Al-Ti-B-C中间合金制备与细化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以高纯铝、海绵Ti和B4C为反应原料,按照Al-5Ti-1B4C的成分配比,分别采用低温高能超声处理工艺和高温感应熔炼工艺,研究了新型Al-Ti-B-C四元中间合金的制备工艺。利用X射线衍射仪、扫描电子显微镜和能谱仪等材料分析测试设备,对中间合金的物相和组织形貌进行了分析。研究了不同工艺参数对中间合金中TiAl3、TiB_2和TiC相尺寸形貌的影响;计算并分析了Al-5Ti-1B4C体系的反应热力学与动力学机制;同时研究了不同工艺下制备的中间合金对工业纯铝的细化行为,并就Al-Ti-B-C四元中间合金的细化机制进行了探讨。主要取得了以下研究结果:
     ⑴热力学计算结果表明,Al-5Ti-1B4C反应体系中3Ti + B4C = 2TiB_2 + TiC的反应焓变ΔrH0和吉布斯自由能变化ΔrG0最低,反应自发进行的倾向最大。
     ⑵本文实验参数下的高能超声处理工艺无法在850℃促进Ti与B4C的反应,在该温度下制备的中间合金中仅含有Al和TiAl3相。显微组织研究发现,该类中间合金中的TiAl3相为团块状,尺寸一般在20μm以下;随着超声处理次数和时间的增加,块状的TiAl3相趋于均匀分散,同时有向球状转化的趋势。
     ⑶通过提高反应温度,可以显著改善Al/B4C界面润湿性。利用感应熔炼法在1400℃和1600℃下制备的Al-Ti-B-C中间合金中含有Al、TiAl3、TiB_2和TiC相。其中,TiB_2为20μm左右的短片状,而颗粒状TiC则为团聚分布且尺寸跨度较大,从2μm到亚微米不等;片状TiAl3的长度则随反应温度的升高而增加。Al/B4C界面处的反应3[Ti]+B4C=TiB_2+TiC是生成TiB_2和TiC异质形核质点的控制环节。
     ⑷仅含有TiAl3相的中间合金对工业纯铝的细化效果一般;而同时含有TiAl3、TiB_2和TiC相的Al-Ti-B-C四元中间合金则具有优良的细化性能。在0.2wt%的添加量下,由感应熔炼法在1400℃和1600℃下制备的Al-Ti-B-C中间合金可以分别将工业纯铝晶粒细化至189μm和192μm;保温静置60min后,仍可以将工业纯铝细化至220μm左右。
     ⑸TiB_2、TiC相的非均匀形核和溶质Ti抑制Al晶粒生长的共同作用是Al-Ti-B-C四元中间合金细化铝及铝合金的主要机制。在形核过程中,中间合金中的TiB_2和TiC相与Al的润湿性好,晶格匹配度高,能够形成良好的非均匀形核界面,α-Al从而在这些质点上形核;而进入晶粒长大阶段后,溶质Ti对α-Al晶粒生长的抑制作用成为主导。因此,可以认为Al-Ti-B-C四元中间合金的细化机制为碳硼化物理论和溶质理论的一种耦合效应。
In this thesis, master alloys were prepared by high-energy ultrasound treatment process at low temperature and induction melting process at high temperature respectively. High purity aluminum, sponge Ti and B4C particles were used as reactants, in accordance with the composition ratio of Al-5Ti-1B4C. And the materials analysis facilities, such as X-ray diffractometer, scanning electron microscopy and energy dispersive spectroscopy, were used to observe and identify the existence and morphology of production phases. The effect of different process parameters on the morphology and size distribution of the TiAl3, TiB_2 and TiC particles in master alloys were carefully studied. The thermodynamic and kinetic mechanisms of the Al-5Ti-1B4C reaction system were analyzed by the calculation and experimental results. Finally, the grain refinement performance of the master alloy synthesized by different process were well researched and the refining mechanisms of Al-Ti-B-C master alloy were discussed. The main conclusions can be summarized as follows:
     ⑴The thermodynamic calculations showed that the reaction, 3Ti + B4C = 2TiB_2 + TiC, has the lowest enthalpyΔrH0 and Gibbs free energy changeΔrG0 in the Al-5Ti-1B4C system. So, this reaction may react in the system spontaneously.
     ⑵There was no evidence of the reaction between Ti and B4C in the high energy ultrasound treatment process at 850℃. Such master alloys synthesized by ultrasound treatment are only composed with Al and TiAl3. The block TiAl3 phase has a average size less than 20μm. With the increase of the times and duration of ultrasound treatment, the block TiAl3 tend to be finely dispersed in the matrix, and become a spherical shape.
     ⑶The wettability of Al/B4C interface is improved significantly by rising reaction temperature. The Al-Ti-B-C quaternary master alloys prepared by induction melting process at 1400℃and 1600℃are composed with Al, TiAl3, TiB_2 and TiC phases. The TiB_2 has plate-like shape with a length of 20μm, the TiC size spans from 2μm to submicron level, and the length of flake TiAl3 increased with the rising reaction temperature. The Al/B4C interface reaction, 3[Ti] + B4C =2TiB_2 + TiC, is the key mechanism to generate TiB_2 and TiC nucleating substrates.
     ⑷The Al-Ti-B-C quaternary master alloys containing TiAl3, TiB_2 and TiC had an excellent refining performance on commercial pure aluminum, compared with the master alloys only containing TiAl3. The mean grain sizes of commercial pure aluminum were diminished to 189μm and 192μm separately by adding 0.2wt% master alloys synthesized by induction melting process at 1400℃and 1600℃. After holding for 60 min, the diameter of commercial pure aluminum grain was stable around 220μm.
     ⑸The combination effect of heterogeneous nucleation caused by TiB_2 and TiC particles and the grain growth restriction caused by solute Ti is the main grain refinement mechanism of the quaternary Al-Ti-B-C master alloy. In the nucleating process,α-Al starts to form at the surface of TiB_2 and TiC substrates which have a good wettability and lattice match with Al. In the later grain growth stage, the growth inhibition ofα-Al caused by solute Ti is the dominant effect. So, the refinement mechanism of Al-Ti-B-C mater alloy is a coupling effect of the carbon-boride theory and the solute theory.
引文
[1]王祝堂,田荣璋.铝合金及其加工手册(第二版)[M].长沙:中南大学出版社, 2000; 149-150.
    [2]胡赓祥,蔡珣,戎咏华.材料科学基础(第二版)[M].上海:上海交通大学出版社, 2006; 227-231.
    [3]孙海斌,左秀荣,仲志国,等.铝合金晶粒细化方法的研究现状及最新动向[J].热加工工艺, 2005, (12): 71-73.
    [4]张景祥,张忠华,边秀房.变形铝合金晶粒细化的进展[J].轻合金加工技术, 2000, 28 (07): 1-4.
    [5]王红霞,张国平,许春香,等.机械振动对纯Al晶粒细化及凝固收缩的影响[J].铸造设备研究, 2007, (01): 28-31.
    [6]訾炳涛,巴启先,崔建忠,等.强脉冲电磁场对金属凝固组织影响的研究[J].物理学报, 2000, 49 (05): 1010-1014.
    [7]赵忠兴.超声波对合金结晶过程的均匀化作用[J].热加工工艺, 1999, (05): 10-11.
    [8]李军文,桃野正.超声波对铝合金铸锭组织的影响[J].铸造技术, 2004, (08): 593-595.
    [9]边秀房,邹新国,刘广荣,等.金属晶粒自身细化[J].金属学报, 1997, (06): 602-608.
    [10]马世光,熊慧,王祝堂.回顾与展望全球铝产品产量及对晶粒细化剂的需求[J].轻合金加工技术, 2011, 39 (10): 1-9.
    [11] McCartney, D. G. Grain refining of aluminium and its alloys using inoculants[J]. International Materials Reviews, 1989, 34 (5): 247-260.
    [12] Murty, B. S. Grain refinement of aluminium and its alloys by heterogeneous nucleation and alloying[J]. International Materials Reviews, 2002, 47 (1): 3-29.
    [13] Cibula, A. The mechanism of grain refinement of sand castings in aluminum alloys[J]. Journal of the Institute of Metals 1949, 76 :321-360.
    [14]高泽生.世界铝晶粒细化剂供应工业⑴[J].轻金属, 1999, (09): 50-53.
    [15]高泽生.世界铝晶粒细化剂供应工业⑵[J].轻金属, 1999, (10): 52-55.
    [16] Sigworth, G. K. Grain refining of aluminum and phase relationships in the Al-Ti-B system[J]. Metallurgical transactions. A, Physical metallurgy and materials science, 1984, 15 A (2): 277-282.
    [17]高泽生. Al-Ti-C晶粒细化用中间合金的最新进展[J].轻合金加工技术, 1998, 26 (10): 5-11.
    [18] Banerji, A.,Reif, W. Grain refinement of aluminum by TiC[J]. Metallurgical Transactions A, 1985,16 (11): 2065-2068.
    [19]. Reif, W.,Banerji, A. Titanium carbide grain refiner prodn. - introduces graphite powder directly into melt to react with titanium[P]. WO8605212-A1, 1986.
    [20] Banerji, A.,Reif, W. Development of Al-Ti-C grain refiners containing TiC[J]. Metallurgical transactions. A, Physical metallurgy and materials science, 1986, 17 A (12): 2127-2137.
    [21]张作贵,刘相法,边秀房. Al-Ti-C系中TiC形成的热力学与动力学研究[J].金属学报, 2000, (10): 1025-1029.
    [22]方鸿生,张柏清,李建国,等.一种含钛、碳的铝基中间合金的制备方法[P]. CN1215087, 1999-04-28, 1999.
    [23]张柏清,马洪涛,李建国,等. Al-Ti-C中间合金细化剂的组织及其细化性能[J].金属学报, 2000, (04): 341-346.
    [24]程桃祖. Al-Ti-C中间合金的制备及细化性能研究[D].湘潭,湘潭大学, 2007.
    [25] Prasad, K. V. S.,Murty, B. S.,Pramanik, P., et al. Reaction of fluoride salts with aluminium[J]. Materials Science and Technology, 1996, 12 (9): 766-770.
    [26] Fjellstedt, J.,Jarfors, A. E. W.,Svendsen, L. Experimental analysis of the intermediary phases AlB2, AlB12 and TiB2 in the Al-B and Al-Ti-B systems[J]. Journal of Alloys and Compounds, 1999, 283 (1-2): 192-197.
    [27] Zhang, B. Q.,Fang, H. S.,Lu, L., et al. Synthesis mechanism of an Al-Ti-C grain refiner master alloy prepared by a new method[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2003, 34 A (8): 1727-1733.
    [28]李黎.超声场下AlTiC的合成及新型Al-Mg-Si系合金的研究[D].北京,清华大学, 2005.
    [29]余贵春,张柏清,马洪涛,等.铝热反应制备Al-Ti-C中间合金的研究[J].金属热处理, 2000, (05): 1-4.
    [30] Merzhanov, A. G. History and recent developments in SHS[J]. Ceramics International, 1995, 21 (5): 371-379.
    [31] Nikitin, V. I.,Wanqi, J. I. E.,Kandalova, E. G., et al. Preparation of Al-Ti-B grain refiner by SHS technology[J]. Scripta Materialia, 2000, 42 (6): 561-566.
    [32] Brinkman, H. J.,Zupani?, F.,Duszczyk, J., et al. Production of Al-Ti-C grain refiner alloys by reactive synthesis of elemental powders: Part I. Reactive synthesis and characterization of alloys[J]. Journal of Materials Research, 2000, 15 (12): 2620-2627.
    [33] Brinkman, H. J.,Zupani?, F.,Duszczyk, J., et al. Production of Al-Ti-C grain refiner alloys by reactive synthesis of elemental powders: Part II. Grain refining performance of alloys and secondaryprocessing[J]. Journal of Materials Research, 2000, 15 (12): 2628-2635.
    [34]严有为,刘生发,范晓明,等.自蔓延高温合成Al-TiC晶粒细化剂及其晶粒细化效果[J].中国有色金属学报, 2002, 12 (05): 977-981.
    [35]李英龙,温景林,陈彦博,等. SHS技术制备的Al-3Ti-0.15C晶粒细化剂[J].中国有色金属学报, 2004, 14 (02): 179-183.
    [36]王振洋. Al-Ti-C中间合金的燃烧合成[D].兰州,兰州理工大学, 2003.
    [37] Nukami, T.,Flemings, M. C. In situ synthesis of TiC particulate-reinforced aluminum matrix composites[J]. Metallurgical and Materials Transactions A, 1995, 26 (7): 1877-1884.
    [38] Sato, K.,Flemings, M. C. Grain refining of Al-4.5Cu alloy by adding an Al-30TiC master alloy[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29 (6): 1707-1710.
    [39]胡宪正,于金,谈荣生,等. TiCp/Al基复合材料中TiC颗粒的合成反应研究[J].铸造, 2003, 52 (04): 243-245.
    [40]张二林,杨波,曾松岩,等. Al-Ti-C系中反应生成TiC机理研究[J].材料工程, 1998, (02): 3-5.
    [41]侯运丰.燃烧合成Al-Ti-C结构宏观动力学及Al-Ti-C细化效果评价[D].兰州,兰州理工大学, 2007.
    [42]李元元,项品峰,龙雁,等.热爆反应原位生成TiC的热力学和动力学探讨[J].华南理工大学学报(自然科学版), 1999, 27 (12): 7-10.
    [43] Hadia, M. A.,Ghaneya, A. A.,Niazi, A. Development and evaluation of Al-Ti-C master alloys as grain refiner for aluminium[A]. Lin Ray, Y., TMS annual meeting, Anaheim, CA, USA, 1996; 729-736.
    [44] Birol, Y. Grain refining efficiency of Al-Ti-C alloys[J]. Journal of Alloys and Compounds, 2006, 422 (1-2): 128-131.
    [45]姜文辉,韩行霖. Al-Ti-C中间合金晶粒细化剂的合成及其细化晶粒作用[J].中国有色金属学报, 1998, 8 (02): 268-271.
    [46]张明俊.铝-钛-硼中间合金的两步生产法[J].轻金属, 1989, (11): 51-55.
    [47] Yücel, O.,?ahin, F. C. Production of aluminum-titanium-boron master alloy by aluminothermic process[J]. High Temperature Materials and Processes, 2001, 20 (2): 137-142.
    [48]陈辉煌,陈本孝,林立杰.电解法制取铝钛硼中间合金[J].江西有色金属, 2001, 15 (04):15-17.
    [49] Cantor, B. Heterogeneous nucleation and adsorption[J]. Philosophical transactions - Royal Society. Mathematical, Physical and engineering sciences, 2003, 361 (1804): 409-417.
    [50] Greer, A. L. Modelling of inoculation of metallic melts: application to grain refinement ofaluminium by Al-Ti-B[J]. Acta materialia, 2000, 48 (11): 2823-2835.
    [51] Quested, T. E. Understanding mechanisms of grain refinement of aluminium alloys by inoculation[J]. Materials Science and Technology; MST, 2004, 20 (11): 1357-1369.
    [52] Easton, M. Grain refinement of aluminum alloys: Part I. The nucleant and solute paradigms - a review of the literature[J]. Metallurgical and Materials Transactions; A; Physical Metallurgy and Materials Science, 1999, 30 (6): 1613-1623.
    [53] Easton, M.,StJohn, D. Grain refinement of aluminum alloys: Part II. Confirmation of, and a mechanism for, the solute paradigm[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1999, 30 (6): 1625-1633.
    [54] Mohanty, P. S. Mechanism of grain refinement in aluminium[J]. Acta metallurgica et materialia, 1995, 43 (5): 2001-2012.
    [55] Karantzalis, A. E.,Kennedy, A. R. The grain refining action of TiB2 and TiC particles added to aluminium by a stir-casting method. In 1996; Vol. 217-222, 253-258.
    [56]王振卿,刘相法,边秀房. Al-Ti-C中间合金的相组成及其细化特性[J].铸造, 2001, 50 (06): 316-320.
    [57]李建国,王亮. AlTiC中间合金细化剂研究的最新进展[J].轻合金加工技术, 2003, 31 (03): 7-11.
    [58] Crossley, F. A.,Mondolfo, L. F. Mechanism of grain refinement in aluminium alloys[J]. Transactions of AIME, 1951, 191: 477-484.
    [59] Marcantonio, J. A.,Mondolfo, L. F. Grain refinement in aluminum alloyed with titanium and boron[J]. Metallurgical Transactions, 1971, 2 (2): 465-471.
    [60] Backerud, L.,Shao, Y. D. Grain refining mechanisms in alumin um as a result of addition of titanium and boron[J]. Aluminum, 1991, 67 (7/8): 780-785.
    [61] Johnsson, M.,Backerud, L.,Sigworth, G. K. Study of the mechanism of grain refinement of aluminum after additions of Ti- and B-containing master alloys[J]. Metallurgical Transactions A, 1993, 24 (2): 481-491.
    [62] Jones, G. P. The mechanism of nucleation of liquid aluminium by Al-Ti-B alloys[A]. In Engh, T. A.,Lyng, S.,Oye, H. A., Trondheim, Norw, 1985; 211-228.
    [63] Donnelly, S. E.,Birtcher, R. C.,Allen, C. W., et al. Ordering in a fluid inert gas confined by flat surfaces[J]. Science, 2002, 296 (5567): 507-510.
    [64] Oh, S. H. Ordered liquid aluminum at the interface with sapphire[J]. Science, 2005, 310 (5748): 661-663.
    [65] Schumacher, P. Heterogeneously nucleatedα-Al in amorphous aluminium alloys[J]. Materials science and engineering. A, Structural materials, 1994, 178 (1-2): 309-313.
    [66] Schumacher, P.,Greer, A. L.,Worth, J., et al. New studies of nucleation mechanisms in aluminium alloys: Implications for grain refinement practice[J]. Materials Science and Technology, 1998, 14 (5): 394-404.
    [67] Iqbal, N. Real-time observation of grain nucleation and growth during solidification of aluminium alloys[J]. Acta materialia, 2005, 53 (10): 2875-2880.
    [68]韩行霖,吴庆义,许仲刚,等.四元晶粒细化剂及其制造方法[P]. CN1046945, 1990-11-14, 1990.
    [69]韩行霖,姜文辉,沈阳工业大学.一种新型中间合金细化剂[P]. CN1088996, 1994-07-06, 1993.
    [70]姜文辉,韩行霖. Al-Ti-C-B中间合金细化剂的研究[J].特种铸造及有色合金, 1997, (01) : 19-22.
    [71]聂金凤,刘相法,丁海民,等. Al-Ti-C-B中间合金晶粒细化行为的研究[J].特种铸造及有色合金, 2008, (S1): 175-177.
    [72] Nie, J.,Ma, X.,Ding, H., et al. Microstructure and grain refining performance of a new Al-Ti-C-B master alloy[J]. Journal of Alloys and Compounds, 2009, 486 (1-2): 185-190.
    [73] Nie, J.,Liu, X.,Ma, X. Influence of trace boron on the morphology of titanium carbide in an Al-Ti-C-B master alloy[J]. Journal of Alloys and Compounds, 2010, 491 (1-2): 113-117.
    [74]张黎黎,李鹏廷,刘思达,等. Al-3Ti-1B-0.2C中间合金对A356合金的晶粒细化行为[J].特种铸造及有色合金, 2011, 31 (06): 576-579.
    [75]马立群,舒光冀,陈锋.金属熔体在超声场中凝固的研究[J].材料科学与工程, 1995, 13(04): 2-7.
    [76] Abramov, V.,Abramov, O.,Bulgakov, V., et al. Solidification of aluminium alloys under ultrasonic irradiation using water-cooled resonator[J]. Materials Letters, 1998, 37 (1-2): 27-34.
    [77]何迁,李建国,何北星.功率超声对纯铝凝固组织的影响[J].轻合金加工技术, 2008, 36 (12): 14-18.
    [78]陈锋,舒光冀,马立群,等.高能超声作用下数种金属基复合材料的制备及机制[J].复合材料学报, 1998, 15 (03): 12-16.
    [79]丁加善,赵玉涛,张松利,等.超声化学原位合成(Al2O3+Al3Zr)p/A356复合材料[J].铸造, 2008, 57 (04): 354-358.
    [80]陈登斌,赵玉涛,李桂荣,等.高能超声对原位合成Al3Ti/6070复合材料凝固组织的影响及机制[J].中国有色金属学报, 2009, 19 (11): 1956-1961.
    [81]韩延峰,李克,王俊,等.高能超声对Al-5Ti-1B中间合金组织和细化行为的影响[J].航空材料学报, 2005, 25 (05): 8-14.
    [82]李英龙. Al-Ti-C Grain Refiner Made by Ultrasonic Levitation[J]. Journal of Wuhan University of Technology(Materials Science Edition), 2008, 23 (03): 319-322.
    [83]王希军,马南钢,丁华东,等.铝在B4C陶瓷上的润湿性[J].机械工程材料, 2008, 32 (05): 15-19.
    [84] Maxwell, I.,Hellawell, A. The constitution of the system Al-Ti-B with reference to aluminum-base alloys [J]. Metall Trans, 1972, 3 (6): 1487-1493.
    [85] Hayes, F. H.,Lukas, H. L.,Effenberg, G., et al. Thermodynamic calculation of the Al-rich corner of the Al-Ti-B system[J]. Zeitschrift fuer Metallkunde/Materials Research and Advanced Techniques, 1989, 80 (5): 361-365.
    [86] Witusiewicz, V. T.,Bondar, A. A.,Hecht, U., et al. The Al-B-Nb-Ti system. V. Thermodynamic description of the ternary system Al-B-Ti[J]. Journal of Alloys and Compounds, 2009, 474 (1-2): 86-104.
    [87] Fine, M. E.,Conley, J. G. Discussion of "On the free energy of formation of TiC and Al4C3"[J]. Metallurgical Transactions A, 1990, 21 (9): 2609-2610.
    [88] Banerji, A.,Reif, W. Metallographic investigation of TiC nucleants in the newly developed Al-Ti-C grain refiner[J]. Journal of Materials Science, 1994, 29 (7): 1958-1965.
    [89] Svendsen, L.,Jarfors, A. Al-Ti-C phase diagram[J]. Materials Science and Technology, 1993, 9 (11): 948-957.
    [90] Frage, N.,Frumin, N.,Levin, L., et al. High-temperature phase equilibria in the Al-rich corner of the Al-Ti-C system[J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 1998, 29 (4): 1341-1345.
    [91] Lai, J.,Zhang, Z.,Chen, X. G. Effect of Sc, Zr, and Ti on the interfacial reactions of the B4C/Al system[J]. Journal of Materials Science, 2010, 46 (2): 451-459.
    [92] Shen, P.,Zou, B.,Jin, S., et al. Reaction mechanism in self-propagating high temperature synthesis of TiC-TiB2/Al composites from an Al-Ti-B4C system[J]. Materials Science and Engineering A, 2007, 454-455 300-309.
    [93] Zou, B.,Shen, P.,Jiang, Q. Reaction synthesis of TiC-TiB2/Al composites from an Al-Ti-B4C system[J]. Journal of Materials Science, 2007, 42 (24): 9927-9933.
    [94] Zou, B.,Shen, P.,Jiang, Q. Dependence of the SHS reaction behavior and product on B4C particle size in Al-Ti-B4C and Al-TiO2-B4C systems[J]. Materials Research Bulletin, 2009, 44 (3): 499-504.
    [95] Lin, Q.,Shen, P.,Qiu, F., et al. Wetting of polycrystalline B4C by molten Al at 1173-1473 K[J].Scripta Materialia, 2009, 60 (11): 960-963.
    [96]丁华东,钱耀川,傅苏黎,等.改善Al对B4C润湿性的研究[J].装甲兵工程学院学报, 2006, (02): 88-90.
    [97] Kennedy, A. R.,Brampton, B. The reactive wetting and incorporation of B4C particles into molten aluminium[J]. Scripta Materialia, 2001, 44 (7): 1077-1082.
    [98] Toptan, F.,Kilicarslan, A.,Kerti, I. The effect of Ti addition on the properties of Al-B4C interface: A microstructural study[J]. Materials Science Forum, 2010, 636-637: 192-197.
    [99] Guzowski, M. M.,Sigworth, G. K.,Sentner, D. A. The role of boron in the grain[J]. Metallurgical Transactions A, 1987, 18 (5): 603-619.
    [100]刘相法,边秀房,杨阳,等. Al-5Ti-B中间合金中TiAl3形态形成规律的研究[J]. 1997, (5): 4-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700