乳液模板法多孔海藻酸钙凝胶微球的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乳液模板法是近年来发展起来的一种制备多孔材料的方法。用乳液模板法制孔可以精确控制孔的大小和分布。目前乳液模板法多用于无机多孔材料的制备,关于乳液模板法制备多孔天然聚合物材料的研究较少。
    海藻酸钠是一种从海藻中提取的天然多糖聚合物,具有良好的生物相容性和可降解性,价格低廉,近年来在生物医学领域应用十分广泛。
    本论文对反相悬浮交联法海藻酸钙凝胶微球的制备、乳液模板体系的确定、模板物在海藻酸钙凝胶中的存在状态以及模板物撤离后材料的形貌进行了较为详细的考察和总结。用表面张力仪和粒度测试仪对乳液进行了表征,用光学显微镜和扫描电镜观察了海藻酸钙凝胶的形貌。
    结果表明,用反相悬浮交联法制备海藻酸钙微球,分散介质的用量、海藻酸钠水溶液的浓度、搅拌速度以及分散剂的种类和用量等都会影响微球的形貌。对于本体系,分散介质和分散相的体积比不能小于2:1;海藻酸钠的浓度应控制在2%-3.5%之间;要得到具有良好球形的海藻酸钙凝胶粒子,搅拌速度应控制在300r/min-450r/min之间;用Span85&Span80表面活性剂和PVP作为微球制备的悬浮分散剂,通过调节其用量,可以得到不同尺度、均一而规整的海藻酸钙微球。
    对乳液表面张力的测试结果表明,制备均一稳定的石蜡/Span85&Tween60/海藻酸钠乳液,最佳的HLB值为12.3,乳化剂含量以70-110%为宜,乳化时间应控制在60min左右。观察由乳液制得的海藻酸钙凝胶膜中模板物的存在状态,认为甲苯和十二醇不适合作为本实验乳液模板体系的分散相,而液体石蜡适合作为制备多孔海藻酸钙凝胶的模板;调节乳化剂和液体石蜡的用量可以控制模板物石蜡在凝胶中的分布和液滴的大小。用扫描电镜观察脱除模板的干态凝胶,可以观察到凝胶膜的表面有尺寸均一的球形孔存在;在干态凝胶微球的表面和断面上也观察到很多微孔。
Emulsion templating technique is a newly developed method for producing highly monodispersed porous materials. Most of its applications focused on the fabrication of inorganic porous materials. Little study was directed to form porous materials based on natural polymers via emulsion templating technique.
    Sodium alginate derived from brown sea algae is an anionic linear polysaccharide. It is biocompatible, biodegradable and relatively economical, and has been much used in biomedical field in recent years.
    In this thesis, the preparation of calcium alginate microspheres through inverse suspension-crosslinking method, the parameter choosing of emulsion templating system, the state of templates in alginate gels and the morphology of the obtained materials were investigated in detail. The emulsion and calcium alginate gels were characterized by surface tension test, particle size and size distribution test, optical microscope and SEM, etc.
    The results showed that the relative amount of dispersing medium, the concentration of sodium alginate solution, the stirring rate, the dispersant and its quantity were all the factors influencing the preparation of alginate microspheres by inverse suspension-crosslinking method. The volume ratio of dispersing medium to dispersed phase should not be less than 2:1. The concentration of sodium alginate solution should be controlled in the range of 2%-3.5%. Stirring rate between 300r/min and 450r/min was necessary for good spherical particles. Using suitable quantity of Span85&Span80 and PVP as dispersants could lead to microspheres with uniform size.
    The emulsion surface tension tests showed that for a relatively stable emulsion based on liquid paraffin, Span85&Tween60 and sodium alginate solution, the optimal HLB, the content of surfactants were 12.3, 70-110% respectively, and the proper emulsification time was about 60min. The observation of templates in alginate gels indicated that toluene and 1-dodecanol were not the right candidates as dispersed phase of the emulsion templating system, while liquid paraffin was the selected template. Size and distribution of liquid paraffin droplets in the prepared gels could be controlled precisely by adjusting the amount of surfactants and template. The SEM
    
    
    photographs of dried alginate gels showed that there were monosized pores in the final products.
引文
[1]Tanev P T, Pinnavaia T J. Biomimetic templating of porous lamellar silicas by vesicular surfactant assemblies. Science, 1996, 271: 1267-1269.
    [2]Sellergren B. Imprinted polymers with memory for small molecules, proteins, or crystals. Angew Chem, Int Ed Engl, 2000, 39:6.
    [3]Vallano PT, Remcho VT. Highly selective separations by capillary ectrochromatography: molecular imprint polymer sorbents. J Chromatogr A, 2000, 887(1-2):125–135.
    [4]Yano K, Karube I. Molecularly imprinted polymers for biosensor applications. Trends Anal Chem 1999,18(3):199–204.
    [5]D’Souza SM, Alexander C, Carr SW, et al. Directed nucleation of calcite at a crystal-imprinted polymer surface. Nature 1999, 398(6725):312–316.
    [6]Xia YN, Gates B, Yin YD, Lu Y. Monodispersed colloidal spheres:old materials with new applications.Adv Mater 2000,12(10):693–713.
    [7]Velev OD, Lenhoff AM. Colloidal crystals as templates for porous polymerized
    materials. Curr Opin Colloid Interface Sci 2000,5(1–2):56–63.
    [8]Gates B, Yin YD, Xia YN. Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures. Chem Mater,1999, 11(10):2827–36.
    [9]Menger FM, Tsuno T, Hammond GS. Cross-linked polystyrene incorporating water pools. J Am Chem Soc, 1990,112(3): 1263–1264.
    [10]Zhu XX, Banana K, Yen R. Pore size control in cross-linked polymers resins by reverse micellar imprinting. Macromolecules, 1997, 30(10): 3031–3035.
    [11]Zhu XX, Banana K, Liu HY, Krause M, Yang M. Cross-linked porous polymer resins with reverse micellar imprints: factors affecting the porosity of the polymers. Macromolecules, 1999, 32(2):277–281.
    [12]M.Estermann, L.B.Mccusker,C.Baerlocher, et al. A synthetic gallophosphate molecular sieve with a 20-tetrahedral-atom pore opening. Nature, 1991, 352:320
    [13]A.Imhof,D.J.Pine. Ordered macroporous materials by emulsion templating. Nature, 1997, 389:948
    [14]熊博辉,沈丽,从润滋 等.单分效多孔交联聚苯乙烯色谱填料的合成.色谱,1998,(16):492—494.
    [15]Frank Caruso,Rachel A.Caruso,Helmuth.M.Wald, et al. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998,282:1111-1114
    [16]Wijnhoven E G J, Vos W L. Preparation of photonic crystal made of air sphere in
    
    
    titania. Science, 1998,281(5378): 802-804
    [17]C.T.Kresge, M.E.Leonawize,W.J.Roth, et al. Ordered mesoporous molecular sieves synthesized by a liquid crystal template mechanism. Nature, 1992, 359:710-713
    [18]A.Firouzi. Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science, 1995, 267: 1138-1143
    [19]S.H.Tolbert,A.Firouzi,G.D.Stucky, et al. Magnetic field alignment of ordered silicate-surfatant composites and mesoporous silica. Science, 1997, 278:264-266
    [20]K.M.Mcgrath,D.M.Dabbs,N.Yao, et al. Formation of a silicates L3 phase with continuously adjustable pore sizes. Science, 1997, 277:552
    [21]Haug, A., Larsen, B., and Smidsrod, O. Uronic Acid Sequence in Alginate from Different Sources. Carbohydrate Res., 1974, 32: 217–225.
    [22]Draget KI, Skjak-Brak G, Christensen BE, et al. Swelling and partial solubilization of alginic acid gel beads in acidic buffer. Carbohydr Polym, 1996, 29:209
    [23]Lewis, J.C., Stanley, N.F., and Guist, G.G., Commercial Production and Applications of Algal Hydrocolloids, Algae and Human Affairs, Lembi, C.A. and Waaland, J.R., Eds., Cambridge Univ. Press, 1988, pp. 205–236.
    [24]张善明,刘强,张善磊.从海带中提取高粘度海藻酸钠.食品加工,2002, 23:86-87
    [25]Ofstad R. and Larsen B. In Proceedings of the 10th International Seaweed Symposium,1980, p.485
    [26]Kurt Ingar Draget, Gudmund Skjak-Brak and Olav Smidred. Alginate based new materials. International journal of Biological Macromolecules, 1997, 21:47-55
    [27]宗会.海藻酸钠涂膜对苹果生理变化的影晌.果树科学,1999(16):263-266
    [28]Doyle, J.M., Roth, T.P., Smith, R.M., et al., Effect of Calcium Alginate on Cellular Wound Healing Processes Modeled in vitro. J. Biomed. Mater. Res., 1996, 32: 561–568.
    [29]Zee, S., Body Weight Loss with the Aid of Alginic Acid. Med. Arch., 1991, 45: 113–114.
    [30]Torsdottir, I., Alpsten, M., Holm, G., et al., A Small Dose of Soluble Alginate-Fiber Affects Postprandial Glycemia and Gastric Emptying in Humans with Diabetes. J. Nutr., 1991, 121:795–799.
    [31]Paul, T.M., Skoryna, S.C.and Waldron-Edward, D. Studies of Inhibition of Intestinal Absorption of Radioactive Strontium. V. Effect of Administration of Calcium Alginate. Can. Med. Ass. J., 1996, 95:553–557.
    [32]Yu. S. Khotimchenko, V. V. Kovalev, O. V. Savchenko, et al. Physical–Chemical Properties, Physiological Activity, and Usage of Alginates, the Polysaccharides of Brown Algae. Russian Journal of Marine Biology, 2001, 27: S53–S64.
    
    [33]Kalyanasundaram, S., Feinstein, S., Nicholson, J.P., et al. Coacervative Microspheres as Carriers of Recombinant Adenoviruses. Cancer Gene Ther., 1999, 6:107–112.
    [34]Park, J.K., Jin, Y.B., and Chang, H.N. Reusable Biosorbents in Capsules from Zoogloea ramigera Cells for Cadmium Removal. Biotechnol. Bioeng., 1999, 63: 116–121.
    [35]Skjak-Brak, G., Alginates: Biosynthesis and Some Structure–Function Relationshis Relevant to Biomedical and Biotechnological applications. Biochem. Plant. Polysacch., 1992, 20:27–33.
    [36]Bowersock, T.L., Hogenesch, H., Suckow, M., et al., Oral Vaccination of Animals with Antigens Encapsulated in Alginate Microspheres. Vaccine, 1999, 17: 1804–1811.
    [37]Usov, A.I., Alginic Acids and Alginates: Methods of Analyzing and Determining of Composition and Structure. Usp. Khimii, 1999, 68: 1051–1061.
    [38]Alshamkhani, A. and Duncan, R. Synthesis, Controlled-Release Properties and Antitumor Activity of Alginate-cis-Aconityl-Daunomycin Conjugates. Int. J. Pharm., 1995, 122:187–199.
    [39]Anderson D.M.W., Brydon W.G., Eastwood M.A., et al. Dietary effects of Propylene Glycol Alginate in Humans. Food Addit. Contam., 1991, 8: 225–236.
    [40]Anderson D.M.W., Brydon W.G., Eastwood M.A., et al. Dietary effects Of Sodium Alginate in Humans. Food Addit. Contam., 1991, 8:237–248.
    [41]Williams C, Melgisorb. A highly absorbent calcium-sodium alginate dressing. Br J Nurs,1998, 7:975-980.
    [42]Segal HC,Hunt BJ,Gilding K.The effects of alginate and non-alginate wound dressings on blood coagulation and platelet activation. J Biomater Appl, 1998, 12:249-256.
    [43]Ishikawa K,Ueyama Y,Mano T,et a1.Self-setting barrier membrane for guided tissue regeneration method:initial evaluation of alginate membrane made with sodium alginate and calcium chloride aqueous solutions. J Biomed Mater Res, 1999, 47:111-119.
    [44]黄剑奇, 何 虹, 范晓雁 等. 海藻酸钙膜引导成骨作用的初步研究. 口腔额面外科杂志, 2002, 12:131-134
    [45]T.Tripathy, S.R. Pandey, N. C. Karmakar, et al. Novel flocculating agent based on sodium alginate and acrylamide. European polymer Journal, 1999, 35:2057-2072
    [46]柳明珠, 曹丽歆.丙烯酸与海藻酸钠共聚制备耐盐性高吸水树脂. 应用化学, 2002, 19:455-458
    [47]樊李红, 杜予民, 唐汝培. 海藻酸钠/水性聚氨酯共混膜的结构表征和性能测试. 分析科学学报, 2002, 18:441-444
    [48]李沙, 李馨儒, 侯新朴. 海藻酸钠—壳聚糖微囊的制备及载药性质的研究
    
    中华临床医药, 2002, 3:1-3
    [49]李新建,薛毅珑,罗 芸等.海藻酸盐-多聚赖氨酸-海藻酸盐微胶囊膜的强度和生物相容性测定.军医进修学院学报, 2001, 22:94-96
    [50]Young Seon Choi, Sung Ran Hong, Young Moo Lee, et al. Study on gelatin-containing artificial skin:I. Preparation and characteristics of novel gelatin-alginate sponge. Biomaterials, 1999, 20:409-417
    [51]樊李红, 杜予民, 郑化 等. 海藻酸/明胶共混膜结构表征及性能. 武汉大学学报(理学版),2001, 47:712-716
    [52]S. Hertzberg, E. Moen, C. Vogelsang. Mixed photo-cross-linked polyvinyl alcohol and calcium-alginate gels for cell entrapment. Appl Microbiol Biotechnol, 1995, 43:10-17
    [53]李沁华, 张文宇. 聚乙烯醇-海藻酸钙复合材料制备及性质. 暨南大学学报(自然科学版), 2001, 22:81-85
    [54]刘建,赵宁阳,黄锦辉等.硬脂酸—海藻酸钠复合薄膜调料包装袋的研究. 食品科学, 1996, 6:67-70
    [55]Gheorghe Fundueanu, Elisabetta Esposito, Doina Mihai, et al. Preparation and characterization of Ca-alginate microspheres by a new emulsification method. International journal of pharmaceutics, 1998, 170:11-21
    [56]Gheorghe Fundueanu, Claudio Nastruzzi, Adrian Carpov, et al. Physico-chemical characterization of Ca-alginate microspheres produced with different methods. Biomaterials, 1999, 20:1427-1435
    [57]D. Poncelet, V.babak, C.Dulieu, et al.A physico-chemical approach to production of alginate beads by emulsification-internal ionotropic gelation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155:171-176
    [58]T.Qstberg, E.M. Lund and C. Graffner. Calcium alginate matrices for oral multiple unit adminitration. IV. Release characteristics in different media. J. Pharm, 1994, 112:241-248

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700