基于TREE-RING模型的小兴安岭红松树轮生长气候响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
树木年轮资料以其定年准确、连续性强和分辨率高等优点,在历史时期的气候变化研究中得到了广泛的应用。对历史时期气候的重建多采用的是线性回归方法,这种方法假定树木生长和气候因子之间为线性关系,偏向对气候变化的定性分析,而实际上树木对气候的响应是一种物理的和生理的非线性关系。统计意义上的相关是否具有明确的生理意义,需要从机理方面分析。利用树木气候机理模型可以从树木生长机理方面入手,同时考虑多个气候因子,如:温度、降水、光照等来建立树木的生长过程,允许不同时期有不同的生长限制因子,从定量角度予以讨论。树木气候机理模型自建立起来得到了不断更新,其中TREE-RING模型是目前模拟树木生长比较完善的模型。本研究基于TREE-RING机理模型对小兴安岭红松树木生长对气候的响应进行了模拟分析,采用的树轮资料来自小兴安岭五营丰林国家自然保护区,模拟所用的气候资料为伊春气象站的逐日最高气温、最低气温和日降水量资料。通过对模型参数的调试,模拟结果的分析,辨别出影响树木生长的主要气候因子,并对主要气候因子进行了气候变化重建,本文得出以下主要结论:
     (1)TREE-RING模型对小兴安岭红松树木生长的模拟取得了较好的应用效果,生理意义明确。小兴安岭红松树木生长平均开始时间是在4月25日,结束时间是在10月9日生育期为167天;
     (2)小兴安岭红松树木的径向生长主要受到生长季上一年10月份气温和当年4月份气温的控制。模型分析结果认为,树木形成层开始生长平均是在4月下旬,这时水分充足,温度在光合最低温度和最适温度下限之间,温度愈高,光合速率愈大,储存的养料愈多,因此表现为与树轮宽度的正相关关系。形成层生长结束的时间平均在10月上旬,用于形成层细胞生长的光合产物的消耗减少,而光合速率随着温度的升高而增大,因此,10月份的气温越高为下一年储存的养料越多,翌年易形成宽轮;
     (3)对参数敏感性分析发现,光合最低温度,光合最适温度下限,最适土壤含水量下限和最大土壤含水量,是红松树木形成层生长比较敏感的参数,对这些参数的精确确定,是模型模拟准确与否的关键,气候变化的敏感性分析显示,1958—1998年若日平均温度升高1℃,树木生长开始时间会提前,生长量会降低。大气CO_2敏感性试验发现,模型对于CO_2变化敏感,模拟结果证实了CO_2浓度增加对植物生长具有助长作用,即CO_2施肥效应,CO_2对树木生长的趋势性变化产生影响。
     (4)基于树轮气候机理模型,对影响小兴安岭红松树木生长的主要气候因子10月份温度进行重建。重建了五营1796年以来的10月份平均气温变化,采用了逐一剔除法检验了重建序列的稳定性和可靠性,显示重建序列是可靠的,重建序列和实测序列相关系数为0.590,重建序列的方法解释量为34.8%。
     (5)重建序列的变化特征分析显示,在过去的209a中,五营重建气温变化大体经历了4个偏冷和4个偏暖阶段。通过与哈尔滨站实测资料、其它代用资料研究结果的对比验证可见,重建结果是可信的。18世纪末至19世纪30年代五营地区、长白山区、中国东部,乌鲁木齐河源同处于冷期,19世纪40年代末到60年代初五营地区、长白山区和乌鲁木齐河源同处于暖期,20世纪初到30年代末五营地区和乌鲁木齐河源同处于冷期。19世纪70年代初到19世纪末五营地区、长白山区、中国东部,乌鲁木齐河源同处于暖期。不同地区的冷暖发生时间同步,说明这些时间段冷暖期的发生并非局地现象,可代表一个较大的范围。
     (6)周期分析显示,五营温度变化存在3年、6年、20年和40年左右的周期特征,且不同时期的周期变化存在差异。突变分析显示,重建序列30年尺度的突变检验结果表明,1834年、1871年和1900年前后,五营地区10月份平均温度出现了显著的均值突变,1851年前后出现了明显的方差突变。重建序列15年尺度突变分析表明,在1822年、1847年、1858年、1871年、1900年和1987年前后发生了明显的均值突变。在1851年、1973年和1988年出现明显的方差突变。通过不同研究结果比较,发现了不同地区突变结果的一致性。
Tree monitor environmental conditions that limit their biological processes and this information are stored in the structure of the annual ring.Tree-ring width data may reflect a nonlinear response to multivariate climate forcing.Single-variable paleoclimatic reconstruction via linear statistical calibration maybe represents a problem.Because there are nonclimatic influence on tree-ring records,including tree bilogy,size and age et al.Statistical relationships which may represent linearization of nonlinear processes are difficult to validate for long period processes for times outside the instrumental era.Moreover,traditional statistical techniques are inadequate when describing tree-growth responses to climate on cellular level.In this paper,we use the TREE-RING model to simulate climatic response of Pinus koraiensis in the lower mountains of XiaoXing'AnLing and discuss its hysiological response mechanism.Tree ring data were collected from Pinus koraiensis in the lower mountains of XiaoXing'AnLing.The climate data used in this study include local daily maximum temperature,minimum temperature and precipitation records from National Meteorological Information Center,China Meteorological Administration. Through model parameter debug and simulation result analysis,we can draw some main conclusions as follow:
     (1) A comparison between simulated and measured tree-ring series shows that the TREE-RING model could simulate the Pinus koraiensis tree-growth well.the correlation of cell number between the measured and modeled series equal to 0.62,and the value has exceed 99%degree of confidence.Pinus koraiensis grow starts average on April 25,cease on October 9,and the average growing time is 167 days.
     (2) The simulation results indicated that variations in tree-ring width are mainly controlled by October temperatures of the last year to growth and April temperatures of the growth year.Cambium growth begins in the last ten-day of April when there is enough water,but temperatures are low in XiaoXing'AnLing,and cambium growth ends in the first ten-day of October,but temperatures of October are between Lower optimal and minimum temperature for photosynthesis,where the photosynthetic rate increases at higher temperature.Thus,more food is stored at higher October temperature,and wider ring was easy to form the next year to grow.
     (3) Sensitivity analysis of parameter indicated that the tree-ring growth was sensitive to minimum temperature for photosynthesis,lower optimal temperature for photosynthesis,upper optimal volumetric water content and maximum volumetric water content.Sensitivity analysis of climate show tree growing start will bring forward and the increment will reduce if dailly temperature increases 1℃from 1958 to 1998.Sensitivity analysis of atmosphere CO_2 display the model is sensital to CO_2 variation.The result validate CO_2 contration increasing will accelerate tree grow.
     (4) Based on simulation record,the mean temperature of October was reconstructed for the period of 1796 to 2004 using RES tree ring chronology.The explained variance of reconstruction is 34.8%.In the past 209 year,there were 4 colder periods and 4 warmer periods in reconstructed series.
     (5) Through comparing with research result of different area in China,we found cold period concurrence in Wu ying,Changbai,East of China and Urumqi river source of Tianshan Mountain from 18 century end to 19 century 40's.Warm period alse concurrence in there area from 19 century 70's to 19 century end.
     (6) Periods of 3a,6a,20a and 40a were found markedly in the reconstruct series by power spectrum and wavelate analysis.The abrupt changes were also be detected with 30-year time scale and 15-year time scale by the smoothing T test,the smoothing F test and Lepage test methods.The significant abrupt changes of 30-year time scale mean value were present in around A.D.1871 and 1900 and the significant abrupt changes of standard deviation in around A.D.1851.The significant abrupt changes of 15-year time scale mean value were present in around A.D.1822,1847,1871,1900 and 1987,and the significant abrupt changes of standard deviation in around A.D.1851,1973 and 1988.
引文
[1]叶笃正,符淙斌,董文杰,等.全球变化科学领域的若干研究进展.大气科学,2003,27:435-450。
    [2]叶笃正,符淙斌.全球变化的主要科学问题.大气科学,1994,18(4):498-512.
    [3]陈宜瑜,陈泮勤,葛全胜,等.全球变化研究进展与展望.地学前缘,2002,9(1):11-18.
    [4]孙成权,张志强.国际全球变化研究总览.地球科学进展,1994,9:53-70.
    [5]施雅风.2000年记录与全球变化研究.第四纪研究,1997,17(1):37-40.
    [6]王绍武.2001.现代气候学研究进展.北京:气象出版社.1-458.
    [7]高国栋,缪启龙,王安宇.气候学教程.北京:气象出版社,1996,56-132.
    [8]秦大河主编.全球变化热门话题丛书-气候系统变化与人类活动,气象出版社.2003,1-234.
    [9]Bradley RS.Past global changes and their significance for the future.Quaternary Science Reviews,2000,19:391-402
    [10]Mann ME,Bradley RS,Hughes MK.Global-scale temperature patterns and climate forcing over the past six centuries.Nature,1998,392:779-787.
    [11]Briffa KR,Schweingruber FH,Jones PD,et al.Reduced sensitivity of recent tree-growth to temperature at high northern latitudes.Nature,1998,391(6668):678-682.
    [12]Fritts HC.Tree Rings and Climate.London:Academic Press,1976:1-567.
    [13]Vaganov EA,Hughes MK,Shashkin AV.Growth dynamics of conifer tree rings images of past and future environments.Berlin;New York:Springer,2006:1-353.
    [14]Cook ER,Kairiukstis LA.Methods of dendrochronology:applications in the environmental sciences.Dordrecht:Kluwer,ⅹⅱ,1990:1-394.
    [15]Wilson BF,Howard RA.A computer model for cambial activity.Forest Science.1968,14(1):77-90.
    [16]Anchukaitis KJ,Evans MN,Kaplan A,et al.Forward modeling of regional scale tree-ring patterns in the southeastern United States and the recent influence of summer drought.Geophysical Research Letters.2006,33,L04705,doi:10.1029 /2005GL025050.
    [17]Deleuze C,Houllier F.A Simple Process-based Xylem Growth Model for Describing Wood Microdensitometric Profiles.Journal of Theoretical Biology.1998,193(15):99-113.
    [18]Evans MN,Reichert BK,Kaplan A,et al.A forward modeling approach to paleoclimatic interpretation of tree-ring data.J.Geophys.Res.,2006,111(G03008,doi:10.1029/2006JG000166).
    [19]Fritts HC,Shashkin AV,Downes GM.A simulation model of conifer ring growth and cell structure,in Tree-Ring Analysis,edited by R.Wimmer and R.E.Vetter,pp.3-32,Cambridge University Press,Cambridge.Gates D M.Biophysical Ecolog y.New York:Springer,1999:1-611.
    [20]Fritts HC.Reconstruction Large-scale Climate Patterns from Tree Ring Data.A Diagnostic analysis Tucson:The University of Arizona Press.1991,1-286.
    [21]Vaganov EA.Recording of warming in current century by tracheids of the annual tree rings.Doklady Akademii Nauk.1996,351(2):281-283.
    [22]尹训钢,吴祥定.华山松树木年轮对气候响应的模拟分析.应用气象学报.1995,6(3):257-269.
    [23]史江峰,刘禹,Vaganov E,等.贺兰山油松生长的气候响应机制初步探讨.第四纪研究,2005,25(2):245-251.
    [24]史江峰,刘禹,蔡秋芳等.油松(Pinus tabulaeformis)树轮宽度与气候因子统计相关的生理机制--以贺兰山地区为例.生态学报,2006,3:697-705.
    [25]李雁.TREE-RING生态机理模型在柴达木盆地东缘地区青海云杉树轮研究中的应用[硕士论文].中国科学院地理科学与资源研究所,2007,1-88.
    [26]丁一汇,戴晓苏.中国近百年来的温度变化.气象,1994,20(12):19-26.
    [27]任国玉,周薇.辽东半岛本世纪气温变化的初步研究.气象学报,1994,52(4):493-498.
    [28]沙万英,邵雪梅,黄玫.20世纪80年代以来中国的气候变暖及其对自然区域界线的影响.中国科学D辑,2002,32(4):317-326.
    [29]朱海峰.利用树轮宽度网络重建我国东北地区东部温度变化:[博士论文].北京师范大学地理学与遥感科学学院,2006,1-90.
    [30]Downes GM,Hudson IL,Raymond C A,et al.Sampling Plantation Eucalypts For Wood and Fiber Properities.Melbourne:CSIRO PUBLISHING,1997,1-132.
    [31]Malhi Y,Baldocchi DD,Gjarvis P.The carbon balance of tropical,temperate and boreal forests.Plant,Cell and Environment,1999,22:715-740.
    [32]Dixon R K,Brown S,Houghton R A,et al.Carbon pools and flux of global forest ecosystems.Science,1994,263:185-1904.
    [33]Melillo JM.Effects on Ecosystems.In:Houghton J T,G J Jenkins & J J Ephraums eds.Climate Change--the IPCC Scientific Assessment:Report Prepared for IPCC by Working Groupl.Cambridge:Cambridge University Press. 1990.283-310.
    [34]陈育峰.自然植被对气候变化响应的研究综述.地理科学进展,1997,16(2):70-77。
    [35]Polge H.The use of X-ray densitometric methods in dendrochronology.Tree-Ring Bull,1970,30:1-10.
    [36]Mcmillan C W.Application of automatic image analysis to wood science.Wood Science,1982,14:97-105.
    [37]Teleski FW,Wakefield A E,Jaffe M J.Computer-Assisted Image Analysis of Tissus of Ethtel-Treated pinus Taeda seedings.Plant physiol,1983,72:177-181.
    [38]Garson P.Automatic measurement of vessel lumen area and diameter with particular reference to pedunculate oak and commen beech.IAWA,1985,6:219-237.
    [39]刘洪滨,吴祥定,邵雪梅.利用树轮图像分析方法研究历史时期气候变化的可行性.地理研究.1996,15(2):44-51.
    [40]Smith D J and Laroque C P.Mountain hemlock growth dynamica on Vancouver Island.Northwest Sci,1998,72:67-70.
    [41]Lipp J,Trimborn P,Fritz P.Stable isotopes in tree ring cellulose and climate change.Tellus,1991,438:322-330.
    [42]刘广深,米家榕,戚长谋,等.树轮稳定碳同位素研究的应用现状与发展趋势.世界地质,1996,15(4):42-48.
    [43]蒋高明,黄银晓,万国江,等.树木年轮8C13值及其对我国北方大气CO_2浓度变化的指示意义.植物生态学报,1997a,21(2):155-160。
    [44]陈拓,秦大河,康兴成,等.树轮稳定碳同位素的研究现状及前景.大自然探索,1999,18(67):59-65。
    [45]孙艳荣,穆治国,崔海亭.埋葬古木树轮碳、氢、氧同位素研究与古气候重建.北京大学学报(自然科学版),2002,38(2):294-301.
    [46]马利民.贺兰山油松年轮中稳定碳同位素含量和环境的关系.环境科学,2003,24(5):49-52.
    [47]刘晓宏,秦大河,邵雪梅,等.祁连山中部过去近千年温度变化的树轮记录.中国科学(D辑),2004,34(1):89-95.
    [48]Graumlich LJ.A 1000-year record of temperature and precipitation in the Sierra Nevada.Quaternary Research,1993,39(2):249-255.
    [49]Van Deusen PC and Reams GA.Bayesian Procedures for reconstructing past climate.In:Dean J S,Meko D M,Swetnam T W(eds) Tree Rings,Environment and Humanity.Tucson:epartment of Geosciences,The University of Arizona,1996.335-339.
    [50]Steele B and Fiedler C.Kalman filter analysis of growth-climate relations in old-growth Ponderosa pine / Douglas-fir stands.In:Dean J S,Meko D M,Swetnam T W(eds) Tree Rings,Environment and Humanity.Tucson:Department of Geosciences.The University of Arizona,1996.303-314.
    [51]Woodhouse CA.Artificial neural networks and dendroclimatic reconstructions:an example from the Front Range,Colorado,USA.The Holocene,1999,9(5):521-529.
    [52]Ni F,Cavazos T,Hughes MK.Cool-season precipitation in the southwestern USA since AD 1000:comparison of linear and nonlinear techniques for reconstruction Int J Climatol.2002(22):1645-1662.
    [53]王玉玺,靳立亚,赵声蓉,等.祁连山树木年轮指数的奇异谱分析.陕西气象,1994,2:6-8.
    [54]黄磊,邵雪梅,梁尔源,等.青海沙利克山祁连圆柏千年树轮宽度序列的变化特征.地理研究,2004,23(3):365-373.
    [55]刘洪滨,邵雪梅,黄磊,等.青海省海西州德令哈地区近千年来年降水量变化特征分析.第四纪研究,2005,25(2):176-183.
    [56]刘洪滨,邵雪梅.秦岭南坡佛坪1789年以来1-4月平均温度重建.应用气象学报.2003,14(2):188-196.
    [57]黄磊,邵雪梅,刘洪滨,等.青海德令哈地区千年来降水量的突变分析.地理学报.2006,61(7):713-719.
    [58]尹红,郭品文,刘洪滨,等.利用树轮重建小兴安岭五营1796年以来的温度变化.气候变化研究进展,2009,5(1):18-23.
    [59]Cook E R,Briffa KR,Shiyatov S,et al.Tree-Ring Standardization and Growth-Trend Estimation.In:Cook E R and Kairiukstis L A(Eds) Methods of Dendrochronology Applications in the Environmental Sciences.Kluwer Academic Publishers,1990,104-123.
    [60]Esper J,Cook ER,Schweingruber FH.Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability.Science,2002,295:2250-2253.
    [61]Mann M E,Bradley R S,Hughes M K.Northern Hemisphere temperatures during the past millennium:Inferences,uncertainties and limitations.Geophysical Research Letter,1999,26:759-762.
    [62]Briffa KR,Osborn T J,Schweingruber FH,et al.Low-frequency temperature variations from a northern tree ring density network.Journal of Geophysical Research,2001,106(D3):2929-2941.
    [63]徐岩.保留低频变化信息树轮年表的建立.[硕士学位]中国科学院地理科学 与资源研究所,2006,1-78。
    [64]Briffa KR.Annual climate variability in the Holocene:interpreting the message of ancient trees.Quaternary Science Reviews,2000,19:87-105.
    [65]Schulman E.Dendroclimatic changes in semiarid America.University of Arizona Press,Tucson,1958.9
    [66]Cook ER,Bird T,Peterson Met al.Climatic change over the last millennium in Tasmania reconstructed from tree rings.The Holocene,1992,2(3):205-217.
    [67]Cook ER,Buckley BM,D'Arrigo R.Inter-decadal climate variability in the Southern Hemisphere:Evidence from Tasmanian tree rings over the past three millennia.In:Jones PD,Bradley RS,Jouzel J(eds) Climate Variations and Forcing Mechanisms of the Last 2000 Years.NATO ASI Series,Vol.141,Springer-Verlag,Berlin,1996,141-160.
    [68]Linderholm HW,Gunnarson BE.Summer climate variability in west-central Fennoscandia during the last 3600 years.Geografiska Annaler,2005,87A(1):231-241.
    [69]卓正大,胡双熙,张先恭,等.祁连山地区树木年轮与我国近千年(1059-1975)的气候变化.兰州大学学报,1978,2:141-157.
    [70]王玉玺,刘光远,张先恭,等.祁连山圆柏年轮与我国近千年气候变化和冰川进展的关系.科学通报,1982,21:1316-1319.
    [71]刘光远,王玉玺,张先恭,等.祁连山近千年的年轮气候及其在冰川上的反映.中国科学院兰州冰川冻土研究所集刊,1984,5:97-108.
    [72]康兴成,Graumlich LJ,Sheppard P.青海都兰地区1835年来的气候变化--来自树轮资料.第四纪研究,1997,17:70-75
    [73].邵雪梅,方修琦,刘洪滨,等.柴达木东缘山地千年祁连圆柏年轮定年分析.地理学报,2003,58(1):90-100.
    [74]刘禹,安芷生,马海州,等.青海都兰地区公元850年以来树轮记录的降水变化及其与北半球气温的联系.中国科学D辑,2006:461-471.
    [75]Briffa KR,Schweingruber FH,Jones PD,et al.Reduced sensitivity of recent tree-growth to temperature at high northern latitudes.Nature.1998,391(6668):678-682.
    [76]袁玉江.试用年轮作阿勒泰县春小麦气候产量预报.新疆气象,1987,10(10):16-20.
    [77]袁玉江,王承义.巴里坤300年干湿变化特征及未来趋势预测.新疆气象,1990,13(4):10-14.
    [78]袁玉江,韩淑娓.北疆500年干湿变化特征.冰川冻土,1991,13(4):315-322.
    [79]袁玉江,李江风.天山西部树轮年表的响应函数.冰川冻土,1995,17 (2):170-177.
    [80]袁玉江,桑修诚,吴素芬.北疆250年地表水资源变化特征及未来趋势预测.自然资源学报,1996,11(2):113-119.
    [81]袁玉江,胡列群,李江风.新疆北疆地表水资源时空分布及变化特征初探.冰川冻土,1997,19(3):223-229.
    [82]袁玉江,叶玮,董光荣.天山西部伊犁地区314a降水的重建与分析.冰川冻土,2000,22(2):121-127.
    [83]袁玉江,李江风,胡汝骥.用树木年轮重建天山中部近350a降水量.冰川冻土,2001,23(1):34-40.
    [84]张志华,吴祥定,李骥.利用树木年轮资料重建新疆东天山300多年来干旱日数的变化.应用气象学报,1996,7(1):53-60.
    [85]张志华,李骥,Graumlich LJ,等.用树轮密度及宽度资料重建新疆吉木萨尔县的季节降水和最高温度.气象学报,1998,56(1):77-86.
    [86]朱海峰,王丽丽,邵雪梅,等.雪岭云杉树轮宽度对气候变化的响应.地理学报,2004,159(6):863-870.
    [87]袁玉江,邵雪梅,魏文寿,等.乌鲁木齐河山区树木年轮.积温关系及≥5.7℃积温的重建.生态学报.2005,25(4):756-762.
    [88]陈拓,秦大河,李江风,等.新疆昭苏云杉树轮纤维素δ13C的气候意义.冰川冻土,2000,22(4):347-352.
    [89]陈拓,秦大河,李江风,等.从树轮纤维素δ~(13)C序列看树木生长对大气CO_2浓度变化的响应.冰川冻土,2001,23(1):41-45.
    [90]Brauning A.Dendrochronology for the last 1400 years in Eastern Tibet.Climatic Change,1994,12:221-243.
    [91]吴祥定,林振耀.西藏近代气候变化及其趋势的探讨.科学通报,1978,23:746-750.
    [92]吴祥定,林振耀.青藏高原近二千年来气候变迁的初步探讨.见:中央气象局气象科学研究院天气气候研究所编.全国气候变化讨论会文集.北京:科学出版社,1981,18-25.
    [93]张先恭,赵臻,徐瑞珍.祁连山圆柏年轮与我国气候变化趋势.见:全国气候变化会议文集,北京:科学出版社,1984,26-35
    [94]张志华,吴祥定.采用青海两个树木年轮年表重建局地过去降水的初步分析.应用气象学报,1992,2(1):61-69.
    [95]张志华,吴祥定.利用树木年轮资料恢复祁连山区近700年来的气候变化.科学通报,1997,42(8):849-851.
    [96]康兴成,程国栋,康尔泗,等.利用树轮资料重建黑河近千年来出山口径流量. 中国科学D辑,2002,32(8):675-685.
    [97]康兴成,程国栋,陈发虎,等.祁连山中部公元904年以来树木年轮记录的旱涝变化.冰川冻土,2003,5:518-525.
    [98]秦宁生,邵雪梅,时兴合,等.青南高原树轮年表的建立及与气候要素的关系.高原气象,2003,22(5):445-450.
    [99]勾晓华,陈发虎,王亚军,等.利用树轮宽度重建近280a来祁连山东部地区的春季降水.冰川冻土.2001,23(3):292-296.
    [100]邵雪梅,黄磊,刘洪滨,等.树轮记录的青海德令哈地区千年降水变化.中国科学.中国科学D辑,2004,34(2):145-153.
    [101]刘禹,蔡秋芳,Won-Kyu Park,等.内蒙古锡林浩特白音敖包1938年以来树轮降水序列.科学通报,2003,48(9):952-957.
    [102]刘禹,马利民.树轮宽度对近376年呼和浩特季节降水重建.科学通报,1999,44(18):1986-1991.
    [103]刘洪滨,邵雪梅,黄磊.中国陕西关中及周边地区近500年来初夏干燥指数序列的重建.第四纪研究,2002,22(3):220-229.
    [104]刘洪滨,邵雪梅.秦岭南坡佛坪1789年以来1-4月平均温度重建.应用气象学报.2003,14(2):188-196.
    [105]刘洪滨,邵雪梅。采用秦岭冷杉年轮宽度重建陕西镇安1755年以来的初春温度.气象学报.2000,58(2):223-233.
    [106]刘禹,吴祥定,S.W.Lvitt,等.黄陵树木年轮稳定C同位素与气候变化.中国科学(D),1996,26(2):125-30.
    [107]刘禹,吴祥定,邵雪梅,等.树轮密度,稳定C同位素对过去100a陕西黄陵的季节性温度和降水的恢复.中国科学(D),1997,27(3):271-277.
    [108]刘禹,马利民,蔡秋芳,等.采用树轮稳定碳同位素重建贺兰山1890年以来夏季(6-8月)气温.中国科学(D)辑.2002,32(8):667-674.
    [109]吉林省年轮与气象科研协作组.用树木年轮资料作吉林省气温超长期预报。见:《气候变迁和超长期预报文集》,中央气象局研究所.北京:科学出版社.1977,64-67。
    [110]刘广深.长白山树轮稳定碳同位素序列与环境气候变迁.地质地球化学,1996,(6):94-97.
    [111]徐海,洪业汤,朱咏煊,等.安图红松树轮稳定碳同位素记录的低云量信息.地球化学,2002,31(4):309-314.
    [112]邵雪梅,吴祥定.利用树轮资料重建长白山区过去气候变化.第四纪研究,1997(1):76-85.
    [113]吴祥定,邵雪梅.采用树轮宽度资料分析气候变化对树木生长量影响的 尝试.地理学报,1996,(51):92-101.
    [114]王丽丽,邵雪梅,黄磊,等.黑龙江漠河兴安落叶松与樟子松树轮生长特性及其对气候的响应.植物生态学报.2005,29(3):380-385
    [115]吕军,屠其璞,钱君龙.天日山柳杉树轮δ~(13)C对华东地区降水序列的重建.南京气象学报.2001,24(3):350-355.
    [116]钱君龙,邓自旺,屠其璞,等.天目山柳杉树轮δD年序列及其气候含义.中国科学D辑.2001,31(5):372-376.
    [117]赵兴云,王建,钱君龙,等。天目山地区树轮真δ~(13)C记录的300多年的秋季气候变化.山地学报.2005,23(5):540-549。
    [118]吴祥定。树木年轮与气候变化,北京:气象出版社.1990,1-369.
    [119]Fritts HC,Vaganov EA,Sviderskaya Ⅳ,et al.Climatic variation and tree-ring structure in conifers:Empirical and mechanistic models of tree-ring width,number of cells,cell size,cell-wall thickness and wood density.Climate Research.1991,1(2):97-116.
    [120]Fritts HC.Growth tings of trees:their correlation with cliamtes.Science.154:973-979.Fritts HC,Shashkin AV,Downes GM.1999.A simulation model of conifer ring growth and cell structure,in Tree-Ring Analysis,edited by R.Wimmer and R.E.Vetter,pp.3-32,Cambridge University Press,Cambridge.Gates D M.Biophysical Ecology.New York:Springer,1966,1-611.
    [121]Evans MN,Reichert BK,Kaplan A,et al.A forward modeling approach to paleoclimatic interpretation of tree-ring data.Journal of Geophysical research,2006,111,G03008,doi:10.1029/2006JG000166.
    [122]Vaganov EA.Recording of warming in current century by tracheids of the annual tree rings.Doklady Akademii Nauk.1996,351(2):281-283.
    [123]Fritts HC.Modeling tree-ring and environmental relationship for dendrochronological analysis.Forest growth:process modeling of responses to environmental stress.Timber,Oregon,1990:360-382.
    [124]Ivshin AP,Shiyatov SG.The assessment of subtundra forests degradation by dendrochronological methods in the Norilk industrial area.Dendrochronologia.1995,13:113-126.
    [125]Kharuk Ⅵ,Nilsson S,Samarskaia E.Antropogenic stress factors in Siberia.International for Applied System Analysis,1996.
    [126]McCarroll,Loader DN.Stable isotopes in tree rings.Quaternary Science Reviews.2004,23(7-8):771-801.
    [127]Farquhar GD,Ehleringer JR,Hubick KT.Carbon isotope discrimination and photosynthesis.Ann Rev Plant Pbysiol.1989,40:503-537.
    [128]Briffa KR,Schweingruber FH,Jones PD,et al.Reduced sensitivity of recent tree-growth to temperature at high northern latitudes.Nature,1998,391(6668):678-682.
    [129]Barber VA,Juday GP,Finney BP.Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress.Nature.2000,405(6787):668-673.
    [130]Lloyd AH,Fastie CL.Spatial and temporal variability in the growth and climate response of treeline trees in Alaska.Climatic Change.2002,52(4):481-509.
    [131]孙忠家,张德成,刘跃忠.黑龙江旅游资源与开发.哈尔滨出版社.2002,1-294.
    [132]http://www.dreams-travel.com/heilongjiang/Weather.htm
    [133]刘少志,何红艳.黑龙江省气候成因.佳木斯大学学报(自然科学版),2004,22(3):410-414.
    [134]刘绪军,延秀杰。水土保持科技情报.2004,4,26-28.
    [135]Mann HB.Non-parametric test against trend[J].Econometrika,1945,13:245-259.
    [136]Kohler M A.On the use of double-mass analysis for testing the consistency of meteorological records and for making required adjustment[J].Bulletin of the American Meteorological Society,1949,30:188-189.
    [137]丁一汇 编著.天气动力学中的诊断分析方法.北京:科学出版社.1989,44-45.
    [138]徐祝龄.气象学.北京:气象出版社,1994.1-43.
    [139]Freidli,H.,L(o|¨)tscher,H.,Oeschger,H.,Seigenthaler,U.,and Stauffer,B.Ice core record of the ~(13)C/~(12)C ratio of atmospheric CO_2 in the past two centuries.Nature 1986,324,237-238.
    [140]Keeling,C.D.and Whorf-T.P.Atmospheric CO_2 records from sites in the SIO air sampling network.In:Trends:A compendium of data on global change.Carbon Dioxide Information Analysis Centre,Oak Ridge National Laboratory,Oak Ridge,Tenn.,U.S.A.1996.
    [141]Levin,I.,Kromer,B.,Schoch-Fischer,H.,et al.~(13)C records from sites in Central Europe.In:Trends'93:A compendium of data on global change.(eds Boden,T.A.,Kaiser,D.P.,Sepanski,R.J.and Stoss,F.W.).ORNL/CDIAC-65.Carbon Dioxide Information Analysis Centre,Oak Ridge National Laboratory,Oak Ridge,Tenn.,U.S.A.1996.
    [142]中国森林编辑委员会,中国森林[M],中国林业出版社,1999,863-869。
    [143]Stocks M A,Smiley T L.An Introduction to Tree ring Dating[M].Chicago:University of Chicago Press,1968,10-15.
    [144]Holmes R L.Computer-assisted quality control in tree-ring dating and measurement[J].Tree-Ring Bulletin,1983,43:69-78.
    [145]Vaganov E A.The tracheidogram method in tree-ring analysis and its application.Cook ER,Kairiukstis LA,eds.Methods of Dendrochronology:Applications in the Environmental Sciences.Netherlands:Kluwer Academic Publishers,1990:63-67.
    [146]Cook E R.,Kairiukstis L A.Methods of Dendrochronology:Applications in environmental sciences.Dordrecht,the Netherlands:Kluwer Academic Publishers,1990,1-394.
    [147]Schweingruber FH.Tree rings and environment.Dendroecology.Haupt,Berne,1996,1-609.
    [148]Running SW,Nemaini RR,Hungerford RD.Extrapolation of synoptic meteorological data in mountainous terrain and its use simulating forest evapotranspiration rate and photosynthesis.Canadian Journal of Forest Research.1987,17:472-483.
    [149]Murray FW.On the computation of saturation vapor pressure.Journal of Applied Meteorology.1967,6:203-204.
    [150]Nikolov NT,Zeller KF.A solar radiation algorithm for ecosystem dynamic models.Ecol.Model.1992,61:149-168.
    [151]Klein SA.Calculation of monthly average insulation on tilted surfaces.Sol Energy.1997,19:325-329.
    [152]Bristow KL,Campbell GS.On the relationship between incoming solar radiation and daily maximum and minimum air temperature.Agric For Meteorol.1984,131:159-166.
    [153]Hungerford RD,Nemani RR,Running SW,et al.MTCLIM:a mountain microclimate simulation model Washington D.C:U.S.Dept.of Agriculture,Forest Service,Intermountain Forest and Range Experiment Station,1989,1-52.
    [154]Penman HL,Schofiels RK.Some physical aspects of assimilation and transpiration.Symp Soc Exp Biol.1951,15:115-129.
    [155]Johnson IR.A model of water flow through plants incorporating shoot/root message control of stomatal conductance.Plant Cell Environ.1991,14:531-544.
    [156]Boyer JS.Water transport.Annu Rev Plant Physiol 1985,36:473-516.
    [157]Gates,David M.Biophysical ecology.New York:Springer-Verlag,xxiii,1980,1-611.
    [158]Thornthwaite CW,Mather JR.The water balance.Centerton,NJ:Drexel Institute of Technology-Laboratory of Climatology(Publications in Climatology,vol.Ⅷ,n.1).1955,1-104.
    [159]Kramer PD,Kozlowski TT.1995.Water relations of plants and soils.San Diego:Academic,1-495.
    [160]Cowan IR.Regulation of water use in relation to carbon gain in higher plants.In Lange OL,Nobel PS,Osmond CB,Ziegler H(eds)Encyclopedia of plant physiology(NS),vol 12b.Springer,Berlin Heidelberg New York,1982,589-613.
    [161]韦三立 编著.植物生理学名词解释.2000,1-168.
    [162]Buwalda JG,Smith GS.Effects of partial defoliation at various stages of the growing season on fruit season yields,root growth and return bloom of kiwifruit vines.Sci.Hortic.1990,42:29-44.
    [163]李合生.现代植物生理学.,北京高等教育出版社.2002,292.
    [164]Ivshin AP,Shiyatov SG.1995.The assessment of subtundra forests degradation by dendrochronological methods in the Norilk industrial area.Dendrochronologia.13:113-126.
    [165]Kharuk Ⅵ,Winterberger K,Tsibulskii GM,et al.1996.Technogenic disturbance of pretundra forests in Norilsk valley.Russian Journal of Ecology.27(6):406-410.
    [166]中国科学院林业土壤研究所,红松林.北京:农业出版社.1980.
    [167]王忠.植物生理学.北京:中国农业出版社.1999,1-492.
    [168]陈晓燕,叶建春,陆桂华,等.全国土壤田间持水量分布探讨.水利水电技术,2004,35(9):113-119.
    [169]黄昌勇主编.土壤学.中国农业出版社.2000,1-311.
    [170]任宪威.树木学(北方本).1997,1-568.
    [171]周晓峰,王义弘,赵惠勋.几种主要用材树木生长节律.东北林学院学报.1981,2,49-60.
    [172]郑景云,葛全胜,赵会霞.近40年中国植物物候对气候变化的响应研究.中国农业气象.2003,24(1):28-32.
    [173]徐雨晴,陆佩玲,于强.近50年北京树木物候对气候变化的响应.地理研究.2005,24(3):412-420.
    [174]苏宏新,全球气候变化条件下,新疆天山云杉林生长的分析与模拟[博士论文].中国科学院研究生院,2005,1-142.
    [175]王绍武,罗勇,赵宗慈,等.近千年温度变化的争议仍在继续.气候变化研究进展.2005,1(2):72-75.
    [176]Portter S C.Pattern and forcing of northern hemisphere glacier variations during the last millennium.Quaternary Research[J],1986,26:27-48.
    [177]袁玉江,李江风.天山乌鲁木齐河源450a冬季温度序列的重建与分析[J].冰川冻土,1999,21(1):64-70.
    [178]王绍武,闻新宇,罗勇,等.近千年中国温度序列的建立.科学通报,2007,52(8):958-964.
    [179]Rigozo NR,Vieira LEA,Echer E et al.Wavelet analysis of solar-ENSO imprints in tree ring data from Southern Brazil in the last century.Climate Change,2003,60:329-340.
    [180]黄嘉佑.气象统计分析与预报方法[M].北京:气象出版社,2004,215-225.
    [181]Torrence C,Compo G P.A practical Guide to wavelet analysis.Bulletin of the American Meteorological Society,1998,79(1):61-78.
    [182]符淙斌,王强.气候突变的定义和检测方法.大气科学[J],1992,16(4):482-493.
    [183]Yanetani T.Discontinuous changes of precipitation in Japan after 1900detected by the Lepage Test[J].Journal of the Meteorological Society of Japan,1992,70(1):95-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700