钨酸锆对CFRP热膨胀性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纤维增强环氧树脂复合材料作为一种先进的结构材料,在航空航天等高新技术领域中得到了广泛的开发与应用。但由于CFRP复合材料中的基体固化后存在线膨胀系数大、质脆等缺点,使得基体与增强体的热膨胀系数相差较大,从而使复合材料的尺寸稳定性差,但是在航空航天领域有很多构件是在较宽的温度范围内工作,要求构件具有一定的热稳定性。
     材料微膨胀性能对提高航空航天结构和电子设备等的热几何稳定性有重要意义。自从发现具有负膨胀效应的材料以后,通过在基体中加入具有负膨胀效应的填料来降低基体的热膨胀系数以实现微膨胀性能越来越受到重视。钨酸锆(ZrW_2O_8)是一种在0.3~1050K温度范围内都具有很强的各向同性负热膨胀效应的材料,其负热膨胀系数为–8.7×10-6K-1。将ZrW_2O_8作为添加相与正膨胀材料复合成微膨胀材料已成为一个研究热点。
     本文利用高纯度ZrW_2O_8颗粒作为填料改性TDE-85环氧树脂,测试了不同含量下ZrW_2O_8/TDE-85的线膨胀系数和主要力学性能。试验结果表明:随着ZrW_2O_8含量的增加,浇注体的线收缩率和热膨胀系数不断下降,当降至一定值后趋于稳定。当ω(ZrW_2O_8):ω(TDE-85)=12:100时,浇注体材料的线收缩率和热膨胀系数趋于平缓,其值分别降低为0.15%和13.54×10-6℃-1。与未添加钨酸锆的TDE-85环氧树脂浇注体相比,浇注体试件的线收缩率和热膨胀系数分别降低了89.51%和63.13%。随着ZrW_2O_8含量的逐渐增加,浇注体材料的弯曲强度和拉伸强度则在增加到一定数值后开始下降。当ω(ZrW_2O_8):ω(TDE-85)=12:100时,浇注体材料的弯曲强度和拉伸强度达到最大值,其值分别增加至81.46MPa和132.76MPa。与未添加钨酸锆的TDE-85环氧树脂浇注体相比,浇注体试件的拉伸强度和弯曲强度分别提高了31.28%和22.54%。
     将配比为ω(ZrW_2O_8):ω(TDE-85)=12:100时的树脂液作为基体制备CFRP单向板复合材料,测试其热膨胀系数、弯曲强度、拉伸强度。结果表明:CFRP单向板的热膨胀系数下降为2.57×10-7℃,弯曲强度和拉伸强度分别增加为1687.06MPa和2483.15MPa。与未添加钨酸锆的CFRP复合材料相比,热膨胀系数降低了10.13%,弯曲强度提高了14.22%,拉伸强度提高了9.1%。并建立了复合材料热膨胀系数的理论预测方程。
Carbon fiber reinforced epoxy composite materials that are advanced structural materials have been widely developed and applied in aerospace and other modern high-tech fields. However, the matrix of CFRP exist large linear expansion coefficient, crisp and other shortcomings after curing, that makes the difference of thermal expansion coefficient is large between the matrix and the reinforcement, so that the composite dimensional stability is poor, but there are a lot of structures require a thermal stability in aviation and aerospace fields, because they are work in a wild temperature range.
     The micro-expansion performance of materials is important to enhance the thermal geometric stability of aerospace structures and electronic equipment. Preparing micro-expansion materials is more and more attention since found to the materials which is negative thermal expansion effects. The method is that adding a kind of materials which is negative thermal expansion effect in matrix to reduce the thermal expansion coefficient of the matrix in order to achieve micro-expansion. Zirconium tungstate (ZrW2O8) exhibits isotropic negative thermal expansion in the temperature range of 0.3 to 1050 K, and its negative thermal expansion coefficient is about to -8.7×10-6K-1. The micro-expansion composite materials have become a new topic which was made by the ZrW2O8 as the added phase and the thermal expansion composite materials.
     In this paper, using the high purity ZrW2O8 particles as filler modified TDE-85 epoxy resin. The linear expansion coefficients, impact strength, tensile strength, tensile fracture surface of ZrW2O8/TDE-85 composite materials are measured under different levels. The results showed that, with the increase of the ZrW2O8 content, the linear shrinkage and thermal expansion coefficient of casting body is falling. It is stabilized when the linear shrinkage and thermal expansion coefficient reduced to a certain value. Whenω(ZrW2O8):ω(TDE-85)=12:100, the linear shrinkage and thermal expansion coefficient of casting body tends to smooth, and its value decreased to 0.15% and 13.54×10-6℃-1. The linear shrinkage and thermal expansion coefficient of casting body were reduced by 89.51 percent and 63.13 percent, compared to the specimens of TDE-85 epoxy resin that is not added the zirconium tungstate particles. With the increase of the ZrW2O8 content, the bending strength and tensile strength of cast body increases gradually. It is start to decline after a certain value. Whenω(ZrW2O8):ω(TDE-85)=12:100, the bending strength and tensile strength of cast body is the maximum, and its value increased to 81.46MPa and 132.76MPa. the bending strength and tensile strength of cast body is increased by 31.28% and 22.54%, compared to the specimens of TDE-85 epoxy resin that is not added the zirconium tungstate particles. Observed the section of tensile specimens using SEM equi[ment, the test restlts shows that the tensile fracture of cast body is a ductile fracture characteristics.
     In this experiment, it is prepared CFRP composite materials using the resin solution that is the prepreg with the ratio ofω(ZrW2O8):ω(TDE-85)=12:100. The linear expansion coefficients, impact strength, tensile strength, tensile fracture surface of CFRP composite materials are measured. The results showed that: The thermal expansion coefficient of CFRP composite materials dropped to 2.57×10-7℃, the flexural strength and tensile strength of CFRP composite materials increased to 1687.06MPa and 2483.15MPa. The thermal expansion coefficient of CFRP composite materials is reduced by 10.13%, the bending strength of CFRP composite materials increased by 14.22%, the tensile strength of CFRP composite materials increased by 9.1%, compared to the specimens of of CFRP composite materials that is not added the zirconium tungstate particles.
引文
1陈平,孙明,唐忠鹏等.环氧树脂增韧技术研究进展及发展方向[J].纤维复合材料, 2003, 2:12~5
    2孙志杰,吴燕,仲伟虹等.零膨胀单向混杂纤维复合材料的研究.玻璃钢/复合材料, 2002, 1:15~16, 38
    3 F. A. Hummel. Thermal Expansion Properties of Some Synthetic Lithia Minerals [J]. Journal of the American Ceramic Society, 1951, 34(8):235~239
    4 T. A. Mary, J. S. O. Evans, A. W. Sleight, et al. NTE from 0.3 to 1050 Kelvin in ZrW2O8. Science, 1996, (272):90~92
    5 J. S. O. Evans, T. A. Mary. Negative Thermal Expansion in ZrW2O8 and HfW2O8. Chem Mater, 1996, 8:2809~2823
    6 B. W. Rosen, Z. Hashin. Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials [J]. International Journal of Engineering Science, 1970, 8(2):157~173
    7 R. Lakes. Materials with Structural Hierarchy (Cover story) [J]. Nature, 1993, 361(6412):511~515.
    8 O. Sigmund, S. Torquato. Design of Materials with Extreme Thermal Expansion Using a Three Phase Topology Optimization Method [J]. Mech Phys. Solids, 1997, 45(6):1037~1067.
    9 L. N. McCartney, A. Kelly. Effective Thermal and Elastic Properties of [+θ/-θ]s Laminates. Composite Science and Technology, 2007, 67:646~661
    10 Z. Haktan Karadeniz, Dilek Kumlutas. A Numerical Study on the Coefficients of Thermal Expansion of Fiber Reinforced Composite Materials. Composite Structures, 2007, 78:1~10
    11王兴业,朱文山,王晓勇.复合材料零膨胀系数层合板设计.宇航材料工艺, a) 1986, (1):39~44
    12佟丽莉,陈辉.混杂纤维复合材料热性能特异性研究.纤维复合料, 1997, (3):19~21
    13孙志杰,吴燕,仲伟虹等.零膨胀单向混杂纤维复合材料的研究.玻璃钢/复合材料, 2002, 1:15~16,38
    14 Teters, Gundaris, Kregers, Andris. Effective Thermal Properties of Spatially Reinforceed Composite Materials. The Second Baltic Heat Transfer Conference, 1995:493~502
    15 M. W. Hyer, C. T. Herakovith. Temperature Dependence of Mechanical and Thermal Expansion Properties of T300-5208 Graphite Epoxy. Composite, 1983, 14(3):276~278
    16郭际等.大温度范围下复合材料热膨胀系数铺层设计探讨.第五届全国复合材料学术会议集, 1988:375~381
    17杨洪哲.复合材料单向板的热膨胀性能研究.第五届全国复合材料学术会集. 1988:401~410
    18程晓,王春,严学,邱杰.铜包覆钨酸锆符合粉体的制备.硅酸盐学报, 2007, 35 (12):1605~1609
    19 C. Verdon, D. C. Dunand. High Temperature Reactivity in the Cu-ZrW2O8 System [J]. Scr. Mater, 1997, 36:1075
    20 Hemann Holzer1, et al. [J]. Mater Res, 1999, 14:781
    21 M. Kofteros, S. Rodriguez, V.Tandon, et al. A Preliminary Study of Thermal Expansion Compensation in Cement by ZrW2O8 Addition. [J]. Sci. Mater. 2001, 45:369
    22 A. Matsumoto, K. Kobayashi, K. Ozaki. Fabrication and Thermal Expansion of Al- ZrW2O8 Composites by Pulse Current Sintering [J]. Mater Sci. Forum, 2003, 426 (4):2279
    23黄兰萍,陈康华. [J].金属热处理, 2006, 31(1):201
    24 Eiki Nika, Shuhji Wakamiko, Takaaki Ichikawa, et al. Preparation of Dense ZrO2-ZrW2O8 Cosintered Ceramics with Controlled Thermal Expansion Coefficients [J]. Ceram Soc Japan, 2004, 112(5):271
    25戴恩斌,陈康华,罗丰华等.铝基钨酸锆复合材料的压力浸渗制备与性能.[J].粉末冶金材料科学与工程, 2005, 10 (5):286
    26 Lulian Radu, D. Y. Li [J]. Wear, 2007, 263:8581
    27 P. Lommens, C. De Meyer, E. Bruneel, et al. Synthesis and Thermal Expansion of ZrO2-ZrW2O8 Composites [J]. Eur. Ceram Soc, 2005, 25:3605
    28 M. Sullivan Lisa, M. Lukehart Charles. Zirconium Tungstate (ZrW2O8) /Polyimide Nanocomposites Exhibiting Reduced Coefficient of Thermal Expansion [J]. Chem Mater, 2005, 17:2136
    29杨永森,杨娟,程晓农.原位聚合法制备聚酰亚胺/钨酸锆杂化薄膜的研究.化工新型材料, 2008, 36(2):16~18
    30徐伟,徐桂芳,管艾荣.负热膨胀填料钨酸锆对环氧封装材料性能影响.热固性树脂, 2008, 23(1):22~25
    31徐桂芳,管艾荣,徐伟.负热膨胀ZrW2O8改性环氧树脂性能研究.材料导报, 2009, 23(1):31~33
    32张锡昌,居筱曼.碳纤维/环氧复合材料典型层的热膨胀系数及其计算.材料工程, 1987, (6):17~22
    33黄昆.固体物理学.人民教育出版社, 1979
    34方俊鑫,陆栋.固体物理学.上海科技出版社, 1980
    35 [仁美]C.基泰尔.固体物理学导论.科学出版社, 1979
    36苟清泉.固体物理学简明教程.人民教育出版社, 1978.5
    37田漪,李香臣,李邦淑.金属物理性能.国防工业出版社, 1985, P73~83
    38潘永祥,李慎.自然科学发展史纲要.北京首都师范人学出版社, 1996, P64~75
    39金属材料热膨胀特性参数的测定.中华人民共和国国家标准GB4339~1999
    40韩海滨,张可成,李金平. ZrW2O8负膨胀陶瓷材料进展.硅酸盐报, 2005, 1:85~88
    41谭强强,张中太,方克明.复合氧化物负热膨胀材料研究进展[J].功能材料, 2003, 34(4):353~356
    42程晓农,张美芬,严学华.负热膨胀化合物材料ZrW2O8的机理与制备技术[J].江苏大学学报(自然科学版), 2004, 25(30):243~246
    43刑献然.氧化物材料负热膨胀机理[J].北京科技大学学报, 2000, 22(1):56~58
    44 J. Z. Tao, A. W. Sleight. Free Energy Minimization Calculations of Negative Thermal Expansion in AlPO4. Journal of Physics and Chemistry of Solids, 2003, 64:1473~1479
    45杨新波,程晓农,严学华等.负热膨胀材料ZrW2O8及其复合材料研究进展[J].材料科学与工程学报, 2007, 25(1):160~164
    46赵新华,张山鹰.超低热膨胀材料研究进展[J].稀有金属与硬质合金, 1998, 134:31~37
    47 E. J. Smoke. Ceramic Compositions Having Negative Linear Thermal Expansion [J]. Journal of the American Ceramic Society, 1995, 34(3):87~90
    48陈云仙,陆昌伟,奚同庚.若干材料的微裂纹和相变及各向异性与负膨胀关系的研究[J].化学世界, 1999, 6:295~297
    49 A. K. A. Pryde, K. D. Hammonds, M. T. Dove, et al. Rigid Unit Modes and the Negative Thermal Expansion in ZrW2O8 [J]. Phis Trans, 1997, (61):141~143.
    50 J. Z. Tao, A. W. Sleight. The Role of Rigid Unit Modes in Negative Thermal Expansion [J]. Journal of Solid State Chemistry, 2003, 173:442~448.
    51 J. S. O. Evans, T. A. Mary, A. W. Sleight. Negative Thermal Expansion in Sc2(WO4)3 [J]. Journal of Solid State Chemistry, 1998, 137(l):148~160
    52 D. Cao, F. Bridges, G. R. Kowach. A P Ramirez. Frustrated Soft Modes and Negative Thermal Expansion in ZrW2O8 [J]. Phys. Rev. Letters, 2002(21): 215902.
    53 D. Cao, F. Bridges, G. R. Kowach, et al. Correlated Atomic Motions in the Negative Thermal Material ZrW2O8. A Local Structure Study [J]. Physical Review B, 2003, (68):14303.
    54 A. J. Eekel, R. C. Bradt. Thermal Expansion of Laminated Wovenm Continuous Ceramic Fiber/Chemical-vapor-infiltrated Silicon Carbide Matrix Composites [J]. Am. Ceram. Soc., 1990, 73(5):1334~38
    55 R. T. Bhatt, A. R. Palczer. Effects of Thermal Cycling on Thermal Expansion and Mechanical Properties of SiC Fibre-reinforced Reaction-bonded Si3N4 Composites. J. Mater. Sci., 1997, 32:1039~1047
    56程伟,赵寿根,刘振国等.三维四向编织复合材料等效热特性数值分析和试验研究.航空学报, 2002, 23(2):102~105
    57姚学锋,杨桂,姚振汉等.编织结构复合材料热膨胀特性的实验研究.复合材料学报, 2000, 17(4):20~25
    58 P. S. Tumer. Thermal Expansion Stresses in Reinforced Plastics. J. Research Nat. Bur. Standards. (U.S.) 1946, 37:239~250
    59 R. A. Schapery. Thermal Expansion Coefficients of Composite Materials Based on Energy Principles [J]. Compos. Mater., 1968, 2(3):380~404
    60 D. E. Bowles, S. S. Tompklins. Prediction of Thermal Expansion for Unidirectional Composites [J]. Compos. Mater., 1989, 23:370~388
    61 Chamis, C. C. Simplified Composite Micromechanics Equations for Hygral,Thermal and Mechanical Properties. SAMPE Quarterly, 1984, 15(3):14~23
    62 B. W. Rosen, Z. Hashin. Effective Thermal Expansion Coefficients and Specific Heats of Composite Materials. Intermational Joumal Engineering Seienee, 1970, 8:157~173
    63 V. M. Levin. Thermal Expansion Coefficients of Heterogeneous Materials. Mech -anics of Solids, 1967, 2:58~61
    64 Z. Hashin. Analvsis of Properties of Fiber Composites with Anisotropic Constitu -tents. Journal Applied Mechanics, 1979, 46(9):543~550
    65 B. Harris, Shrinkage Stresses in Glass/resin Composites J. Mater. Sci., 1978, 13:173 ~177
    66 M. Kuntz, B. Meier, G. Grathwohl. Residual Stresses in Fiber-reinfored Ceramics Due to Thermal Expansion Mismatch J. Am. Ceram. Soc., 1993, 76(10):2607~12
    67 J. L. Bobet, J. Lamon. Thermal Residual Stresses in Ceramic Matrix Composites I. Axisymmetrical Model and Finite Element Analysis. Acta. Metall.Mater., 1995, 43(6): 2241~2253
    68 A. gobossou, J. Pastor. Thermal Stress and Thermal Expansion Coeffients of N-layer -ed Fiber-reinfored Composites. Composites Seience and Technology, 1997, 57:249 ~60
    69贺福,王茂章.碳纤维及其复合材料.科学出版社,北京, 1995, 23~32
    70 H. Poritzky. Analysis of Tthermal Stresses in Sealed Cylinders and the Effect of Vicious Flow During Anneal. Physics, 1934, 5:406~11
    71 H. J. Oel, V. D. Freehette, Stress Distribution in Multiphase Systems:Ⅱ, Composite Disks with Cylindrical Interfaces J. Am. Ceram. Soc, 1986, 69:342~46
    72 C. H. Hsueh, P. F. Becher, P. Angelini. Effects of Interfacial Films on Thermal Stresses in Whisker-reinforced Ceramics J. Am. Ceram. Soc., 1988, 71:929~33.
    73 A.W. Hull, E. E. Burger. Glass to metal seals. Physics. 1934, 5:384~405.
    74 M. Vedula, R. N. Pangborn, R. A. Queeney. Fiber anisotropic Thermal Expansion and Residual Thermal Stress in a Graphite/aluminum Composite. Composites, 1988, 19:55~60.
    75 B. Budiansky, J. W. Hutchinson, A. G. Evans. Matrix Fracture in Fiber-rein -forced Ceramics J. Meeh. Phys. Solids. 1986, 34:167~89
    76 Y. Mikata, M. Taya. Stress Field in a Coated Continuous Fiber CompositeSubjected to Thermo-mechanilcal Loadings J. Compos. Mater.. 1985, 19:554 ~78
    77 J. L. Bobet, J. Lamon Thermal Residual Stresses in Ceramic Matrix Composites Ⅱ. Experiment Results for Model Materials. Acta. Metall. Mater., 1995, 43(6):2255~2265
    78尹洪峰. LPCVI-C/SiC复合材料结构与性能的研究.西北工业大学博士学位论文, 2000
    79喻学斌,徐耕,张国定等. C/Al复合材料横向(z向)热膨胀研究.华南理工大学学报(自然科学版), 1996, 24(12):173~177
    80喻学斌,陈军,徐耕等. C/Al复合材料热膨胀与内应力研究.复合材料学报, 1997, 11(1):43~47
    81王耀先.复合材料结构设计.化学工业出版社. 2001:43~44, 128~135
    82 Z. Haktan Karadeniz, Dilek Kumlutas. A Numerical Study on the Coefficients of Thermal Expansion of Fiber Reinforced Composite Materials. Composite Structures, 2007, 78:1~10
    83娄宝兴,王家梁,张丹枫.氰酸酯树脂的结构和性能.绝缘材料. 2005, (6):53~57

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700