精密零件热膨胀及材料精确热膨胀系数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代科技迅速发展,使得精密工程的精度等级不断提高,已进入微纳米级水平。由于热变形对精度影响的重要性,所以对热变形影响机理和控制研究越来越受到国内外学者的关注。本文在国家自然科学基金“机械配合热变形误差的基础理论与应用技术研究”(项目编号:50075023)的支持下,同时参考台湾科学技术委员会的相关项目内容,在国内外热变形研究理论成果的基础上,对零件形体因素所引起的热变形及相关内容进行了系统深入的理论研究,建立了零件典型形体因素对热变形影响的数学模型,并通过实验给以论证。在此成果基础上,对材料精确热膨胀系数作了大量的理论和实验研究,为未来建立标准的精密工程中常用材料精确热膨胀系数提供了一定的参考依据。
     本文主要工作和创新性成果包括:
     本课题在吸收国内外热变形理论研究成果的基础上,通过热变形与力学模型的转换,对典型零件形体热变形规律进行深入的理论研究,对常见的方体、圆柱体、园环和球体等形体特征参数对零件的热变形影响给出了理论分析,首次推导建立了零件热变形规律的数学模型。
     在典型零件形体热变形数学建模分析中,应用差分算法并进行了改进,将差分法发展成可得出形体热变形一般规律的解析法,有效的解决了热变形形体建模问题,为进一步研究复杂形体对零件热变形影响规律提供了一种算法。
     对材料的精确热膨胀系数进行了全面与深化研究,分析了传统材料热膨胀系数的不足,给出了传统材料膨胀系数实用的精确定量评述和适用范围,提出了精确材料热膨胀系数相关问题的解决方法。同时对现行的几种材料热膨胀系数定义进行了系统分析,给出各种定义的材料热膨胀系数的精度范围,提供了在实践应用中选用原则和方法,该内容具有重要的实用价值。进一步对以圆柱体和球体为标准样件所定义的材料膨胀系数进行了理论分析,提出以圆球体为标准试件所测出的材料膨胀系数具有更好的科学性,为建立科学的精确热膨胀系数提供理论依据。
     根据对热膨胀系数的理论研究成果,进一步研究了常用材料的精确膨胀系数,对本校选用的精密机械工程中常用的25种材料和台湾成功大学提供的16种(每种有4件尺寸不同的样件,共64件)材料的热膨胀系数变化规律进行了测定,给出了实用数表,并对其实验数据进行了分析比较,得出了材料精确热膨胀系数的主要结论,为今后进一步研究海峡两岸统一的材料精确热膨胀系数标准提供了良好依据。
    
    合肥工业大学博士学位论文
     研制成功了国内唯一的高精度三维热变形实验装置一均匀温度场高精度
    实验装置,该装置具有恒温箱微机控制,高精度电感测头准确定位,微动三维
    工作台和双频激光干涉仪热变形量测量系统,极大的提高了测量精度和测量适
    用范围,扩展了其应用功能。其主要技术指标是:容积为820 x 528 x 85Omm3,
    测温不确定度为0.02℃,微变形测量不确定度为士0.28声刀”。该实验装置的研
    制成功为进一步在本方向的研究给以了设备保障。
    关键词:热变形、热膨胀系数、热应力、热传导、差分法
With mechanical precision improving from micron scale to nanometer scale in modern times, scientists in world more and more pay attention to the influence of thermal deformation in precise process and precision instruments. Under thesustentation of NSFC(National Nature Science Foundation of China) project "theoretical and applied research of mechanical assort thermal deformation errors" (item number: 50075023) and Taiwan Science and Technology Committee project, This paper summarizes domestic and abroad thermal deformation achievements; .systematically studied mechanical parts' thermal deformation influenced by mechanical parts body factor; establishes thermal deformation mathematics model with mechanical parts body factors, and the model is demonstrated by experiments. On the basis of these achievements, the material precise coefficients of thermal expansion are deduced and a large number of experiments are made to prove these results. On the base of these theoretical and experimental achievements, the standard material precise coefficient of thermal expansion in precision engineering can advance further.The main contents and innovations of the dissertation include: On the basis of synthetically analysis about domestic and abroad achievements, by transforming thermal deformation and mechanics model, the rule of typical parts body's thermal deformation is researched, theoretical analysis on rules of square body, cylinder and sphere thermal deformation are given, and parts thermal deformation mathematics model is deduced for the first time.In the analysis of typical parts body thermal deformation mathematics model, the typical finite difference method is developed into an analysis method which can be used to acquired the general rule of the body thermal deformation, and this analysis method provides a kind of effectual arithmetic in researching parts thermal deformation with complex shape parts.This paper comprehensively studies material precise coefficient of thermal expansion, analyzes the defect of the traditional material coefficient of thermal expansion, demonstrates the quantitative evaluation and applicable scale of the precision under traditional material coefficient of thermal expansion, gives the solution to obtain material precise coefficient of thermal expansion. Meanwhile,
    
    this paper analyzes several current definitions of material coefficient of thermal expansion, demonstrates the precision range with different coefficient definitions, gives the principle and method in the application and industry, and this theory possesses important practical value. We theoretically analyzes material coefficient of thermal expansion defined by the cylinder and sphere standard samples, the material coefficient by measuring sphere standard is more scientific. This paper establishes mathematics model of coefficient of thermal expansion with typical shape parts to provide theoretically basis for establishing more scientific precise coefficient of thermal expansion.This paper studies the changing rule of material coefficient of thermal expansion with different sample parts, including 25 kinds of general material in precision engineering and 16 kinds of material (one kind of material includes 4 different dimension samples, altogether 64 pieces) provided by Taiwan National Chengkung University, their coefficient was tested through experiments, as the information of the material precise coefficient of thermal deformation, these data were analyzed and the important theoretical achievements have acquired, those results will help establish the uniform standard material precise coefficient of thermal deformation.This paper develops high-precision three dimension thermal deformation experiment instrument ?even temperature field high-precision experiment instrument, it has constant temperature cabinet controlled by microcomputer, located by inductance measuring probes, three dimension jiggle desk and double-frequency laser interferometer measuring system, these function developed to enhance its applicability. The high-precision three
引文
1.(美)Y.S.杜洛金, 奚同根王梅华编译, 固体热物理性质导论—理论与测量,中国计量出版社,1987
    2.谭真,郭广文,工程合金热物性,冶金工业出版社,1994
    3.胡鹏浩,非均匀温度场中机械零部件热变形的理论及应用研究,合肥工业大学博士论文,2001
    4.袁哲俊,王先逵主编,精密和超精密加工技术,机械工业出版社,2002年1月,103-106
    5.梁允奇,机械制造中的传热与热变形基础,机械工业出版社,1982
    6.Moore,机械精度基础,机械工业出版社,1984
    7. A.V.Push, Predication or Thermal Displacements in Spindle Units, Soy. Eng. Res. V5 n5May 1985.
    8. J. Bryan, International Status of Thermal Error Research, CIRP Annals, 1990.
    9. P.A.Mekeown the Role of Precision Engineering in Manufacturing of the Future. CIRP Annals,1987
    10. K. H. Breyer and H. G. Pressel. 为提高三坐标测量机的温度稳定性铺路,译自 Qualitat und Zuverlssigkeit,1991,36(1)
    11. J.Liao, K.J.Stout, L.Blunt and R.Aston "Evaluating the Effect of Temperature Variation on the Stability of A Coordinate Measuring Machine-An Adaptable Multi-Point Method ISMT Ⅱ'96,Sep .1996.
    12. W.D.Drothing "Thermal Expansion of Nickel to 2300K" Thermal Expansion 7
    13. M.J.French "On the Minimum Volume of Material in Temperature Compensating Devices" Proceedings of the Institute of Mechanical Engineers, Vol.208 C2, 1994.
    14. Xu Chengfa, Zhoubenlian, "An Experimental Study on the Dynamic Process of Thermal Expansion of Thin Foils" Thermal Expansion 8
    15. Zhu Quanhong, Gao Chenyu, Study on Compensation Model of Thermal Deformation of Machining Tools, 5thICPR, England.
    16. Daniel Debra, Liquid Temperature Control for Precision Tools, CIRP Annals, 1990.
    17. Sata, Improvement or Working Accuracy on NC Lathe by Compensation for the Thermal Expansion of Tool CIRP Annals, 1988.
    18. D.T.Gethen and M.K.I. EI-Deli, thermal Behavior Of A Twin Agrove Bearing Under Varying Loading Direction, 1990.
    
    19. J. Tlusty and G. F. Mutch, Testing and Evaluation Thermal Deformation of Machining Tools, Proc. MTDR Conf. 14,1973
    20. Moriwaki, Thermal Deformation and Its On-Line Compensation of Hydrosbtically Supported Precision Spindle, Ann. CIRP 37,1988.
    21. Shuhe Li, Yiqun Zhang and Guoxing Zhang, A Study of Pre-Compensation for Thermal Errors of NC Machine Tools, Int. J. Msch. Tools Manufact.Vol.37, No. 12, 1997.
    22. Week M,Mckeown P.,Bonse R,et al,Reduction and Compensation of Thermal Error in Machine Tools.Annals of CIRP,1995,44(2)
    23. Chi-hao Lo, Jingxia Yuan and Jun Ni, An Application of real-time Compensation on Turning Center, Int. J. Msch. Tools Manufact. Vol.35, No. 12, 1995.
    24. J. Mou, A Systematic Approach to Enhance Machine Tool Accuracy for Precision Manufacturing, Int. J. Msch. Tools Manufact.Vol.37, No.5, 1997.
    25. Fei Yetai, Huang Qiangxian, The Calculation Problems of the Temperature Affection on Instrument and Measurement Accuracy, ISMT II, 96'Sep.30~ Oct.3, 1996, Hayama
    26. V. Krishna Rao, and V. T. Deshpande, Thermal Expansion and Chemical Bound Thermal Expansion 6.
    27. L. Boyer, An Analysis of Thermal Expansion and Melting in Alkali Halides, Thermal Expansion7.
    28. Zhou Zhulin, Analysis of Thermal Expansion Coefficient for Fiber Reinforced Composites, Proceedings of the 1st ASIAN Thermophysical Properties Conference, Apr.1986, Beijing.
    29. Ya.A.Kraftmakher, Modulation Method for Studying Thermal Expansion ,Thermal Expansion 7
    30. Paul Wagner, Thermophysical properties .Some Expansion in Research , Development and Application ,Thermal Expansion 6
    31.V.Tiwary, K.P.Sarbhai, and B.P.Adil, A Simple Dilatometer Technique for Phase Transition Study in Crystals, Thermal Expansion7.
    32. V.Gupta, et al, Thermal Mechanical Modeling of The Rolling of A Locomotive Wheel, Journal of Engineering for Industry, Vol.117, Aug. 1995, p.418-22.
    33.陈子辰,热模态理论和机床热态精度控制策略研究,博士学位论文,浙江大学,1989,9
    34. Huang Qiangxian, Fei Yetai, Huang Qisheng, The Theoretical Analysis and Research of Thermal Deformation Error in Measuring and Testing Technique, 6th ISMQC IMEKO Symposium, Vienna, Sep. 1998, Vienna, Austria.
    35
    
    35. Huang Qiangxian, Fei Yetai, Huang Qisheng, A New Accurate Calculation Method of Mechanical Part's Thermal Deformation in Precision Measurement, ISMT Ⅱ'98, Miskolc-Lillafrured, Hungary, Sep.1998.
    36. Huang Qiangxian, Fei Yetai, Analysis of Influences of Mechanical Part's Thermal Deformation on Precision Machining, Proceedings of China-Japan Bilateral Symposium on Advanced Manufacturing Engineering Press of University of Science and Technology of China, Oct.1998.
    37.侯镇冰,固体热传导,上海科技出版社,1984
    38.费业泰,陈晓怀,论精密测试中温度误差的现代研究分析,仪器仪表学报,Vol.14,No.4,1993.
    39.卢荣胜、费业泰,材料线膨胀系数的科学定义及应用,应用科学学报,第14卷第3期,1996,9
    40.费业泰,国家自然科学基金资助项目《误差修正技术中零件材料精确膨胀系数实验研究》研究报告,1995.12
    41.金属材料热膨胀特性参数的测定,中华人民共和国国家标准,GB4339-1999.
    42.林瑞泰,热传导理论与方法,天津大学出版社,1992
    43.张洪济,热传导,高等教育出版社,1992
    44.M,N.奥齐西克著,俞昌铭主译,高等教育出版社,1983
    45. J.P.Holman, Heat Transfer, Mcgraw-Hill Book Company, Inc.1963.
    46.苗恩铭,费业泰,形状参数对零件热膨胀影响研究,应用科学学报,2003,21(2),217-220
    47.苗恩铭,费业泰,阶梯轴热传导分析,应用科学学报,2003,21(3),317-321
    48.苗恩铭,费业泰,胡鹏浩,多支承发热轴温度分布数学模型的分析与研究,农业机械学报,2004,35(2),2004,117-120
    49.苗恩铭,费业泰,罗哉,瞬时薄壁件存在性的研究,农业机械学报,2004,35(3),2004,117-119
    50.苗恩铭,费业泰,轴类切削件时效处理后变形量数学建模的研究,农业机械学报,2004,35(4),2004,148-150
    51.罗哉,费业泰,苗恩铭,稳态温度场中孔形零件受热热变形研究,材料热处理学报,2004,25(2),25-27
    52.苗恩铭,张树强,费业泰,少点拟合微分热膨胀系数多项式法改进,中国机械工程(增刊),2003
    53.苗恩铭,费业泰,传统测量的热膨胀系数局限性论证,合肥工业大学,2002,25(5),641-644
    54.苗恩铭,费业泰,车刀前刀面温度的计算及参数调整,工具技术,2002, 36(12), 19-20
    55
    
    55.苗恩铭,费业泰,两种热膨胀系数热变形计算误差分析,工具技术,2003,37(9), 43-44
    56.苗恩铭,费业泰,金施群,精密丝杠加工误差数学模型分析,工具技术,2003,37(8),11-14
    57.苗恩铭,费业泰,赵静,温度、热量与热变形的关系及计算方法研究,工具技术,2003,37(7),19-21
    58.苗思铭,费业泰,夹具设计中温度影响分析,机械研究与应刚,2003,16(3), 41, 46
    59.苗恩铭,费业泰,关于零件热变形数值计算误差补偿研究,现代机械,2003,(3), 62-64
    60.苗恩铭,表面残余应力对轴类零件热变形的影响,黑龙江科技学院学报,2004,14(1),6-10
    61.苗恩铭,费业泰,机械中薄壁件存在的时间分析,测试技术学报,2003,17(2), 150-152
    62.苗恩铭,费业泰,金属塑性变形中体积可变性的分析,现代机械,2002,(4),94-98
    63.苗恩铭,费业泰,固体热膨胀系数实用解析,现代机械,2003,(2),56-61
    64.苗恩铭,费业泰,热膨胀系数同弹性模量数学模型分析,黑龙江科技学院学报,2003,13(2),9-11
    65.黄昆,固体物理学,人民教育出版社,1979
    66.方俊鑫,陆栋,固体物理学,上海:上海科技出版社,1980
    67.[美]C.基泰尔,固体物理学导论,科学出版社,1979
    68.笱清泉,固体物理学简明教程,人民教育出版社,1978.5
    69.田莳,李香臣,李邦淑,金属物理性能,国防工业出版社,1985,P73-83
    70.潘永徉,李慎,自然科学发展史纲要,北京:首都师范人学出版社,1996,P64-75
    71.黄强先,精密机械零件热变形若干基础理论及实验研究,合肥工业大学博士论文,1999
    72.[日]米谷茂 著,朱荆璞,邵会孟译,伍尚礼 校,残余应力的产生和对策,1983
    73.方博武,金属冷热加工的残余应力,高等教育出版社,1991.7.
    74. T.Terasaki, New Method For Estimating Residual Stress In Pipe Made By Surfacing Weld,Journal of Engineering for Industry,1995,117 (8), 365-379.
    75. K.Y.Bae, S.J.Na and D. H. Park, A Study of Mechanical Stress Relief Treatment of Residual Stress for One-Pass Submerged Arc Welding of V-Ground Mild Steel Plate, Proceedings of the Institute of Mechanical Engineers, 1994, 208(3), 139~ 142.
    76
    
    76. Y.S. Yang,S.J.Na,A Study on the Thermal and Residual Stresses by Welding and Laser Surface Harding Engineers, 1994,204 (3), 167~173.
    77.喻学斌,张国定,C/Al复合材料热膨胀与内应力研究,复合材料学报,1997.1
    78.[德]D.拉达伊,焊接热效应,机械工业出版社,1997
    79.(日)平修二,热应力与热疲劳,国防工业出版社,1984.11.
    80.田欣利等,陶瓷磨削表面残余应力的理论模型,中国机械工程,1999,10(7)
    81.周建强等,陶瓷/硬质合金复合片残余应力分析,应用力学学报,第16卷第3期,1999,9
    82.鹿安理等,一种降低残余应力的新方法—脉冲磁处理法,中国机械工程,1998,9(4)
    83.李年,杜百平,机械加工残余应力对调质40CrNiMo钢疲劳特性的影响,中国机械工程, 1996,7(4),99-102.
    84. A. A. Famhmym and C.H.Chiang, The thermal Expansion Behavior Of Filament Wound Composite Tubes, Thermal expansion 8,275-282.
    85. I.M. Dianiel, Thermal Deformation And Residual Stresses In Fiber Composites, Thermal Expansion 7,203-222.
    86. Julius Jortner, Thermal Expansion And Mechanical Behavior of Graphite-Fibe Reinforced Tantalum-Carbide Composites, Thermal Deformation 6.
    87. A.T.Calimbas and T.J.Delacy, Expansively Characterization of A Graphite-Reinforced Advanced Composite, Thermal Expansion 8.
    88. R.Ramji Rao and A.Ramanand, Third-order Elastic Constants and Thermal Expansion of Scandium, Thermal Expansion 6.
    89. J.W.Thomas, Jr.J.P.Singh, and D.P.H.Hasselman, Role of Thermal Stress Resistance of Semi-absorbing Brittle Materials Subjected to Severe Thermal Radiation, Thermal Expansion7.
    90. S.Nair, E.Pang, R.C.Dix, Residual Stresses Generation and Relaxation in Butt-Welded Pipes, Pressure Vessel Technology, Vol. 104, 1982, p42~46.
    91. Lin. T.P., Hood.M.Cooper.G.A and Smith, R.H., Residual stresses in polycrystalline diamond compacts. Journal of American Ceramics Sociity, 1994
    92.(日)竹内洋—郎著,郭延玮、李安定泽,热应力,科学出版社,1977.
    93.杨世铭,传热学,人民教育出版社,1980
    94.潘永祥,李慎,自然科学发展史纲要,北京:首都师范大学出版社,1996
    95.黄炎,工程弹性力学,清华大学出版社,1982
    96.王洪纲,热弹性力学概论。清华大学出版社,1989
    97.铁摩辛柯,古地尔,弹性理论,高等教育出版社,1990年1月第1版
    98.费业泰,误差理论与数据处理,机械工业出版社,1994
    99.周秀银,误差理论与实验数据处理,北京航空学院出版社,1986
    100.[苏]阿.依.马兹米什维里,误差理论与最小二乘法,煤炭工业出版社, 1984
    10
    
    101.祝同江,谈天民,工程数学——变分法,北京理工大学出版社,1994
    102.唐开勇,机床导轨热变形及热应力的计算,机床与液压,2002,(4),157-158
    103.盛宏玉,高荣誉,非均匀变温时两端固支叠层闭口厚柱壳的热应力分析,工程力学,2000,17(4),117-123
    104.溪同庚,工程热物理学报,1981,(2),181
    105.王补宣,任泽需,工程物理学报,1981,(2),262
    106. J.E.Burke, Progres in Ceramic Science, 1962, (2), 181
    107.金属材料热膨胀特性参数测量方法,中华人民共和国国家标准,GB4339-84
    108. Standard Test Method for Linear Thermal Expansion of Rigid Solids with Interferometry, ASTM, Designation:E289-99
    109. Bestimmung des mittleren thermischen Lngenausdehnungskoeffizienten, DIN ISO 7991:1998-02
    110.卢荣胜,简单形体零件受温变形理论及其应用研究,合肥工业大学硕士论文,1994
    111.刘永东,误差修正中零件材料精确热膨胀系数的研究,合肥工业大学硕士论文,1995
    112.刘又午,盛伯浩等,.数控机床误差补偿技术及应用发展动态及展望[J].制造技术与机床,1998,(12),5-6
    113.翁中杰等编,传热学,上海交通大学出版社,1987
    114.俞昌铭编著,热传导及其数值分析,清华大学出版社,1981
    115.[美]B.V.卡里卡, R.M.戴斯蒙德著,工程传热学,人民教育出版社,1981
    116.杨庆东,陈炎,欧共体对机床热变形的研究,制造技术与机床,2007,(7),19-20
    117. J.Bryan. International Status of Thermal Error Research. Keynote Paper Annals of the CIRP, 1990,39(2): 645-656
    118. M.weck, U.herbst. Compensation of Thermal Errors in Machine Tools with Minimum Number of Temperature Probes Based on Neural Network. Proceedings of the ASME, 1998,64
    119. Qingdong Yang etc. Linear regression and Neural Net Models Applied to Thermal Error Compensation in Machine Tools. European Journal of Mechanical and Environmental Engineering,1999,9
    120.H.舒尔茨,高速加工发展概况,王刚志译,机械制造与自动化,2002 (1): 4~8
    12
    
    121. Schulz H. High-speed machining. Annals of the CIRP,1992,Vol.41(2): 637~642
    122.艾兴,高速切削加工技术,北京:国防工业出版社,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700