模块化自重构机器人仿生运动规划与控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模块化机器人是由大量的具有一定运动和感知功能的基本模块相互连接而成,能够构成多种构型完成多种任务的复杂机器人系统。与传统机器人相比,模块化机器人具有模块化、自变形和自修复等特点,同时,由多个自带关节的模块组合在一起的机器人系统具有一定的冗余度,灵活性强,使其具备了较强的运动能力,可以通过运动构型及运动模式的改变来适应不同的路面条件。然而,模块化机器人运动的超冗余度、运动构型多样性以及运动多模式化的特点,也使运动规划变得更加复杂。因此,寻找一种能够将模块化机器人多种运动构型的多种模式运动统一规划,使运动模式能够随着机器人构型改变而自适应变化,并且能够对外部环境反馈作出相应步态调整,以实现非结构化环境中的自主运动的控制方法对模块化机器人的发展具有重要的研究意义。
     模块作为机器人的基本单元,它的结构特点对整体构型的运动方式有着较大影响。本文采用正方体结构的UBot模块作为研究对象,模块分别主动模块和被动模块,分别带有主、被动钩爪式连接机构,主动模块与被动模块可以实现自动的连接/断开,通过连接机构上的方位识别单元识别模块间的连接状态及方位,具有阵列式机器人模块结构规整、连接机构灵活的特征;每个模块具有两个相互垂直的旋转自由度,旋转角度范围为(-90°,90°),可以实现串联式机器人整体协调运动的功能。为了使机器人系统具有环境感知功能,为UBot系统设计了传感模块,传感模块内装有摄像头、红外传感器、线性霍尔传感器及加速度计等传感装置,并具有与UBot被动模块相同的连接机构,可以连接到运动构型中实时感知外部环境。
     借鉴生物运动神经系统的控制机制,建立模块化机器人仿生网络控制结构。针对UBot模块双关节间相互约束的结构特点,建立了能够控制模块两个关节同时运动的双输出中枢模式发生器(CPG)振荡模型,构建了双输出CPG调相运动控制网络,用于模拟生物的脊髓神经控制系统,并引入中间神经元、感知神经元和运动神经元,形成模块化机器人仿生运动控制网络。
     基于建立的仿生运动控制网络,分别针对模块化机器人所构成的两类构形——无肢体运动构型和有肢体运动构型制定运动规划策略。通过模拟低等生物将低级神经中枢的自激行为直接作用到各个关节的运动控制方式,对模块化机器人几种典型的无肢体运动构型进行运动规划。利用CPG调相控制器中节点连接方式对相位输出结果的影响,在网络节点数目不变的情况下,实现了蛇形构型蠕动、多节虫运动、蜿蜒运动、滚动和转弯运动的多种运动模式的统一规划;并解决了十字构型的直行、转弯运动模式,环形构型的滚动运动模式的运动规划问题;通过模拟高等动物运动神经控制系统的方法,针对有肢体运动构型提出了利用CPG调相控制器模拟高等动物的脊髓神经系统,为各个关节分别建立运动神经元的运动规划策略,面向由髋膝踝关节组成的有肢体运动构型制订了统一的运动神经元设计办法,实现了仿生四足构型对角步态和慢走步态的统一规划。
     从拓扑构型改变与拓扑构型不变两个方面,研究了模块化机器人构型改变带来的运动规划方法协调变化问题。对于由模块连接方式改变而产生的拓扑结构变形,考虑单链式构型的拓扑改变与运动规划,归纳出开链式结构与闭链式结构之间的变形条件和各自的运动特点;通过调整仿生控制网络中的CPG节点连接方式,建立能够同时适应开链式构型蠕动运动及闭链式构型滚动运动的规划方法。通过环形构型与蛇形构型变形与运动模式协调改变的仿真,验证了方法的有效性。对于模块化机器人拓扑结构不变,而运动功能改变的变形,考虑有肢体运动构型及其衍生的无肢体蠕动构型的运动功能改变与协调运动规划,在仿生运动控制网络框架不变的情况下,制订了网络节点参数的协调改变策略。通过仿生四足构型与其衍生的横向蠕动H型、向前蠕动H型之间的变形与运动模式协调改变的仿真,表明有肢体运动构型及其衍生的蠕动构型运动功能改变与运动协调规划方法的可行性。
     为了实现机器人在非结构环境下的运动功能,模拟生物运动神经系统调控功能的三级等级结构,建立了一套包含信息采集单元、底层局部信息反射规划器以及高层信息处理系统并具有环境反馈感知功能的运动控制器,使机器人根据外部环境的反馈,能够自主地完成越障、避障、上下坡及步态变换,并能够针对特殊环形实现自主变形以适应外部环境的需要。
     建立模块化机器人运动与环境反馈实验系统,进行蛇形构型、十字构型、环形构型及仿生四足构型多种模式的协调运动实验,验证仿生运动控制网络对多种运动模式统一控制的能力;进行环形构型滚动模式到蛇形构型蠕动模式的转化实验,验证运动控制体系对拓扑构型改变的协调适应能力;在设置了上下坡、路面凸起、物块阻挡及拱形门等障碍的环境中,进行机器人自主应对环境的运动试验,验证了机器人对环境的感知及自主适应能力。
Modular robot is a complex robot systemcomposed of a large number of basic modules with motor and sensory function, which can transform into varieties of configurations to complete multiple tasks. Through the change of connected relation between modules, it can transform into varieties oftopological configurationto adapt to the environment and task requirements of various situation. Compared with the traditional robot, modular robot has features of modularity, self-reconfiguration and self-repair, etc.Meanwhile the modular robot system composed ofpluralities of modules has the characteristics of redundancy and flexibility,therefore, the modular robot has strong movement ability adapting to different road condition through movement configuration and locomotion mode change. However, hyper-redundancy, motion configuration diversity and multi-mode movement also make motion control of the modular robot much more complex. It is the research priorities of this paper to find a way of controlling multi-mode movement of the movement configuration of modular robot and making the corresponding gait adjustment to external feedback. Furthermore, this method should make the modular robot be able to exercise in unstructured environments.
     As the basic unit of the robot, structure characteristic of modules has great influence on motion mode of overall configuration. This paper takes the UBot module of cube structure as study object. It can be divided into active module and passive module, respectively, with the active and passive hook-claw type bindiny mechanism, the active module and passive module can achieve connection/disconnection automatically. Modules could identify direction and connection state, though orientation recognition unit on bindiny mechanism, which has the regular module structure and flexiblebindiny mechanismcharacteristics of array-type robots. Each module has two mutually perpendicular rotational freedom, the rotation direction (-90°,90°), so it can achieve the function of coordinated movement of chain type modular robots. In order to make the robot system capable of environment perception, designing the sensing module for UBot system, which is equipped with a camera, infrared sensor, linear Holzer sensor and accelerometer sensors, etc. Meanwhile, it has the same bindiny mechanism with the passive module of UBot, and could be connected with the active module to join onto movement configuration in real-time sensing of the external environment.
     Referencing the biological motion controlnervous system, it establishes motion control system of Bionic network, which consists of various kinds of neurons and the central pattern generator (CPG) composed by neurons. According to the characteristics of the UBot module, it also establishes a dual output CPG phase motion control network, to simulate neural control system of animal’s spinal cord and build up robot’s motion control system of Bionic network by introducing the intermediate neurons, efferent neurons, and Perception neurons, etc.
     Based on the establishedmotion control system of Bionic network, motion planning strategies are established for configurations with limbs and configurations with no limbs, respectively. Through simulating the nerve center of lower organisms’ movement control method sending the lower self-excited behavior directly to each joint, motion planning has been done for several typical configurations with no limbs. For CPG phase modulation control network, different CPG node connection can lead different phase timing output, using this characteristic, we have planned the uniform CPG node connection method for snake configuration to achieve mantis movement, wriggling, rolling, turning and multi-segmented worm-like locomotion without changing the quantity of the CPG nodes. We have also successfully achievedforward motion and turning motion plan of cross configuration, rolling motion plan of loop configuration through this bionic network. Using CPG phase modulation control network to simulate spinal cord nervous system of higher animal and making use of Efferent neurons to each joints, motion strategy has been proposed for configurations with limbs. For the configuration with limbs which has hip, knee and ankle joints on each limb, efferent neuron’s model has been designed for each joint. The unified planning for trot and walk motion of bionic quadrupedconfiguration is implemented.
     From topology changed and topology unchanged aspects, motion planning coordinating changing methods with configuration deformation have been studied. For the topology changed deformation, single-chain configuration’s topology changing method and motion plan has been researched, and deformation conditions from open-chain structure to closed-chain structure have been obtained. Through adjusting CPG nodes’ connection of bionic network, the motion planning method which can adjust open-chain squirming and closed-chain rolling has been established. Through the simulation of loop and snake configuration’s deformation and motion, the method has been proved. For the topology unchanged, but motion function changed deformation, the configuration with limbs has been studied. Bionic motion network’s node parameter coordinatedchanging strategy has been formulated for the deformation from the configuration with limbs to its derivative squirming configuration. Adaptive coordinated motion simulation between bionic quadruped configuration and its two derivativeH configurations has been conducted to prove the method.
     In order to realize the motion function of the robot in unstructured environment, simulate the three-level structure of regulatory function of biological neural system, it establishes a set of motion controller with the sensing function of environmental feedback, composed of information acquisition unit, underlying local information reflecting planner, and High-level information processing system, which makes the robot autonomously accomplish reconstruction of special situation and finish the motion of obstacle crossing, obstacle avoidance, self-reconfiguration, up and down the slope, so as to adapt to the external environment.
     Experiment system of movement and environmental feedback is constructed, and coordinated motionexperiments of multiple modes of snake-like configuration, cross configuration, loop configuration and bionic quadruped configuration are carried out, to test and verify overall control ability of the control system of Bionic network in different motion mode. The transformation experiment from rolling mode of loop configuration to peristalsismode of snake-like configuration are conducted, to test and verify coordination and adaptation ability of bionic motion control system for the topological configuration transformation. Motion experiment of autonomic robot response to environment in the environment with obstacle of slope, road bump, block and arch, etc, are finished to test and verify environmental perception and adaptation ability of the modular robot.
引文
[1] Satoshi Murata,Haruhisa Kurokawa.Self-organizing robots[M]: Springer,2012.
    [2] Kyle Gilpin,Daniela Rus.Modular robot systems[J].Robotics&AutomationMagazine, IEEE.2010,17(3):38-55.
    [3] K. Stoy,D. Brandt,D.J. Christensen.Self-Reconfigurable Robots: AnIntroduction, Intelligent Robotics and Autonomous Agents Series [M]: TheMIT Press,2010.
    [4] John Von Neumann,Arthur Walter Burks.Theory of self-reproducingautomata [M]: University of Illinois Press,1966.
    [5] Toshio Fukuda,Seiya Nakagawa.A dynamically reconfigurable roboticsystem (concept of a system and optimal configurations)[C],Robotics andIECON'87Conferences,1987:588-595.
    [6] Satoshi Murata,Haruhisa Kurokawa,Eiichi Yoshida et al.A3-Dself-reconfigurable structure[C],1998IEEE International Conference onRobotics and Automation,Leuven, Belgium, May16-20,1998:432-439.
    [7] Keith Kotay,Daniela Rus,Marsette Vona et al.The self-reconfiguring roboticmolecule[C],1998IEEE International Conference on Robotics andAutomation,Leuven, Belgium, May16-20,1998:424-431.
    [8] Cem Unsal,Pradeep K Khosla.A multi-layered planner forself-reconfiguration of a uniform group of i-cube modules[C],2001IEEE/RSJInternational Conference on Intelligent Robots and Systems, Maui, Hawaii,USA, Oct.29—Nov.03,2001:598-605.
    [9] Morten Winkler Jorgensen,Esben Hallundbk Ostergaard,Henrik HautopLund.Modular ATRON: Modules for a self-reconfigurable robot[C],(IROS2004).2004IEEE/RSJ International Conference on Intelligent Robots andSystems,2004:2068-2073.
    [10] David Johan Christensen,Kasper Stoy.Selecting a meta-module toshape-change the ATRON self-reconfigurable robot[C],2006IEEEInternational Conference on Robotics and Automation,2006:2532-2538.
    [11] Brian Kirby,Jason Campbell,Burak Aksak et al.Catoms: Moving RobotsWithout Moving Parts[C],Proceedings of the national conference on artificialintelligence,2005:1730.
    [12] Bishop,Samuel Burden,Eric Klavins et al.Programmable parts: Ademonstration of the grammatical approach to self-organization[C],2005IEEE/RSJ International Conference on Intelligent Robots and Systems,2005:3684-3691.
    [13] Paul White,Viktor Zykov,Josh C Bongard et al.Three DimensionalStochastic Reconfiguration of Modular Robots[C],Presentation at theWorkshop on Self-reconfigurable Robotics at the Robotics Science andSystems Conference, MIT,2005:161-168.
    [14] Kyle Gilpin,Keith Kotay,Daniela Rus et al.Miche: Modular shape formationby self-disassembly[J].The International Journal of Robotics Research.2008,27(3-4):345-372.
    [15]费燕琼,董庆雷,赵锡芳.自重构模块化机器人的结构[J].上海交通大学学报.2005,39(6):877-883.
    [16] Wei-Min Shen,Behnam Salemi,Peter Will.Hormone-inspired adaptivecommunication and distributed control for CONRO self-reconfigurablerobots[J].IEEE Transactions on Robotics and Automation.2002,18(5):700-712.
    [17] Andres Castano,Peter Will.Representing and discovering the configuration ofCONRO robots[C],2001IEEE International Conference on Robotics andAutomation,2001:3503-3509.
    [18] Andres Castano,Peter Will.Mechanical design of a module for reconfigurablerobots[C],2000IEEE/RSJ International Conference on Intelligent Robots andSystems,2000:2203-2209.
    [19] A. Castano,A. Behar,P. M. Will.The Conro modules for reconfigurablerobots [J].IEEE/ASME Transactions on Mechatronics.2002,7(4):403-409.
    [20] David Duff,Mark Yim,Kimon Roufas.Evolution of polybot: A modularreconfigurable robot[C],Proc. of the Harmonic Drive Intl. Symposium,Nagano, Japan,2001.
    [21] Victor Zykov,Andrew Chan,Hod Lipson.Molecubes: An open-sourcemodular robotics kit[C],2007IEEE/RSJ International Conference onIntelligent Robots and Systems,2007.
    [22] Michael Park,Mark Yim.Distributed control and communication faulttolerance for the ckbot[C],2009. ReMAR ASME/IFToMM InternationalConference on Reconfigurable Mechanisms and Robots,2009:682-688.
    [23] Haruhisa Kurokawa,Kohji Tomita,Akiya Kamimura et al.Distributedself-reconfiguration of M-TRAN III modular robotic system[J].TheInternational Journal of Robotics Research.2008,27(3-4):373-386.
    [24] Wei-Min Shen,Maks Krivokon,Harris Chiu et al.Multimode locomotion viaSuperBot reconfigurable robots[J].Autonomous Robots.2006,20(2):165-177.
    [25]张玉华,朱延河,赵杰等.模块化自重构机器人的设计和运动规划[J].吉林大学学报(工学版).2007,37(4):925-929.
    [26]张亮,赵杰,蔡鹤皋.自重构机器人的硬件设计及自重构规划研究[J].东南大学学报:自然科学版.2005,35(2):243-247.
    [27] Daniela Rus,Marsette Vona.A physical implementation of theself-reconfiguring crystalline robot[C]. Proceedings. ICRA'00. IEEEInternational Conference on Robotics and Automation,2000:1726-1733.
    [28] Serguei Vassilvitskii,Jeremy Kubica,Eleanor Rieffel et al.On the generalreconfiguration problem for expanding cube style modular robots[C].Proceedings. ICRA'02. IEEE International Conference on Robotics andAutomation,2002:801-808.
    [29] Esben Hallundbac Ostergaard,Henrik Hautop Lund.Evolving control formodular robotic units[C].2003IEEE International Symposium onComputational Intelligence in Robotics and Automation,2003:886-892.
    [30] Zack Butler,Daniela Rus.Distributed locomotion algorithms forself-reconfigurable robots operating on rough terrain[C].2003IEEEInternational Symposium on Computational Intelligence in Robotics andAutomation,2003:880-885.
    [31] Robert Fitch,Zack Butler.Million module march: Scalable locomotion forlarge self-reconfiguring robots[J].The International Journal of RoboticsResearch.2008,27(3-4):331-343.
    [32] Paulina Varshavskaya,Leslie Pack Kaelbling,Daniela Rus.Automated designof adaptive controllers for modular robots using reinforcement learning[J].TheInternational Journal of Robotics Research.2008,27(3-4):505-526.
    [33] Zack Butler,Robert Fitch,Daniela Rus.Experiments in distributed control formodular robots[J]. Experimental Robotics VIII, Springer Tracts in AdvancedRobotics,2003,5:307-316.
    [34] Zack Butler,Robert Fitch,Daniela Rus.Distributed control forunit-compressible robots: goal-recognition, locomotion, and splitting[J].IEEE/ASME Transactions on Mechatronics.2002,7(4):418-430.
    [35] Henrik Hautop Lund,Richard Beck,Lars Dalgaard.ATRON hardwaremodules for self-reconfigurable robotics[C].10th International Symposium onArtificial Life and Robotics,2005.
    [36] David Brandt,David Johan Christensen.A new meta-module for controllinglarge sheets of atron modules[C],2007. IEEE/RSJ International Conference onIntelligent Robots and Systems,2007:2375-2380.
    [37] David Johan Christensen,Ulrik Pagh Schultz,Kasper Stoy.A distributed andmorphology-independent strategy for adaptive locomotion inself-reconfigurable modular robots [J]. Robotics and AutonomousSystems.2013,61(9):1021-1035.
    [38] David Johan Christensen,Mirko Bordignon,Ulrik Pagh Schultz etal.Morphology independent learning in modular robots[C].Proceedings ofInternational Symposium on Distributed Autonomous Robotic Systems, DARS2008, April2008:379–391.
    [39] David Johan Christensen,Ulrik Pagh Schultz,Kasper Stoy.A distributedstrategy for gait adaptation in modular robots[C].2010IEEE InternationalConference on Robotics and Automation (ICRA).2010:2765-2770.
    [40] Mark Yim.Locomotion with a unit-modular reconfigurable robot[D]:Stanford University,1994.
    [41] Josh Bongard,Victor Zykov,Hod Lipson.Resilient machines throughcontinuous self-modeling[J].Science.2006,314(5802):1118-1121.
    [42]赵杰,张玉华,朱延河等.模块化自重构机器人蠕虫构型的运动控制[J].东南大学学报(自然科学版).2007,3(37):409-413.
    [43] Kasper Stoy,W-M Shen,Peter Will.Implementing configuration dependentgaits in a self-reconfigurable robot[C].2003. Proceedings IEEE InternationalConference on Robotics and Automation,2003:3828-3833.
    [44] Kasper Stoy,Wei-Min Shen,Peter M Will.Using role-based control toproduce locomotion in chain-type self-reconfigurable robots[J].IEEE/ASMETransactions on Mechatronics.2002,7(4):410-417.
    [45] Wei-Min Shen,Peter Will,Aram Galstyan et al.Hormone-inspiredself-organization and distributed control of robotic swarms[J].AutonomousRobots.2004,17(1):93-105.
    [46] Behnam Salemi,Wei-Min Shen.Distributed behavior collaboration forself-reconfigurable robots[C].2004. Proceedings. ICRA'04. IEEEInternational Conference on Robotics and Automation,2004:4178-4183.
    [47] Feili Hou,Wei-Min Shen.Mathematical foundation for hormone-inspiredcontrol for self-reconfigurable robotic systems[C].2006Proceedings IEEEInternational Conference on Robotics and Automation,2006:1477-1482.
    [48] Feili Hou,Wei-Min Shen.Hormone-inspired Adaptive DistributedSynchronization of Reconfigurable Robots[C]. In The9th Intl. Conf.Intelligent and Autonomous Systems (IAS-9), Tokyo, Japan, Mar.2006:455~462.
    [49] Ying Zhang,Mark Yim,Craig Eldershaw et al.Phase automata: aprogramming model of locomotion gaits for scalable chain-type modularrobots[C].(IROS2003) Proceedings.2003IEEE/RSJ International Conferenceon Intelligent Robots and Systems,2003:2442-2447.
    [50] Mark Yim,David Duff,Ying Zhang.Closed-chain motion with largemechanical advantage[C].2001IEEE/RSJ International Conference onIntelligent Robots and Systems,2001:318-323.
    [51] Mark Yim,Sam Homans,Kimon Roufas.Climbing with snake-like robots[C].IFAC workshop on mobile robot technology,2001:21-22.
    [52] Akiya Kamimura,Haruhisa Kurokawa,E Toshida et al.Automatic locomotionpattern generation for modular robots[C]. Proceedings. ICRA'03.2003IEEEInternational Conference on Robotics and Automation,2003:714-720.
    [53] Akiya Kamimura,Haruhisa Kurokawa,Eiichi Yoshida et al.Distributedadaptive locomotion by a modular robotic system, M-TRAN II[C].(IROS2004).2004Proceedings IEEE/RSJ International Conference on IntelligentRobots and Systems,2004:2370-2377.
    [54] Rico Moeckel,Cyril Jaquier,Kevin Drapel et al.Exploring adaptivelocomotion with YaMoR, a novel autonomous modular robot with Bluetoothinterface[J].Industrial Robot: An International Journal.2006,33(4):285-290.
    [55] Rico M ckel,Cyril Jaquier,Kevin Drapel et al.YaMoR and Bluemove—an autonomous modular robot with bluetooth interface for exploring adaptivelocomotion[C]..In Proceedings CLAWAR,2005:685-692.
    [56] Alexander Sprowitz,Soha Pouya,Stéphane Bonardi et al.Roombots:reconfigurable robots for adaptive furniture[J].Computational IntelligenceMagazine, IEEE.2010,5(3):20-32.
    [57] Daniel Marbach,Auke Jan Ijspeert.Online optimization of modular robotlocomotion[C],2005IEEE International Conference on Mechatronics andAutomation,2005:248-253.
    [58] Jerome Maye.Control of Locomotion in Modular Robotics. BiologicallyInspired Robotics Group(BIRG), Ecole Polytechnique Federale de Lausanne(EPFL), Master Thesis, February,2007.
    [59] David Johan Christensen,Alexander Spr witz,Auke Jan Ijspeert.Distributedonline learning of central pattern generators in modular robots[C].11thInternational Conference on the Simulation of Adaptive Behavior, SAB:402-412.
    [60] Soha Pouya,Jesse van den Kieboom,A Spro witz et al.Automatic gaitgeneration in modular robots:“to oscillate or to rotate; that is the question”[C].2010IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS),2010:514-520.
    [61] Michael H Dickinson,Claire T Farley,Robert J Full et al.How animals move:an integrative view[J].Science.2000,288(5463):100-106.
    [62] Jorge G Cham,Jonathan K Karpick,Mark R Cutkosky.Stride periodadaptation of a biomimetic running hexapod[J].The International Journal ofRobotics Research.2004,23(2):141-153.
    [63] Holk Cruse,Volker Dürr,Josef Schmitz.Insect walking is based on adecentralized architecture revealing a simple and robustcontroller[J].Philosophical Transactions of the Royal Society A:Mathematical, Physical and Engineering Sciences.2007,365(1850):221-250.
    [64] Andrew Vardy,Ralf Moller.Biologically plausible visual homing methodsbased on optical flow techniques[J].Connection Science.2005,17(1-2):47-89.
    [65] Robert J Wood.Design, fabrication, and analysis of a3DOF,3cmflapping-wing MAV[C].2007. IEEE/RSJ International Conference onIntelligent Robots and Systems,2007:1576-1581.
    [66] J. C. Spagna, D. I. Goldman, P.C. Lin, et al.Distributed mechanical feedbackin arthropods and robots simplifies control of rapid running on challengingterrain[J].Bioinspiration&biomimetics.2007,2(1):9-18.
    [67]金波,陈诚,李伟.基于能耗优化的六足步行机器人力矩分配[J].浙江大学学报(工学版).2012,46(7):1168-1174.
    [68] MJ Wolfgang,JM Anderson,MA Grosenbaugh et al.Near-body flowdynamics in swimming fish[J].Journal of Experimental Biology.1999,202(17):2303-2327.
    [69]高俊,毕树生,李吉等.胸鳍扑翼式机器鱼的设计及水动力实验[J].北京航空航天大学学报.2011,37(3):344-350.
    [70]万宏,王超,夏丹等.机器鱼自主游动中变形体耦合动力学的数值研究[J].机械工程学报.2012,45(15):32-37.
    [71] Auke Jan Ijspeert,Alessandro Crespi,Dimitri Ryczko et al.From swimmingto walking with a salamander robot driven by a spinal cordmodel[J].Science.2007,315(5817):1416-1420.
    [72] Shigeo Hirose,Edwardo F Fukushima.Snakes and strings: new roboticcomponents for rescue operations[J].The International Journal of RoboticsResearch.2004,23(4-5):341-349.
    [73]唐超权,马书根,李斌等.基于神经步进激励机制的蛇形机器人环境自适应仿生控制策略[J].机械工程学报.2013,49(1):53-62.
    [74]王智锋,马书根,李斌等.基于能量的蛇形机器人蜿蜒运动控制方法的仿真与实验研究[J].自动化学报.2011,37(5):604-614.
    [75] Miriam Fend,Simon Bovet,Rolf Pfeifer.On the influence of morphology oftactile sensors for behavior and control[J].Robotics and AutonomousSystems.2006,54(8):686-695.
    [76]查峰,肖世德,冯刘中等.移动机器鼠沿墙导航策略与算法研究[J].Computer Engineering.2012,38(6):172-174.
    [77] Hiroshi Kimura,Yasuhiro Fukuoka,Avis H Cohen.Adaptive dynamic walkingof a quadruped robot on natural ground based on biological concepts[J].TheInternational Journal of Robotics Research.2007,26(5):475-490.
    [78]姜铭,李鹭扬.混联仿生机器狗构型研究[J].机械工程学报.2012,48(1):19-24.
    [79] Kerstin Dautenhahn.Socially intelligent robots: dimensions of human–robotinteraction[J].Philosophical Transactions of the Royal Society B: BiologicalSciences.2007,362(1480):679-704.
    [80] Fumiya Iida Rolf Pfeifer,Luc Steels Yasuo Kuniyoshi.Embodied ArtificialIntelligence, F. Iida, R. Pfeifer, L. Steels, Y. Kuniyoshi, Eds.2004:202–218.
    [81] Friedrich Pfeiffer,Hirochika Inoue.Walking: technology andbiology[J].Philosophical Transactions of the Royal Society A: Mathematical,Physical and Engineering Sciences.2007,365(1850):3-9.
    [82] Auke Jan Ijspeert.Central pattern generators for locomotion control in animalsand robots: a review[J].Neural Networks.2008,21(4):642-653.
    [83] Ronald M Harris-Warrick.Neuromodulation and flexibility in central patterngenerator networks[J].Current opinion in neurobiology.2011,21(5):685-692.
    [84] Fred Delcomy.Neural basis of rhythmic behavior in animals[J].Science.1980,210(4469):492-498.
    [85] Paul S Stein,Douglas G Stuart,Sten Grillner et al.Neuron, networks, andmotor behavior[M]: The MIT Press,1999.
    [86] Volker Dürr,André F Krause,Josef Schmitz et al.Neuroethological conceptsand their transfer to walking machines[J].The International Journal ofRobotics Research.2003,22(3-4):151-167.
    [87] Auke Jan Ijspeert,Jun Nakanishi,Heiko Hoffmann et al.Dynamicalmovement primitives: learning attractor models for motor behaviors[J].Neuralcomputation.2013,25(2):328-373.
    [88] Martin Golubitsky,Ian Stewart.The symmetry perspective: from equilibriumto chaos in phase space and physical space[M]: Springer,2003.
    [89] Y Kuramoto.Collective behavior of coupled phase oscillators. In M. A. Arbib(Ed.), The handbook of brain theory and neural networks[J].MIT Press.2003,pp.223–226.
    [90] Avis H Cohen,Philip J Holmes,Richard H Rand.The nature of the couplingbetween segmental oscillators of the lamprey spinal generator for locomotion:a mathematical model[J].Journal of mathematical biology.1982,13(3):345-369.
    [91] Gregor Sch ner,Wenying Y Jiang,JA Scott Kelso.A synergetic theory ofquadrupedal gaits and gait transitions[J].Journal of theoretical Biology.1990,142(3):359-391.
    [92] N Kopell,GB Ermentrout,TL Williams.On chains of oscillators forced at oneend[J].SIAM Journal on Applied Mathematics.1991,51(5):1397-1417.
    [93] Jonas Buchli,Auke Jan Ijspeert.Distributed central pattern generator modelfor robotics application based on phase sensitivity analysis[C].In A. J. Ijspeert,M. Murata,&N. Wakamiya (Eds.), Biologically inspired approaches toadvanced information technology: First international workshop, BioADIT2004(3141):333-349.
    [94] Ludovic Righetti,Auke Jan Ijspeert.Design Methodologies for Central PatternGenerators: An Application to Crawling Humanoids[C],In Proceedings ofRobotics: Science and Systems (RSS2006),2006:191-198.
    [95] Ludovic Righetti,Jonas Buchli,Auke Jan Ijspeert.Dynamic hebbian learningin adaptive frequency oscillators[J].Physica D: Nonlinear Phenomena.2006,216(2):269-281.
    [96] Kiyotoshi Matsuoka.Sustained oscillations generated by mutually inhibitingneurons with adaptation[J].Biological cybernetics.1985,52(6):367-376.
    [97] Gentaro Taga,Yoko Yamaguchi,Hiroshi Shimizu.Self-organized control ofbipedal locomotion by neural oscillators in unpredictableenvironment[J].Biological cybernetics.1991,65(3):147-159.
    [98] Hiroshi Kimura,Seiichi Akiyama,Kazuaki Sakurama.Realization of dynamicwalking and running of the quadruped using neural oscillator[J].AutonomousRobots.1999,7(3):247-258.
    [99] Auke Jan Ijspeert.A connectionist central pattern generator for the aquatic andterrestrial gaits of a simulated salamander[J].Biological cybernetics.2001,84(5):331-348.
    [100] Auke Jan Ijspeert,Alessandro Crespi.Online trajectory generation in anamphibious snake robot using a lamprey-like central pattern generatormodel[C].2007IEEE International Conference on Robotics and Automation,2007:262-268.
    [101] Auke Jan Ijspeert,Alessandro Crespi,Jean-Marie Cabelguen.Simulation androbotics studies of salamander locomotion[J].Neuroinformatics.2005,3(3):171-195.
    [102] Andrej Bicanski,Dimitri Ryczko,Jean-Marie Cabelguen et al.From Lampreyto Salamander: an exploratory modeling study on the architecture of the spinallocomotor networks in the salamander[J].Biological cybernetics.2013,1-23.
    [103] Konstantinos Karakasiliotis,Nadja Schilling,Jean-Marie Cabelguen etal.Where are we in understanding salamander locomotion: biological androbotic perspectives on kinematics[J].Biological cybernetics.2012,1-16.
    [104] Crespi, A., Karakasiliotis, K., Guignard, A., et al.Salamandra robotica II: anamphibious robot to study salamander-like swimming and walking gaits[J].IEEE Transactions on Robotics.2013,29(2):308-320.
    [105] Yannick Morel,Mathieu Porez,Alexander Leonessa et al.Nonlinear motioncontrol of CPG-based movement with applications to a class of swimmingrobots[C].201150th IEEE Conference on Decision and Control and EuropeanControl (CDC-ECC),2011:6331-6336.
    [106] Poramate Manoonpong,Frank Pasemann,Florentin W rg tter.Sensor-drivenneural control for omnidirectional locomotion and versatile reactive behaviorsof walking machines[J].Robotics and Autonomous Systems.2008,56(3):265-288.
    [107] Silke Steingrube,Marc Timme,Florentin W rg tter et al.Self-organizedadaptation of a simple neural circuit enables complex robotbehaviour[J].Nature Physics.2010,6(3):224-230.
    [108] Poramate Manoonpong,Ulrich Parlitz,Florentin W rg tter.Neural controland adaptive neural forward models for insect-like, energy-efficient, andadaptable locomotion of walking machines[J].Frontiers in neuralcircuits.2013,7(12):1-28.
    [109] Kiyotoshi Matsuoka.Mechanisms of frequency and pattern control in theneural rhythm generators[J].Biological cybernetics.1987,56(5-6):345-353.
    [110]郑浩峻,张秀丽,关旭等.基于生物中枢模式发生器原理的四足机器人[J].清华大学学报:自然科学版.2004,44(2):166-169.
    [111]郑浩峻,张秀丽,李铁民等.基于CPG原理的机器人运动控制方法[J].高技术通讯.2003,13(7):64-68.
    [112]张秀丽,郑浩峻,陈恳等.机器人仿生学研究综述[J].机器人.2002,24(2):188-192.
    [113]卢振利,马书根,李斌等.基于循环抑制CPG模型的蛇形机器人控制器[J].机械工程学报.2006,42(5):137-143.
    [114]卢振利,马书根,李斌等.基于循环抑制CPG模型控制的蛇形机器人蜿蜒运动[J].自动化学报.2006,32(1):133-139..
    [115] Cem ünsal,Han Kili te,Pradeep K Khosla.A modular self-reconfigurablebipartite robotic system: Implementation and motion planning[J].AutonomousRobots.2001,10(1):23-40.
    [116] Mark Yim,Kimon Roufas,David Duff et al.Modular reconfigurable robotsin space applications[J].Autonomous Robots.2003,14(2-3):225-237.
    [117]唐术锋.基于万向式关节模块的自重构机器人研究[D]:哈尔滨工业大学,2010.
    [118] Artur M Arsenic.On stability and tuning of neural oscillators: Application torhythmic control of a humanoid robot[C].2004IEEE International JointConference on Neural Networks,2004:99-104.
    [119] Artur M Arsenio.Tuning of neural oscillators for the design of rhythmicmotions[C]. ICRA'00,2000IEEE International Conference on Robotics andAutomation,2000:1888-1893.
    [120] Matthew M Williamson.Neural control of rhythmic armmovements[J].Neural Networks.1998,11(7):1379-1394.
    [121]刘曾荣,文铁桥,姚晓东.脑与非线性动力学[M].科学出版社,2006:1-3..
    [122]樊小力.人体机能学[M]:北京医科大学出版社,2000.
    [123]韩力群,涂序彦.多中枢自协调拟人脑研究及应用[M].科学出版社,2009:92-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700