优质棉纤维发育品质相关基因的分离、克隆、鉴定与定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
棉花是世界重要的经济作物之一。棉纤维是棉子上的一种表皮毛,也是重要的经济价值之所在,是纺织工业的原料。优良的纤维品质是世界棉花育种的主要目标之一。因此,从分子水平阐明棉纤维发育的机理,具有重要的理论价值与现实意义。本研究的目的即利用基因芯片方法筛选与棉纤维品质相关的EST,并分离和鉴定部分棉纤维发育相关基因,这些研究将有助于我们进一步探讨形成优质纤维的分子机理。
     构建高强纤维种质系7235开花后5-25天棉纤维伸长、次生壁加厚期间的cDNA文库,随机大规模测序,获得1436条EST,制成基因芯片。提取7235和纤维品质一般的陆地棉遗传标准系TM-1不同发育时期的mRNA与之杂交,筛选到31条差异表达EST,主要是参与代谢、次级代谢、胁迫与抗逆、转录等相关基因。通过RT-PCR验证,23条差异表达EST与基因芯片实验结果一致。
     为了进一步定位这些差异表达EST并分析其与纤维品质性状的相关性,我们分析了所有差异表达EST在7235与TM-1间的多态性。结果表明,三条EST在7235与TM-1间存在多态。利用(7235×TM-1)RIL群体,对这三条EST进行染色体定位及单标记分析,结果表明,两条EST(分别编码LTP基因与ADH基因)与纤维品质性状极显著相关。由于大部分基因在7235与TM-1间不存在差异,所以,我们利用[(TM-1×Hai 7124)×TM-1]群体对其进行定位。结果表明,13条差异表达EST被定位到四倍体棉花遗传图谱的相应染色体上,其中8条EST定位在品质相关QTL区间或附近。
     通过基因芯片技术,我们鉴定了一条可能编码谷氨酰胺合成酶的EST。Northern杂交验证了该基因在7235与TM-1开花后8天的胚珠和纤维中表达有显著差异。随后,利用7235纤维cDNA文库测序,结合5′RACE技术从7235纤维中获得了全长谷氨酰胺合成酶基因。序列分析结果表明,该基因与已报道的其他植物的细胞质谷氨酰胺合成酶(GS1)基因具有较高氨基酸序列同源性,命名为GhGS。Southern blot分析结果表明,GhGS在陆地棉基因组的A、D亚基因组可能各存在一个拷贝。之后,从不同材料7235、TM-1、非洲棉、雷蒙德氏棉基因组中分离到GhGS基因序列。根据7235与TM-1基因组GhGS序列的SNP,将该基因在(7235×TM-1)RIL群体中进行定位并分析基因与纤维表型的相关性,结果发现,GhGS与纤维强度存在相关,但由于该RIL图谱上的位点较少,GhGS基因不能整合到该图谱上。随后,利用[(TM-1×Hai 7124)×TM-1]群体,将GhGS基因定位在四倍体棉花遗传图谱的D7染色体上。另外,我们测定了棉纤维发育不同时期胚珠和纤维的GS活力和总蛋白含量。测定结果表明,在开花后5天和8天的7235胚珠GS活力显著高于TM-1相应时期的胚珠GS活力。同时发现,开花后11天的7235胚珠总蛋白含量和胚珠重量都显著高于同时期TM-1胚珠总蛋白含量和重量。这一结果暗示GS可能通过提供N而促使棉花种子的形成。而在纤维中的测定结果表明,在7235中GS活力和总蛋白含量都低于TM-1中的GS活力和总蛋白含量。这一结果暗示GS在胚珠和纤维中行使的功能可能并不完全相同。GS在纤维发育过程中的可能功能还需进一步探讨。
     另一个克隆的基因为脂肪酶基因。通过对7235纤维cDNA文库测序,获得一个可能编码脂肪酶的cDNA片段。随后,利用RACE技术获得该cDNA全长并命名为GhLipase。序列分析结果表明,GhLipase全长1286bp,包含一个编码368个氨基酸的开放读码框。BLAST分析表明,它与已报道的其他植物的脂肪酶基因具有较高的氨基酸序列同源性。从表达特征看,GhLipase在胚珠和纤维细胞优势表达,而且在开花后5-17天的纤维中表达水平较高。Southern blot结果表明,GhLipase基因在陆地棉基因组中可能存在两个拷贝。将该基因定位在四倍体棉花遗传图谱的A13染色体上。
     第三个利用7235cDNA文库分离的基因为木聚糖水解酶基因。该cDNA全长1790bp,ORF编码560个氨基酸。CDS分析表明,GhXyl基因推导的氨基酸含有糖基水解酶家族10的保守区域,具有典型的糖基水解酶家族10基因结构,BLAST结果表明其与来源于其他植物的木聚糖水解酶有较高的同源性,命名为GhXyl基因。RT-PCR和Northern blot分析结果表明,GhXyl属纤维细胞优势表达,且在开花后5-8天的纤维中表达水平最高。Southern杂交结果表明木聚糖水解酶基因在陆地棉基因组中存在两个拷贝。将该基因定位在四倍体棉花遗传图谱的A3染色体上。
     本研究利用7235纤维cDNA文库,还分离到六个小分子质量的热激蛋白基因,分别命名为LMWHSP1、LMWHSP2、LMWHSP3、LMWHSP4、LMWHSP5、LMWHSP6。分析它们的序列结构,发现它们分别属于三种不同类型的小热激蛋白,LMWHSP1、LMWHSP2、LMWHSP4、LMWHSP6都与细胞质Ⅰ类热激蛋白序列同源性较高,而LMWHSP3与细胞质Ⅱ类热激蛋白序列同源性较高,LMWHSP5与线粒体热激蛋白序列同源性较高。对这六个小分子质量热激蛋白基因进行转录表达分析,结果表明,它们在棉花体内具有不同的表达特征,LMWHSP2是组成型表达的基因,LMWHSP 1、LMWHSP 4、LMWHSP5、LMWHSP6都在开花当天的胚珠中表达量最高,而LMWHSP3在棉花叶片中优势表达。这一结果暗示,线粒体小热激蛋白和细胞质Ⅰ类小热激蛋白基因可能受纤维启始和分化的调控,而细胞质Ⅱ类小热激蛋白与棉花叶片的生长发育相关。利用本实验室的四倍体棉花遗传图谱,对这六个小热激蛋白基因进行定位,其中三个基因LMWHSP1、LMWHSP2、LMWHSP3分别被定位在A4、D8和A6染色体上。
Cotton is one of the most important economic crop in the world.Cotton fiber,which plays an important role in global economy and as a raw material in the textile industry,is a single-celled hair or trichome that develops from individual epidermal cells on the outer integument of cotton ovules.The super quality fiber is one of the major goals in the cotton breeding all over the world.So,it is important to elucidate fiber development process and major factors related to fiber quality by molecular biology.This study served to screen ESTs associated with cotton fiber quality by using cDNA microarray,to isolate and identify some genes related to fiber quality.This would help us to understand the heredity mechanism underlying super quality fiber and lay a basis for further study.
     A cDNA library was constructed using 7235 fibers at 5 to 25 DPA.At this time,the fiber cells were in the process of elongation and synthesis of secondary cell wall cellulose. Random sequencing generated 1436 ESTs and a microarray containing the 1436 ESTs was subsequently identified by reciprocal hybridization using 7235 fiber mRNAs,a superior fiber quality property germplasm line,and TM-1,a genetic standard in G.hirsutum. Thirty-one ESTs involved in metabolism,defense,secondary metabolism,transcription,and unknown function were found differentially expressed in the two varieties.In order to further confirm the data from the microarray analysis,RT-PCR was performed for these 31 differentially expressed ESTs and we found 23 of 31 ESTs expressed differently between 7235 and TM-1.
     To map the differentially expressed ESTs and analyze the correlation of DNA polymorphism and phenotypic effect for fiber quality,all differentially expressed ESTs were chosen to conduct a 7235 and TM-1 polymorphism analysis.Between the two varieties,three ESTs exhibited polymorphisms.Using a RIL population derived from 7235×TM-1,the three ESTs were detected by single-marker analysis and the results revealed that two ESTs coded an ADH and LTP gene,which were significantly correlated with fiber quality traits.Since polymorphisms between 7235 and TM-1 are less and most of the differentially expressed genes can not be mapped,the[(TM-1×Hai 7124)×TM-1] population comprised of 140 individuals was subsequently used to map these genes. Thirteen of these selected ESTs were mapped on the chromosomes by using the BC1 population from the cross[(TM-1×Hai 7124)×TM-1].Eight of these ESTs are mapping in the QTL intervals or near the QTLs for fiber quality traits.
     An EST encoding glutamine synthetase(GS) was identified by microarray-based hybridization.Northern blot analysis verified transcript accumulation differences in 8 DPA fibers(including ovules) in the two varieties.Then,the full-length cDNA encoding GS in 7235 was isolated and named GhGS.Sequence analysis revealed the GhGS was similar to cytosolic GS.Southern blot analysis showed tetraploid cotton contained at least one copy of the A sub-genome and the D sub-genome.Genomic GhGS sequences were subsequently isolated from different varieties,TM-1,7235 and two diploid progenitor cottons,G. herbaceum(A-genome) and G.raimondii(D-genome).Molecular mapping and single-marker analysis revealed the GhGS was significantly correlated with fiber strength and was mapped to chromosome D7.Additionally,GS activities and total protein of the ovules and the fibers were assayed.The results showed significantly higher GS activity in 7235 seeds than TM-1 seeds at 5 and 8 DPA.Also significant differences in total protein content and seed weight at 11 DPA were found.This suggested GS promoted the seed-forming process by providing N.On the other hand,in fibers,GS activity and total protein assay indicated the lower total GS activity and longer fiber elongation period in 7235.These results suggest the respective roles of the GS in ovules and fibers do not completely overlap.However,further experimentation is necessary to understand the mechanism of GhGS playing a role in fiber.
     The second gene we cloned was GhLipase gene.The cDNA library from fibers of 7235 was randomly sequenced and an cDNA fragment encoding lipase was obtained. Subsequently,the full-length cDNA encoding lipase was cloned from 7235 using the rapid amplification of cDNA ends(RACE) technique and named the resulting gene GhLipase. Sequence analysis showed the full-length cDNA was 1286 bp which contains a major open reading frame of 368 amino acids.BLAST analysis indicated that it shared a high homological identity with other lipase from other plants.From its expression characters,the GhLipase gene is dominantly expressed in ovule and fiber cells,and its expression quantity is higher in 5-17DPA fiber ceils.Southern blot analysis showed that there were two copies of the GhLipase gene in the genome of G.hirsutum.By using[(TM-1×Hai7124) TM-1] population,GhLipase gene was mapped on chromosome A13.
     Sequenced the cDNA library,The third gene was isolated and designated as GhXyl. The full-length cDNA is 1790 bp which contains a major open reading frame of 560 amino acids.CDS analysis showed the amino acids sequence contained a conserved domain of Glycosyl hydrolase family 10.BLAST analysis indicated that it shared a high homological identity with other xylanse from other plants.RT-PCR analysis and Northern blot analysis revealed GhXyl gene was specifically expressed in fiber cells,and its expression quantity was higher in 5-8DPA fiber cells;it was not expressed in root,stem and leaf.Southern blot analysis showed that there were two copies of the GhXyl gene in the genome of G.hirsutum. By using[(TM-1×Hai7124) TM-1]population,GhXyl gene was mapped on chromosome A3.
     Using the cDNA library from fibers of 7235,six low-molecular-weight heat-shock proteins(HSP) genes were also isolated and designated as LMWHSP1,LMWHSP2, LMWHSP3,LMWHSP4,LMWHSP5 and LMWHSP6,respectiively.Sequence analysis showed they belonged to three different types of low-molecular-weight HSP.LMWHSP1, LMWHSP2,LMWHSP4 and LMWHSP6 all belonged to cytosolic class I low molecular weight HSP,LMWHSP3 belonged to cytosolic classⅡlow molecular weight HSP,and LMWHSP5 belonged to mitochondrial low molecular weight HSP.RT-PCR analysis revealed they exhibited differently transcripional profile in cotton.LMWHSP2 was expressed in all cotton tissues,however,LMWHSP 1,LMWHSP 4,LMWHSP5 and LMWHSP6 possesed higher transcript accumulations in cotton ovules at 0DPA,and LMWHSP3 genes was expressed preferentially in cotton leaves.These result indicated the mitochondrial and cytoplasmic I HSP genes appeared to be under developmental control, with higher transcript accumulation occurring during fiber initiation,however, cytoplasmicⅡHSP genes were more closely correlated with the growth and development of cotton leaves.Using genetic map of the tetraploid cotton constructed by our lab,three of these genes,LMWHSP1,LMWHSP2 and LMWHSP3,were mapped on the cotton chromosomes A4,D8 and A6,respectively.
引文
1. Abe T, Fukamachi Y, Kanazawa Y, et al. Inhibition of nucleolar function and morphological change by adriamycin associated with heat shock protein 70 accumulation [J]. Jpn J Cancer Res, 1996, 87(9): 945~951
    
    2. Adams KL, Cronn R, Percifield R, et al. Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing [J]. Proc Natl Acad Sci USA , 2003, 100: 4649~4654
    
    3. Adams M D, Kelley J M, Gocayne J D, et al. Complementary DNA sequencing: expressed sequence tag and human genome project [J]. Science 1991, 252:1651~1656
    
    4. Aharoni A, Vorst O. DNA microarrays for functional plant genomics [J]. Plant Mol Biol, 2002, 48: 99~118
    
    5. Alberghina L, Schmid R D, Verger R. Lipases:. Structure, Mechanism and Genetic Engineering [J], GBF Monographs, 1991,16:361~364
    
    6. Allona I, Quinn M , Shoop E, et al. Analysis of xylem formation in pine by cDNA sequencing [J].Proc Natl Acad Sci USA, 1998 , 95 (16) : 9693~9689
    
    7. Altschul S F, Gish W, Miller W, et al. Basic local alignment search tool [J]. J Mol Biol, 1990 215:403-110
    
    8. Arpat A, Waugh M, Sullivan J P, et al. Functional genomics of cell elongation in developing cotton fibers [J]. Plant Mol Biol, 2004, 54: 911~929
    
    9. Ballinger D G. The control of protein synthyesis during hest shock in Drosophila cells # Oinvolves altered polypeptide elongation rates [J]. Cell, 1983 , 33:103~114
    
    10. Banfi S, Guffanti A, Borsani G. How to get the best of dbEST [J]. Trends Genet, 1998,14(2): 80
    
    11. Basra A S, Malik C P. Development of the cotton fiber. International Review of Cytology 1984,87:65~113
    
    12. Bauer D, Biehler K, Fock H, et al. A role for cytosolic glutamine synthetase in the remobilization of leaf nitrogen during water stress in tomato [J]. Physiol Plant, 1997,99:241~248
    
    13. Becker T W, Carrayol E, Hirel B. Glutamine synthetase and glutamate dehydrogenase isoforms in maize leaves: localization, relative proportion and their role in ammonium assimilation or nitrogen transport [J]. Planta, 2000, 211:800~806
    
    14. Benton D. Bioinformatics-principles and potential of a new multidisciplinary tool [J]. TIBTECH ,1996,14 (8) : 261~272
    
    15. Bevan M, Bancroft I, Bent E, et al. Analysis of 1.9 Mb of contiguous sequence from chromosome 4 of Arabidopsis thaliana [J]. Nature, 1998,391: 485~488.
    
    16. Blackwell RD, Murray AJS, Lea PJ. Inhibition of photosynthesis in barley with decreased levels of chloroplastic glutamine synthetase activity [J]. J Exp Bot, 1987,38:1799~1809
    
    17. Bouchard R A. Characterization of expressed meiotic prophase repeat transcript clones of Lilium: meiosis-specific expression, relatedness, and affinities to small heat shock proteingenes [J]. Genome, 1990, 33: 68~79
    
    18. Brady L, Brzozowski A M, and Derewenda ZS. A serine protease triad forms the catalytic centre of a triacylglycerol lipase [J]. Nature, 1990, 343: 767~770.
    19. Brugiere N, Dubois F, Masclaux C, et al. Immunolocalization of glutamine synthetase in senescing tobacco (Nicotiana tabacum L.) leaves suggests that ammonia assimilation is progressively shifted to the mesophyll cytosol [J]. Planta, 2000,211: 519~527
    
    20. Bryant P A, Venter D, Robins Browne R, et al. Lancet Infect Dts, 2004,4 (2): 100~111.
    
    21. Buchala A J, Roulin S, Meier H. Poly-saccharides in the culture medium of cotton ( Gossypium hirsutum L.) ovules cultured in vitro [J]. Plant Cell Reports, 1989, 8:25~28.
    
    22. Buchala A J. Noncellulosic carbohydrates in cotton fibers A . Cotton fibers: develo ping biology, quality improvement, and textile processing C. New York : New York food products press, 1999.113~136.
    
    23. Buetow K H, M N Edmonson , AB Cassidy. Nat Genet, 1999,21: 323~325
    
    24. Carper S W, Duffy J J, Gerner E W. Heat shock proteins in thermotolerance and other cellular processes [J]. Cancer Res, 1987,47: 5249~5255
    
    25. Carvalho H G, Lopes-Cardoso I A, Lima L M, et al. Nodule-specific modulation of glutamine synthetase in transgenic Medicago truncatula leads to inverse alterations in asparagine synthetase expression [J]. Plant Physiol, 2003,133:243~252
    
    26. Cedroni M L, Cronn R C, Adams K L, et al. Evolution and expression of MYB genes in diploid and polyploid cotton [J]. Plant Mol Biol, 2003,51:313~325
    
    27. Chris S,Shauna S.Plant functional genomics [J]. Science, 1999, 285:380~383.
    
    28. Collade C, Gomez R, Casado R, et al. Purification and in vitro chaperone activity of a class I small heat shock protein abundant in recalcitrant chestnut seeds [J]. Plant Physiol, 1997,115: 71~77
    
    29. Cordeiro G M, Eliott F, McIntyre C L, et al. Characterisation of single nucleotide polymorphisms in sugarcane ESTs [J]. Theor Appl Genet, 2006,113 (2): 331~343
    
    30. Cren M, Hirel B. Glulamine synthetase in higher plant: Regulation of gene and protein expression from the organ to the cell [J]. Plant Cell Physiol, 1999,40:1187~1193.
    
    31. Cui X, Shin H, Song C, et al. A putative plant homolog of the yeast beta-1, 3-glucan synthase subunit FKS1 from cotton (Gossypium hirsutum L.) fibers[J]. Planta, 2001,213:223~230
    
    32. Delseny, M. Genomics: methods and early results [J]. Ol. Corps Gras Lipides, 1999,6 (2): 136~143
    
    33. Desprez T, Amselem J , Caboche M , et al. The Arabidopsis thaliana cDNA sequencing project[J].Plant J, 1998,14 (5): 643~652
    
    34. Drobyshev A, Mologina N, Shik V, et al. Sequence analysis by hybridization with oligonucleotide microchip: identification of β-thalassem iamutation [J]. Gene, 1997,188: 45~52.
    
    35. Dubois F, Brugiere N, Sangwan RS, et al. Localization of tobacco cytosolic glutamine syntheses enzymes and the corresponding transcripts shows organ and cell specific patterns of protein synthesis and gene expression [J]. Plant Mol Biol, 1996,31:803~817.
    
    36. Dulbecco R A. Turning point in cancer research: sequencing the human genome [J]. Science, 1986,231:1055-1056
    
    37. Editorial. To affinity...and beyond [J]. Nature Genetics, 1996,14 (4): 367~370.
    
    38. Edwards J M, Walker E L, Coruzzi GM. Cell-specific expression in transgenic plants reveals nonoverlapping roles for chloroplast and cytosolic glutamine synthetase [J]. Proc Natl Acad Sci, 1990, 87:3459~3463
    
    39. Epple P, Apel K, Bohlmann H. ESTs reveal multigene family for plant dfensins in Arabidopsis thalina [J]. FEBS Letters, 1997,400 (2): 168~192
    
    40. Feng J X, Ji S J, Shi Y H, et al. Analysis of five differentially expressed gene families in fast elongating cotton fiber [J]. Acta Biochim Biophys Sin (Shanghai). 2004, 36 (1): 51~56
    41. Fernandez D E, Staehelin L A. Does Gibberellic acid induce the transfer of lipase from protein bodies to lipid bodies in Barley aleurone cells? [J]. Plant Physiol, 1987, 85 (2): 487~496.
    
    42. Fodor S P A, Rava R P, Huang X C, et al. Multiplexed biochemical assays with biological chip [J]. Nature, 1993,364: 555~556.
    
    43. Fodor S P A, Rava R P, Pirrungm C, et al. Light-directed, spatially addressable parallel chem ical synthesis [J].Science, 1991,251: 767~773.
    
    44. Fonseca S, Hackler J L, Zvara A, et al. Monitoring gene expression along pear fruit development, ripening and senescence using cDNA microarrays [J]. Plant Sci, 2004,167: 457~469
    
    45. Frick U B, Schaller A. cDNA microarray analysis of fusicoccininduced changes in gene expression in tomato plants [J]. Planta, 2002, 216: 83~94
    
    46. Fu J, Sampalo R, Gallardo F, et al. Assembly of a cytosolic pine glutamine synthetase holoenzyme in leaves of transgenic poplar leads to enhanced vegetative growth in young plants [J]. Plant Cell Environ, 2003, 26: 411~418
    
    47. Fuentes S I, Allen D J, Ortiz-Lopez A, et al. Overexpression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations [J]. J Exp Bot, 2001,52:1071-1081
    
    48. Gallardo F, Fu J, Canton F R, et al. Expression of a conifer glutamine synthetase gene in transgenic poplar [J]. Planta, 1999,210:19~26
    
    49. Gilpin B J , Mccallum T A, Frew T J. A linkage map of the pea (pisum stativum L) genome containing cloned sequences of known function and expressed sequence tags (ESTs) [J]. Theor Appl Genet, 1997, 95 (8) : 1289~1299
    
    50. Gimenez-Abian M I, Rozalen A E, Carballo J A, et al. Hsp90 and checkpoint-dependent lengthening of the G2 phase observed in plant cells under hypoxia and cold [J]. Protoplasma, 2004,223:191~196
    
    51. Guo W Z, Cai C P, Wang C B, et al. A Microsatellite-Based, Gene-Rich Linkage Map Reveals Genome Structure, Function and Evolution in Gossypium [J]. Genetics, 2007,176: 527~541
    
    52. Harmer S E, Orford S J, Timmis J N . Characterisation of six a-expansin genes in Gossypium hirsutum (upland cotton) [J]. Mol Genet Genomics, 2002,268:1~9
    
    53. Harrison J, Crescenzo M P, Hirel B. Does lowering glutamine synthetase activity in nodules modify nitrogen metabolism and growth of Lotus japonicus L [J]. Plant Physiol, 2003,133: 253~262
    
    54. Harushima Y, Yano M , Shomura A, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population [J]. Genetic, 1998,148 (1) : 1~16
    
    55. Hatey F, Tosser-Klopp G, Clouscard-martinato C, et al. Expressed sequenced tags for genes : a review [J]. Genet Sel Evol, 1998, 30 (5) : 521~541
    
    56. Hectathorn S A, Downs A D, Sharkey T D, et al. The small, methionine rich chloroplast heat shock protein protects photosystem II electro transport during heat stress [J]. Plant Physiol , 1998, 116:439~444
    
    57. Helm K W, Abernathy R H. Heat shock proteins and their mRNAs in dry and early imbibing embryos of wheat [J]. Plant Physiol, 1990, 93:1626~1633.
    
    58. Hirel B, Bertin P, Quillere I, et al. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize [J]. Plant Physiol, 2001,125: 1258~1270
    
    59. Hirel B, Phillipson B, Murchie E, et al. Manipulating the pathway of ammonia assimilation in transgenic non-legumes and legumes [J]. Z Pflanzeneraehr Bodenkd, 1997,160:283~290
    60. Holland M J. Transcript abundance in yeast varies over six orders of magnitude [J]. J Biol Chem,2002, 277:14363~14366
    
    61. Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochemical Society Transactions [J], 2003, 31 (6): 1120~1124
    
    62. Huntley D, Baldo A, Johri S, et al. Sergot M. SEAN: SNP prediction and display program utilizing EST sequence clusters [J]. Bioinformatics, 2006,22 (4): 495~496
    
    63. Ireland R J, Lea PJ. The enzymes of glutamine, glutamate, asparagine, and aspartate metabolism. In Plant Amino Acids: Biochemistry and Biotechnology. New York: Marcel Dekker, Inc., 1999,49~109
    
    64. Ishiyama K, Inoue E, Tabuchi M, et al. Biochemical backgrunds of compartmentalized functions of cytosolic glutamine synthetase for active ammonium assimilation in rice roots [J]. Plant Cell Physiol, 2004, 45:1640-1647
    
    65. Ishiyama K, Inoue E, Watanabe-Takahashi A, et al. Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis [J]. J Biol Chem, 2004,279:16598~16605.
    
    66. Jaeger Karl-Erich , Reetz Manfred T. Microbial lipases form versatile tools for biotechnology [J]. Trends in Biotechnology, 1998,16 (9): 396~403.
    
    67. Ji S J, Lu Y C, Feng J X, et al. Isolation and analyses of genes preferentially expressed during early cotton fiber development by subtractive PCR and cDNA array [J]. Nucleic Acids Res. 2003, 31 (10):2534~2543.
    
    68. John E M, Crow L J. Gene expression in cotton (Gossypium hirsutum L.) fiber: Cloning of the mRNAs [J]. Proc Natl Acad Sci USA, 1992,89:5769~5773
    
    69. Jones PG, Allaway D, Gilmour DM, et al. Gene discovery and microarray analysis of cacao (Theobroma cacao L.) varieties [J]. Planta, 2002,216:255~264.
    
    70. Kamachi K, Yamaya T, Hayakawa T, et al. Vascular bundle-specific localization of cytosolic glutamine synthetase in rice leaves [J]. Plant Physiol, 1992,99:1481~1486
    
    71. Kim H J, Triplett B A. Cotton fiber germin-like protein. I. Molecular cloning and gene expression [J]. Planta, 2004,218 (4): 516~524.
    
    72. Kim H J, Triplett B A. Cotton fiber growth in planta and in vitro: Models for plant cell elongation and cell wall biogenesis [J]. Plant Physiol, 2001,127:1361~1366
    
    73. Kohel R J, Richmond T R, Lewis C F. Texas marker-1 Description of genetic standard for Gossypium hirsutum L [J]. Crop Sci, 1970,10: 670~671
    
    74. Kozaki A, Takeba G. Photorespiration protects C3 plants from photooxidation [J]. Nature, 1996,384:557~560
    
    75. Lam H M, Coschigano K T, Oliveira I C, et al. The molecular-genetics of nitrogen assimilation into amino acids in higher plants [J]. Annu. Rev. Plant Physiol. Plant Mol Biol, 1996, 47:569~593
    
    76. Laosinchai W, Cui X, Brown Jr R M. A full cDNA of cotton cellulose synthase has high homology with the Arabidopsis RSW1 gene and cotton CelA1 (Accession No. AF 200453) (PGR 00-002) [J].Plant Physiol, 2000,122:291
    
    77. Lea P J, Robinson S A, Stewart G R. The enzymology and metabolism of glutamine, glutamate and asparagine [J]. Biochemi Plants, 1990,16:121~159
    
    78. Lee G J. Assaying proteins for molecular chaperone activity [J]. Methods Cell Biol, 1995, 50:325-334
    79. Lee G J, Pokala N ,Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock protein from pea [J]. J Biol Chem, 1995, 270 (18): 10432~10438
    
    80. Lee J J, Hassan O S S, Gao W X et al. Developmental and gene expression analyses of a cotton naked seed mutant [J]. Planta, 2006, 223:418~432
    
    81. Li C H, Zhu Y Q, Meng Y L, et al. Isolation of genes preferentially expressed in cotton fibers by cDNA filter arrays and RT-PCR [J]. Plant Sci, 2002,163:1113~1120
    
    82. Li H Y, Chang C S, Lu L S, et al. Over-expression of Arabidopsis thaliana heat shock factor gene (AtHsfAlb) enhances chilling tolerance in transgenic tomato [J]. Bot Bull Acad Sin, 2003, 44:129~140
    
    83. Li M G, Villemur R, Hussey P J, et al. Differential expression of six glutamine synthetase genes in Zea mays [J]. Plant Mol Biol, 1993, 23: 401~440
    
    84. Li X B, Fan X P, Wang X L, et al. The cotton ACTIN1 gene is functionally expressed in fibers and participates in fiber elongation [J]. Plant Cell, 2005,17 (3): 859~875
    
    85. Li Y L, Sun J, Xia G X. Cloning and characterization of a gene for an LRR receptor-like protein kinase associated with cotton fiber development [J]. Mol Gen Genomics, 2005, 273: 217~224
    
    86. Lin W, Yang H H, Lee M P. Allelic variation in gene expression identified through computational analysis of the dbEST database [J]. Genomics, 2005, 86 (5):518~527
    
    87. Lindquist S. Heat shock response [J]. Annu Rev Biochem, 1986,55:1151~1191
    
    88. Liu H C, Creech R G, Jenkins J N, et al. Cloning and promoter analysis of the cotton lipid transfer protein gene Ltp3 [J]. Biochim Biophys Acta, 2000,1487:106~111
    
    89. Liu H T, Li B, Shang Z L, et al. Calmodulin is involved in heat shock signal transduction in wheat [J]. Plant Physiol, 2003,132:1186~1195
    
    90. Liu J Y, Hara C, Umeda M , et al. Analysisof randomly isolated cDNAs from developing endosperm of rice ( Oryza sativeo L): evalution of expressed sequence tags and expression levels of mRNAs [J]. Plant Molecular Biology, 1995 , 29 (4): 685~689
    
    91. Liu J, Shono M. Characterization of mitrochondria-located small heat shock protein from tomato (Lycopersicon esculentum) [J]. Plant Cell Pyhsiol, 1999, 40:1297~1304
    
    92. Loguercio L L, Zhang J Q, Wilkins T A. Differential regulation of six novel MYB-domian genes defines two distinct expression patterns in allotetraploid cotton (Gossypium hirsutum L) [J]. Mol Gen Genet, 1999, 261:660~671
    
    93. Luce M C, Schyberg J P, Bunn C L. Metallothionein expression and stress responses in aging human diploid fibroblasts [J]. Exp Gerontol, 1993, 28:17~38
    
    94. Ma D P, Liu H C, Tan H, et al. Cloning and characterization of a cotton lipid transfer protein gene specifically expressed in fiber cells [J]. Biochim Biophys Acta, 1997,1344:111~114.
    
    95. Ma D P, Tan H, Si Y, et al. Differential expression of a lipid transfer protein gene in cotton fiber [J].Biochim Biophys Acta,1995,1257: 81~84.
    
    96. Maestri E, Klueva N, Perrotta C, et al. Molecular genetics of heat tolerance and heat shock proteins in cereals [J]. Plant Mol Biol, 2002,48: 667~681
    
    97. Malik M K, Slovin J P, Hwang C H, et al. Modified expression of a carrot small heat shock protein gene, hspl7.7, results in increased or decreased thermotolerance double dagger [J]. Plant J, 1999, 20 (1): 89~99
    
    98. Mansfield M A, KeyJ L. Synthesis of the low molecular weight heat shock proteins in plants [J].Plant Physiol, 1987, 84:1007-1017
    99. Martin A, Lee J, Kichey T, et al. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production [J]. Plant Cell, 2006,18: 32523274
    
    100. Masclaux C, Valadier M H, Brugiere N, et al. Characterization of the sink/source transition in tobacco (Nicotiana tabacum L.) shoots in relation to nitrogen management and leaf senescence [J]. Planta, 2000, 211:510518
    
    101. Medina-Escobar N, Cardenas J, Munoz-Blanco J, et al. Cloning and molecular characterization of a strawberry fruit ripening-related cDNA corresponding a mRNA for a low-molecular-weight heat-shock protein [J]. Plant Mol Biol, 1998,36 (1): 3342
    
    102. Millar A A, Dennis E S. The alcohol dehydrogenase genes of cotton [J]. Plant Mol Biol, 1996, 31: 897904
    
    103. Millar A A, Olive M R, Dennis E S. The expression and anaerobic induction of alcohol dehydrogenase in cotton [J]. Biochemical Genetics, 1994,32: 279~300
    
    104. Nicholas K B, Nicholas H B J. GeneDoc: a tool for editing and annotating multiple sequence alignments. Distributed by the author (available at http://www.psc.edu/biomed/ genedoc), 1997
    
    105. Nieden U, Neumann D, Bucka A, et al. Tissue-specific localization of heat-stress proteins during embryo development [J], 1995,196 (3): 530~538
    
    106. Ochs G, Schoth G, Trischler M, et al. Complexity and expression of the glutamine synthetase multi-gene family in the amphidiploid crop Brassica napus [J]. Plant Mol Biol, 1999, 39: 395~405
    
    107. Oliveira I C, Brears T, Knight T J, et al. Overexpression of cytosolic glutamine synthetase. Relation to nitrogen, light, and photorespiration [J]. Plant Physiol, 2000,129:1170~1180
    
    108. Orford S J , Timmis J N. Abundant mRNAs specific to the developing cotton fiber [J]. Theor Appl Genet, 1997,94: 909~918.
    
    109. Orford S J , Timmis J N. Expression of a lipid transfer protein gene family during cotton fibre development [J]. Biochim Biophys Acta, 2000,1483:275~284
    
    110. Ortega J L , Temple S J, Bagga S, et al. Biochemical and molecular characterization of transgenic Lotus japonicus plants constitutively over-expressing a cytosolic glutamine synthetase gene [J].Planta, 2004,219:807~818
    
    111. Paice M G, Jurasek L. Removing hemicellulose from pulps by specific enzymic hydrolysis [J]. J. Wood Chem. Technol., 1984,4:187~198.
    
    112. Parsell D A, Lindquist S. The function of heat-shock proteins in stress tolerance: degradation and reactivation of damaged protein [J]. Annu Rev Genet, 1993,27: 437~496
    
    113. Pe' rez-Garci' a A, Pereira S, Pissarra J, et al. Cytosolic localization in tomato mesophyll cells of a novel glutamine synthetase induced in response to bacterial infection or phosphinotricin treatment [J]. Planta, 1998,206:426~434
    
    114. Petko L, Lindquist S. Hsp26 is not required for growth at high temperatures, nor for thermtolerence, spore development or germination [J]. Cell, 1986, 45: 885~889
    
    115. Piatak M, Luk K C, Williams B , et al. Quantitative competitive polymerase chain reaction for accurate quantitation of HIV DNA and RNA species [J]. Bio Techniques, 1993,14 (1): 70~81.
    
    116. Pitto L, LoShiavo F, Giuliano G. Analysis of heat shock protein pattern during somatic embryo genesis of carrot [J]. Plant Mol Biol, 1983,2: 231~237.
    
    117. Puskas L G, Zvara A, Hackler J L, et al. RNA amplification results in reproducible microarray data with slight ratio bias [J], Biotechniques, 2000,32:1330~1340.
    
    118. Raschke E, Baumann G, Schoffl F. Nucleotide sequence analysis of soybean small heat shock protein genes belonging to two different multigene families [J]. J Mol Biol, 1988,199 (4): 549~557
    119. Rounsley S, Linx K K. Large scale sequencing of plant genome [J]. Curr Opin Plant Biol, 1998, 1(2):136~141
    
    120. Ruan Y L, Llewellyn D J, Furbank R T. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development [J]. Plant Cell, 2003,15: 952~964
    
    121.Ruan Y, Llewellyn D, Furbank R. The control of singlecelled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and k(+) transporters and expansin [J]. Plant Cell, 2001,13: 47~60
    
    122. Ruan Y L, Chourey P S. A fiberless seed mutation in cotton is associated with lack of fiber cell initiation in ovule epidermis and alterations in sucrose synthase expression and carbon partitioning in developing seeds [J]. Plant Physiol, 1998,118: 399~406
    
    123. Ruan Y L, Llewellyn D J, Furbank R T. Pathway and control of sucrose import into initiating cotton fibers [J]. Aust J Plant Physiol, 2000, 27: 795~800
    
    124. Ruan Y L, Llewellyn D J, Furbank RT. Suppression of sucrose synthase gene expression represses cotton fiber cell initiation, elongation, and seed development [J]. Plant Cell, 2003,15: 952~64
    
    125. Sakakibara H, Kawabata S, Hase T, et al. Differential effect of nitrate and light on the expression of glutamine synthetase and ferredoxin-dependent glutamate synthase in maize [J]. Plant Cell Physiol, 1992, 33:1193~1198
    
    126. Sakakibara H, Shimizu H, Hase T, et al. Molecular identification and characterization of cytosolic isoforms of glutamine synthetase in maize roots [J]. J Biol Chem, 1996, 271: 29561~29568
    
    127. Sakamoto A, Ogawa M, Masumura T, et al. Three cDNA sequences coding for glutamine synthetase polypeptides in Oryza sativa L [J]. Plant Mol Biol,1989,13: 611~614
    
    128. Sasaki T, Song J Y, Kogaban Y, et al. Toward cataloguing all rice genes: Large-scale sequencing of randomly chosen rice cDNAs from a callus cDNA library [J]. Plant J, 1994, 6: 615~624
    
    129. Schena M, Shalon D, Dais R W,et al. Quantitative monitoring of gene expression patters with a complementary DNA microarray [J]. Science ,1995 ,270 (20) : 467~470.
    
    130. Schena M, Shalon D, Heller R, et al. Parallel human genome analysis microarray-based expression monitoring of 1000 genes [J]. Pro Natl Acad Sci USA, 1996, 93: 2150~2155
    
    131. Schrag J D. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum candium [J]. Nature, 1991,351:761~764.
    
    132. Shen X L, Guo W Z, Lu Q X, et al. Genetic mapping of quantitative trait loci for fiber quality and yield trait by RIL approach in Upland cotton [J]. Euphytica, 2007,155: 371~380
    
    133. Shi Y H, Zhu S W, Mao X Z, et al. Transcriptome profiling, molecular biological and physiological studies reveal a major role for ethylene in cotton fiber cell elongation [J]. Plant Cell, 2006, 18:651~664
    
    134. Shoemaker D D, Lashkari D A, Morris D, et al. Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar- coding strategy [J]. Nature Genetics, 1996, 14:450~456.
    
    135. Song J, Chai Y, Pang Y, et al. Isolation and characterization of an IAA-responsive gene from Gossypium barbadense L [J]. DNA Seq, 2004,15 (1): 71~76.
    
    136. Song X L, Wang K, Guo W Z, et al. A comparison of genetic maps constructed from haploid and BC1 mapping populations from the same crossing between Gossypium hirsutum L. x G. barbadense L [J]. Genome, 2005, 48: 378~390
    
    137. Srivastava P K, Amato R J. Heat shock proteins: the "Swiss army knife" vaccines against cancers and infectious agents [J]. Vaccine, 2001, 9: 2590~2597
    138. Sterky F, Regan S, KarlssonJ , et al. Gene discoveryin the wood-forming tissue of poplar: Annalysis of 5692 expressed sequence tags. Proc Natl Acad Sci USA, 1998 ,95 (22): 13330~1335
    
    139. Stipp D. Gene chip breakthrough [J]. Fortune, 1997,135: 56~73.
    
    140. Su J, Zhang X Q, Yan Q S, et al. Construction of plant expression vectors carrying glnA gene encoding glutamine synthetase and regeneration of transgenic rice plants [J]. Sci China Ser B, 1995,38:963~970
    
    141. Sun Y, Allen R D. Functional analysis of the BIN2 genes of cotton[J]. Mol Gen Genomics, 2005,274: 51-59
    
    142. Sun Y, Fokar M, Asami T, et al. Characterization of the brassinosteroid insensitive 1 genes of cotton [J]. Plant Mol Biol, 2004; 54 (2):221~232.
    
    143. Suo J, Liang X, Pu L, et al. Identification of GhMYB109 encoding a R2R3 MYB transcription factor that expressed specifically in fiber initials and elongating fibers of cotton (Gossypium hirsutum L.) [J]. Biochim Biophys Acta, 2003,1630 (1):25~34.
    
    144. Suo J F, Pu L, Liang X E, et al. Identification of an Endothelium-specific Gene GhIAA16 in Cotton (Gossypium hirsutum). Acta Botanica Sinica, 2004,46:472~479
    
    145. Tabuchi M, Sugiyama T, Ishiyama K, et al. Severe reduction in growth and grain filling of rice mutants lacking OsGS1:1, a cytosolic glutamine synthetase 1:1 [J]. Plant J, 2005,42: 641~655
    
    146. Temple S J, Bagga S, Sengupta-Gopalan C. Can glutamine synthetase activity levels be modulated in transgenic plants by the use of recombinant DNA technology? [J]. Biochem Soc Trans, 1994, 22: 915~920
    
    147. The Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J]. Nature, 2000, 408: 796~815.
    
    148. Thompson J D, Gibson T J, Plewniak F, et al. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Research, 1997, 24: 4876~4882
    
    149. Tokumoto H, Wakabayashi K, Kamisaka S, et al.Changes in the sugar composition and molecular mass distribution of matrix polysaccharides during cotton fiber development [J]. Plant Cell Physiol,2002,43 (4) : 4112
    
    150. Udall J A, Swanson J M, Haller K, et al. A global assembly of cotton ESTs [J]. Genome Res, 2006
    
    151. Van Ooijen J W , Vorrips R E. JoinMap? Version 3.0, Software for the calculation of genetic linkage map. Plant Research International. Wageningen, The Netherlands, 2001.
    
    152. Vierling E. The role of heat shock proteins in plants [J]. Annu Rev Plant Physiol Plant Mol Biol, 1991, 42: 579~620
    
    153. Vincent R, Fraiser V, Chaillou S, et al. Overexpression of a soybean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus corniculatus L. plants triggers changes in ammonium assimilation and plant development [J]. Planta, 1997, 201:424~433
    
    154. Wallsgrove R M, Turner J C, Hall N P, et al. Barley mutants lacking chloroplast glutamine synthetase-Biochemical and genetic analysis [J]. Plant Physiol,1987,83:155~158
    
    155. Wang H Y, Yu Y, Chen Z L, et al. Functional characterization of Gossypium hirsutum profilin 1 gene (GhPFN1) in tobacco suspension cells [J]. Planta, 2005, 222:594~603
    
    156. Wang K, Song X L, Han Z G, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping [J]. Theor Appl Genet, 2006, 111 (1): 73~80.
    157. Wang L, Zhao C M, Wang Y J, et al. Overexpression of Chloroplast-localized Small Molecular Heat-shock Protein Enhances Chilling Tolerance in Tomato Plant [J]. Plant Physi Mol Biol, 2005, 31 (2): 167~174
    
    158. Wang S, Wang J W, Yu N, et al. Control of plant trichome development by a cotton fiber MYB Gene [J]. Plant Cell, 2004,16: 2323~2334
    
    159. Wang X, Bowen B. A progress report on corn genome projects at pioneer hi-bred. In: Plant and Animal genome VI Conference, SanDiego, California, 1998
    
    160. Waters E R, Lee G J , Vierling E. Evolution, structure and function of the small heat shock proteins in plants [J]. J Exp Bot, 1996, 47: 325~338
    
    161. Wehmeyer N, Hernandez L D, Finkelstein R R, et al. Synthesis of small heat-shock proteins is part of the developmental program of late seed maturation [J]. Plant Physiol, 1996,112: 747~757.
    
    162. Wilkins T A , Jernstedt J A. Molecular genetics of developing cotton fibers. In AS Basra Eds. Cotton Fibers: Developmental biology, quality improvement, and textile processing. New York: Food Products Press, 1999, 231~270
    
    163. Willey D L, Fisher K, Wachter E, et al. Molecular cloning and structural analysis of phosphate translocator from pea chloroplasts and its comparison to the spinach phosphate translocator [J].Planta, 1991,183:451~461
    
    164. Winkler FK, D'Arcy A, Hunziler W. Structure of human pancreatic lipase [J]. Nature, 1990, 343: 771~774.
    
    165. Wu Y R, Machado A C, White R G, et al. Expression Profiling Identifies Genes Expressed Early During Lint Fibre Initiation in Cotton [J]. Plant and Cell Physiology, 2006, 47 (1): 107-127
    
    166. Wu Y R, Rozenfeld S, Defferrard A, et al. Cycloheximide treatment of cotton ovules alters the abundance of specific classes of mRNAs and generates novel ESTs for microarray expression profiling [J]. Mol Gen Genomics, 2005, 274: 477~493
    
    167. Wu Y T, Liu J Y. Molecular cloning and characterization of a cotton glucuronosyltranferase gene [J]. J Plant Physiol, 2005,162 (5): 573~582.
    
    168. Wu Y, Machado A C, White R G, et al. Expression profiling identifies genes expressed early during lint fibre initiation in cotton [J]. Plant Cell Physiol, 2006,47:107-127
    
    169. Xu Y H, Wang J W, Wang S, et al. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A [J]. Plant Physiol, 2004,135 (1): 507~515.
    
    170. Yamamoto K, Sasaki T. Large scale EST sequencing in rice [J]. Plant Mol Biol, 1997, 35 (1):135~144
    
    171. Zhang T Z, Yuan Y L, Guo W Z, et al. SSR molecular tagging of QTLs for fiber strength in Upland cotton [J]. Scientia Agricultura Sinica, 2001,34: 363~366
    
    172. Zhang Z G, Wang Y C, li J, et al. The role of SA in the hypersensitive response and systemic acquired resistance induced by elicitor PB90 from Phytophthora boehmeriae [J]. Physiol Mol Plant Pathol, 2004, 65: 31~38
    
    173. Zhu Y Q, Xu K X, Luo B, et al. An ATP-binding cassette transporter GhWBCl from elongating cotton fibers [J]. Plant Physiol, 2003,133 (2): 580~588.
    
    174. Zuo K, Zhao J, Wang J, et al. Molecular cloning and characterization of GhlecRK, a novel kinase gene with lectin-like domain from Gossypium hirsutum [J]. DNA Seq, 2004,15 (1): 58~65.
    
    175.陈建南,张性坦.人和植物中的热激蛋白功能研究新进展[J].遗传,1997,19 (4): 45~48
    176.邓家术,段彬江,刘中来.植物热激蛋白的研究进展及其应用[J].生命的化学,2003,23(3):226-228
    177.费云标,黄涛,舒念红,等.热激蛋白的分子生物学研究进展[J].植物学通报,1995,12(1):1-5
    178.郭旺珍,孙敬,张天真.棉花纤维品质基因的克隆与分子育种[J].科学通报,2003,48:410-417
    179.郭新红,姜孝成,潘晓玲,等.基因芯片技术与基因表达谱研究[J].生物学杂志2001,18(5):1-21
    180.何成新,张厚瑞.木聚糖水解酶的研究进展[J].广西轻工业,1998,4:12-15
    181.洪丽亚,黄儒珠.基因芯片技术及其在植物上的应用[J].生物技术通报,2002,(4):30-35
    182.江正强,李里特,李颖.耐热木聚糖酶研究进展[J].中国生物工程杂志,2003,23(8):47-51.
    183.蒋建雄,张天真.利用CTAB酸酚法提取棉花组织总RNA[J].棉花学报,2003,15(3):166-167
    184.李丙东,项时康,林榕辉,等.棉花种子萌发过程中脂肪酶活性研究[J].棉花学报,1993,5(2):37-44
    185.李惠英,张献龙.陆地棉体细胞胚胎发生过程中的mRNA差异显示分析[J].棉花学报,2003,15(5):264-268
    186.李淼,檀根甲,周冬生,等.基因芯片技术及其在植物病害研究中的应用[J].植物保护,2003,29(1):15-91
    187.李万九,张秀如,孙湘宁,等.棉花热激蛋白(HSP)的研究及其应用前景展望[J].棉花学报,1997,9(1):1-4
    188.刘箭,庄野真理子.高温下线粒体小分子热激蛋白对柠檬酸合成酶、线粒体和花粉粒的保护作用[J].植物生理学报,2001,27(5):375-380
    189.刘进元,赵广荣,李骥.棉花纤维品质改良的分子工程[J].植物学报,2000,42(10):991-995
    190.刘明启,孙建义,许英蕾.木聚糖酶分子的研究进展[J].中国生物工程杂志,2003,23(10):62-66.
    191.刘稳,高培基.半纤维素酶的分子生物学[J].纤维素科学与技术,1998,6(1):9-15.
    192.骆蒙,贾继增.植物基因组表达序列标签(EST)计划研究进展[J].生物化学与生物物理进展,2001,28(4):494-497
    193.梅英,刘长安,龚建平.定量PCR的研究进展[J].国外医学:临床生物化学与检验学分册,2004,25(1):23-24
    194.潘家驹.棉花育种学[M].北京:中国农业出版社,1998
    195.秦治翔,杨佑明,张春华,等.棉纤维次生壁增厚相关基因的cDNA克隆与分析[J].作物学报,2003,29:860-866
    196.孙宏丹,孟秀香,贾莉,等.微生物脂肪酶及其相关研究[J].大连医科大学学报,2001,23(4):292-295
    197.王方勇.基因点突变检测技术研究进展[J].国外医学·遗传学分册,2002,25(4):192-196
    198.王颖姮,邓其明,李平.基因芯片技术在水稻研究中的应用[J].中国农学通报,2006,22:55-59
    199.邬显章,邬敏辰.脂肪酶分子生物学的研究进展[J].食品与生物技术,2002,21(1):94-98
    200.武耀廷,刘进元.棉纤维细胞发育过程中非纤维素多糖的生物合成[J].棉花学报,2004,16(3):189-193
    201.徐景升,张木清,陈如凯.基因芯片技术及其在农业上的应用[J].福建农林大学学报(自然科学版),2002,31(1):62-66
    202.徐瑜,施永辉,冯建勋,等.cDNA芯片检测棉花纤维发育相关基因的表达[J].分子植物育种,2004,2(3):348-353
    203.徐振彪,宋林霞.基因芯片技术与现代农业[J].安徽农业科学,2006,34(19):4867-4868
    204.许志茹,李玉花.基因芯片技术在植物研究中的应用[J].生物技术,2004,14(6):70-72
    205.杨佑明,徐楚年.棉纤维发育的分子生理机制[J].植物学通报,2003,20(1):1-9
    206.张红莲,姚斌,范云六.木聚糖酶的分子生物学及其应用[J].生物技术通报,2002,3:23-30
    207.张建国,何彩云,段爱国,等.植物热激蛋白研究进展[J].福建林学院学报,2005,25(2):187-192
    208.张杰,田波.热休克蛋白及其生物学功能[J].国外医学外科学分册,2003,30(5):265-268
    209.张志刚,杨晓萍,梅正鼎,等.基因芯片技术在作物中的研究进展及展望[J].江西棉花,28(1):3-5
    210.赵奂,赵晓刚,何奕昆,等.表达序列标签及基因芯片技术在植物抗性基因研究中的应用[J].生物信息学,2004,2:9-121
    211.钟文英,普雄明.热休克蛋白的分子生物学研究进展[J].医学综述,2005,11(2):148-150
    212.朱一超,张天真,贺亚军,等.棉花纤维伸长发育期的基因表达分析[J].作物学报,2006,32(11):1656-1662

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700