle structural designing according to Laus-Holweitz stability regulation. Adaptive PID contro
引文
[1] 曹继光,邹静,钟伟芳.框架式双面立式动平衡机平面分离的误差分析.华中理工大学学报,2000.28(5):38~40
    [2] 朱世强,林建亚.巨型转动构件高精度静平衡方法的研究.机械工程学报,2001,37(4):12~16
    [3] 孟建.大型回转机械故障特征提取的若干前沿技术.西安交通大学博士论文,1996
    [4] Thearle, E.L.:Dynamic Balancing of Rotating Machinery in the Field, ASME Transaction, Journal of Applied Mechanics, V. 56,745~753,1934
    [5] 三轮修三,下村玄.旋转机械的平衡.北京:机械工业出版社.1992.7
    [6] 曲维德.机械振动手册.北京:机械工业出版社.2000.5
    [7] Medal A.:Auswuchten Elastischer Rotoren, Z. Angew. Math und Mech.,Vol. 34,1954
    [8] G. M. L Gladwell. Branch Mode Analysis of Vibration System[J].Jour Sound and Vibration. 1964,1:41~59
    [9] C. A. Miller. Dynamic Reduction of Structural Models[J].Jour Structural Division, ST10, 1980:2097~2108
    [10] J.H Kuang and Y.G. Tsuei. A More General Method of Substructure Mode Synthesis for Dynamic Analysis [J].AIAAJ, 1985,23(4):618~623
    [11] M. Lou, A. Ghobarah, T.S. Aciz. A Modal Synthesis Method for Dynamic Substructuring .Eur, J. Mech[J]A Solids, 1993,12(3):403~416
    [12] Gawronski, W.,Lim, K.B. Balanced Actuator and Sensor Placement for Flexible Structures. International Journal of Control, 1996,65(1)
    [13] Arakelian V.,Dahan, M. Dynamic Balancing of Mechanisms, Mechanics Research Communications, 2000,27(1)
    [14] Foiles, W.C.,Allaire, P.E.,Gunter, E.J. Rotor Balancing, Shock and Vibration, 1998,5(5~6)
    [15] Nehorai A, Stoica P. Adaptive algorithms for constrained ARMAsignals in the presence of noise. IEEE Trans. Acoust.,Speech, Signal Processing 1988, ASSP-36:1281~1291
    [16] A.G. Parkinson:Balancing of Rotating Machinery. Proceedings of the Institution of Mechanical Engineering Science. C308/88,491-498.1988
    [17] W. C Hurry. Vibration of Structure System by Component Mode Synthesis[J].Journal Engr. Mech. Div, ASCE, 1960,86:51~59
    [18] Mark S. Darlow:A Unified Approach to the Mass Balancing of Rotating Flexible Shafts, Doctor Dissertation of University of Florida, 1980
    [19] T.P. Goodman: A Least-Squares Method for Computing Balance Corrections, Transcation of ASME, Journal of Engineering for Industry, August, 273~279,1964
    [20] Darlow M. S.,Smally A.J.,and Parkinson A.G.: A Unified Approach to Flexible Rotor Balancing:Outline and Experimental Verification, Vibration in Rotating Machinery, 2 Int. Conference. C340/80.1981
    [21] 史东锋,屈梁生.三维全息谱分解在回转机械诊断中的应用研究.西安交通大学学报,1998,32 (7).94~97
    
    [22] 屈梁生,邱海等.全息动平衡技术:原理与实践.中国机械工程,1998,9(1):60-63
    [23] 王晓升.大型转子系统动平衡技术研究.西安交通大学博士论文,1997
    [24] 邱海.动平衡中的信息理论.西安交通大学博士论文,1999
    [25] 徐宾刚.转子平衡的信息理论与实践.西安交通大学博士论文,2000
    [26] 徐宾刚,屈梁生等.基于影响系数法的柔性转子无试重平衡法研究.西安交通大学学报,2000,34(7):63~67
    [27] 徐宾刚,屈梁生.非对称转子的全息动平衡技术.西安交通大学学报,2000,34(3):60~65
    [28] A. G. Parkinson:Balancing of Rotating Machinery, Proceedings of the Institution of Mechanical Engineers, Part C, Vol. 205, No.1,53~66,1991
    [29] Van de Vegte, J.:Balancing of Flexible Rotors During Operation, Journal of Mechanical Engineering Science, Vol. 23,257~261,1981
    [30] Gosiewski Z.:hutomatic Balancing of Flexible Rotors, Part Ⅰ:Theoretical Background, Journal of Sound and Vibration, Vol. 100,551~567,1985
    [31] Gosiewski Z.:Automatic Balancing of Flexible Rotors, Part Ⅱ:Synthesis of System, Journal of Sound and Vibration, Vol.114,103~119,1987
    [32] Lee C.W.,Kim Y.D.:Model Balancing of Flexible Rotors During Operation Design and Manual Operation of Balancing Head, Proceedings of the Institution of Mechanical Engineers, Part C, Vol. 204, No. 1,19~28,1990
    [33] 李顺利,房振勇等.精密离心机自动动平衡新方法的研究.机械工程学报,2000,36(10):91~93
    [34] Smalley h.J.,Spray W.R.: Automated Balancing of Rotors:Concept and Initial Feasibility Study, Transcation of ASME, Journal of Engineering for Gas Turbines and Power, Vol. 111, No. 4,659~665,1989
    [35] 欧阳光耀,周继明:动不平衡质量不停机自动切除初探,传感器技术,VOL.17,No.4,13~16,1998
    [36] Jongkil Lee,W.K. Van Moorhem:Analytical and Experimental Analysis of a Self-Compensating Dynamic Balancer in a Roaring Mechanism, Transcation of the ASME, Journal of Dynamic Systems, Measurement, and Control, Vol. 118.468~475, 1996
    [37] 沈明:气体介质的砂轮动平衡装置的研究,磨床与磨削,No.3,25~27,1997
    [38] 曾胜:电磁式旋转机械在线自动平衡系统的研究,浙江大学博士学位论文,1997
    [39] 孙宝东:高速转子自动平衡技术的研究,哈尔滨工业大学博士学位论文,1995
    [40] 徐灏等.机械设计手册.机械工业出版社.1991
    [41] 张新江等.转子-轴承系统的非线性动力学特性分析.振动、测试与诊断,2003,23(1):33~36
    [42] 袁小阳.轴系的稳定裕度、非线性振动和动力性能优化研究.西安交通大学博士论文,1994
    [43] 谭德世.六缸曲轴动平衡机的微机系统.华中工学院学报,1988,16(1):85~90
    [44] 谭德世.动平衡机内电路接地问题的探讨.试验技术与试验机,1990,4:13~18
    [45] 张志新,贺世正.高速转子整机动平衡仪的开发与研究.振动工程学报,2001,14(4):383~387
    [46] 曹继光.曲轴平衡去重机软件设计与优化.试验技术与试验机,1991,31(3):27~33
    [47] 徐锡林,张守愚等.CAB-150型微电脑硬支承平衡机的设计与研制.试验技术与试验机,1990,2:10~12
    [48] 郑建彬,周伟等.超微型转子动平衡机数字滤波算法研究.试验技术与试验机,1998,38(3):15~17
    
    [49] 付海中.唐锡宽.微机测量转子振动.试验机与材料试验
    [50] 郑建彬,田春仿.基于离散小波变换的动平衡机不平衡量提取算法研究.测控技术,2002,21 (8):21~23
    [51] 马怀良.平衡机测量系统与校正平面机械分离比的关系.试验技术与试验机,1989,6:14~15
    [52] 王晓升.测量点对转子动平衡影响的研究.西安交通大学学报,1998,32(7):85~89
    [53] 谷洪,于弘.平衡机中微机采集正弦波参数的几个重要问题.试验技术与试验机,1989.6:29~30
    [54] 韦文林,丛培田.微机化硬支承动平衡机测试系统的加试重递推标定法.试验技术与试验机,1991,31(2):29~33
    [55] 乐德广.郭尔辉等.虚拟仪器结构及其可视化编程的技术进展.计算机自动测量与控制,2001,9(1):1~3
    [56] 陈小平,于盛林.FIR滤波器设计.南京航空航天大学学报,2000,32(3):276~281
    [57] 秦树人,小波信号分析系统及其在测试技术中的应用,全国测试技术学术会议论文集,2000.
    [58] 余建航,张曾昌.平稳噪声背景下周期信号基频初相位检测.振动测试与诊断,1999,19(1):26~29
    [59] 余建航,张曾昌.周期测量误差对周期信号相位谱的影响.振动测试与诊断,1999,19(3):174~177
    [60] 黄明辉,徐东西.信噪比改进技术的新发展.振动测试与诊断,2001,21(3):174~179
    [61] Qin Shuren, Chen Zhikui, Xu Mingtao .Sampling Principle and Technology in Wavelet Analysis for Signals. Chinese Journal of Mechanical Engineering, 1998,11(4):257~263
    [62] Mallat S, Zhong Sifen. Characteristization of Signals from multiscale. IEEE Transa ctions on Pattern Analysis Intelligence. 1992,28(4):711~730
    [63] 岳林,张令弥.基于LabVIEW平台的数字抽取滤波器的设计与应用.南京航空航天大学学报,2001,33(5):482~485
    [64] 汪红.基于组件的虚拟仪器软件系统设计.微计算机信息,2001,17(1):76~77
    [65] 韩洁.通用虚拟仪器IVI技术.国外电子测量技术,2001,1
    [66] 童进,吴昭同等.旋转机械信号采集中的一种脉冲剔除方法.振动、测试与诊断,2000,20(3):216~217
    [67] 徐培民,杨积东等.离散频谱分析中两邻近谱峰参数的识别.振动工程学报,2001,14(3):254~258
    [68] 童进,吴昭同等.数字离散信号滤噪HMM综合平均法的研究.浙江大学学报,2000,34(3):312~315
    [69] 叶能安.硬支承平衡机的误差分析.试验机与材料试验
    [70] 李瑰贤,周铭等.改进谐波小波及其在振动信号时频分析中的应用.振动工程学报,2001,14(4):388~391
    [71] 杨福生,小波变换的工程分析与应用.科学出版社.2000.11
    [72] 韩军,石玉祥等.数据采集系统中的测速及触发通道的开发与设计.振动、测试与诊断,1995,15(3):44~48
    [73] 李进义.动态测试技术基础.国防工业出版社.1989.11
    [74] 蔡扬林.屈梁生等.机械振动信号频谱中幅频相的精确计算.振动、测试与诊断,1996,16 (2):13~17
    
    [75] 常炳国,张卢良等.采用数据融合处理技术提高传感器的可靠性.西安交通大学学报,1998,32(12):5~7
    [76] 张西宁,屈梁生.一种改进的随机减量信号提取方法.西安交通大学学报,2000,34(1):106~107
    [77] 应启绗,冯一云,窦维蓓.离散时间信号分析和处理.消华大学出版社.2001.9
    [78] 王欣,王德隽.离散信号的滤波.电子工业出版社.2002.6
    [79] 罗忠增,蒋静坪.机器人感觉与多信息融合.机械工业出版社.2002.6
    [80] 康耀红.数据融合理论与应用.西安电子科技大学出版社.1997.11
    [81] 杨静宇.多传感器集成与信息融合.机器人情报.1994,1:1~18
    [82] 李兆杰,郭呈贺,钱文瀚.多传感器集成融合技术.传感器技术.1996,6:1~4
    [83] 罗志增,叶明.基于Bayes方法的多感觉信息融合算法及应用.传感技术学报,2001,14(3):210~215
    [84] 罗志增,蒋静坪.相关证据的融合及在多感觉信息融合中的应用.传感技术学报,2000,13 (3):177~182
    [85] 黄德双.神经网络模式识别系统理论.电子工业出版社,1996
    [86] 段新生.证据理论与决策、人工智能.中国人民大学出版社,1993
    [87] 郭桂蓉,庄钊文.信息处理中的模糊技术.国防科技大学出版社,1993
    [88] 虞烈、刘恒.轴承-转子系统动力学.西安交通大学出版社,2001
    [89] 张新江等.转子-轴承系统的非线性动力学特性分析.振动、测试与诊断,2003,23(1):33~36
    [90] 马浩,贾庆轩等.转子动平衡理论分析.机械工程学报,2000,36(3):1~3
    [91] J.M. Krodkiewski, J. Ding, N. Zhang: Identification of unbalance Change Using A Non-linear Mathematical Model for Multi-Bearing Rotor System, Journal of Sound and Vibration, Vol. 169, No. 5,685-698,1994
    [92] 郑钢铁:考虑现场背景时域振动参数识别方法研究及油膜轴承动态特性参数识别.哈尔滨工业大学博士学位论文,1988
    [93] 郑铁生,许庆余:滑动轴承油膜动力系数的附加不平衡量辨识方法.西安交通大学学报,1992.26(3):5~7
    [94] G.C.Homer, W.D.Pilkey: The Ricati transfer matrix method, Journal of Mech. Des. Trans Asme April,1978(100):297~302
    [95] 凌保民,诸葛向斌,凌云.电涡流传感器的温度稳定性研究.仪器仪表学报,1994,15(4):342~345
    [96] 方秋华,田新启,茅佩.涡流传感器温漂补偿.东南大学学报,1995,25(5):47~49
    [97] 丛华,安钢,张义明.差动式电涡流位移传感器.装甲兵工程学院学报,1997,11(2):24~27
    [98] 王现军,宋豫全,杜保强.电涡流传感器温度漂移的综合补偿.传感器技术,2004,23(2):53~55
    [99] 周恒,刘延柱.气体动压轴承的原理及计算.国防工业出版社.1981.11
    [100] F.M.斯坦斯菲尔德著,险峰机床厂译.静压支承在机床上的应用.机械工业出版社.1978
    [101] 姚英学、杜建军等.制造误差对气体静压轴颈-止推轴承静特性影响.哈尔滨工业大学学报,2003,35(3):315~318
    [102] 韩荣德.复合形法在气体静压轴承设计中的应用.制造技术与机床,1996,(8):38~40
    [103] 吴起、池长青等.制造误差对气体静压圆柱轴承静态特性的FEM分析.航空学报,1997,18 (6):703~708
    
    [104] 李树森,刘敦等.小孔节流方式对气体静压轴承工作刚度影响的分析.润滑与密封,2000,4:6-7
    [105] 陈雪梅,黎文兰.气体轴承技术及其应用.润滑与密封,2000,4:61~63
    [106] 陈雪梅.气浮轴承超卢旋转头的设计.机床与液压,2001,6:56~57
    [107] Holland J.H.: Adaptation in nature and artificial system. The University of Michigan Press, 1975,Mit Press, 1992
    [108] 周明.孙树栋.遗传算法原理及应用.国防工业出版社.1999.6
    [109] 殷国富.工程专家系统技术及其应用.成都科技大学出版社.1993.6
    [110] 隋洪涛,陈红全.基于B样条的气动反设计遗传算法研究.南京航空航天大学学报.1992,31(1):18~23
    [111] 陈小平,于盛林.FIR滤波器设计—基于遗传算法的频率采样技术.南京航空航天大学学报,2000,32(3):276~281
    [112] 张将社,许宗本,梁怡.整体退火遗传算法及其收敛充要条件.中国科学(E辑).1997,27(2):154~164
    [113] Etter D M, Hicks M J, cho K H. Recursive Adaptive filter design using an adaptive genetic algorithm. Proc IEEE Int Conf ASSP, 1982,635~638
    [114] 陈小平,于盛林.FIR滤波器设计:基于遗传算法的频率采样技术.南京航空航天大学学报,2000,32(3):276~281
    [115] 孙瑞样,屈梁生.遗传算法优化效率的定量评价.自动化学报.2000,26(4):552~556
    [116] Lin S, Kernighan B W. An effective heuristic algorithm for the traveling salesman problem. Operation Research, 1973,21:498~516
    [117] 董聪,郭晓华,袁曾任.基于广义遗传算法的全局优化方法.计算机科学.1999,26(6):7~10
    [118] 李景勇.有限元法.北京邮电大学出版社.1999.2
    [119] 王瑁成,邵敏.有限单元法基本原理和数值方法.清华大学出版社.1997.3
    [120] 孙传友,孙晓斌,汉泽西,张欣.测控系统原理与设计.北京航空航天大学出版社.2002.9
    [121] 李岳生,齐东旭.样条函数方法.科学出版社.1979.6
    [122] 刘瑞岩,张健保.随机减量模态识别的实验研究[J].振动与冲击,1993,45(1):14~19
    [123] 倪振华.振动力学.西安交通大学出版社,1989
    [124] HorSt Ahlers著,王磊,马长霞,周庆译.多传感器技术及其应用.国防工业出版社.2001.2
    [125] 李永宁.游志胜,聂建荪,杨红雨.一种分布式多雷达航迹数据融合系统.四川大学学报,2004,41(2):305~309
    [126] 聂建荪,游志胜,李永宁.多雷达数据处理.计算机应用,2000,20(5):1~3

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700