七氟醚麻醉对脑内ERK1/2、CREB和PKCγ磷酸化水平的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全麻问世并广泛应用于临床已有160余年。然而,全麻药物是如何引起机体意识丧失、遗忘、制动等全麻效应的?全麻药物的作用靶点是什么?至今仍是未解之谜,对全麻药物本质及作用机理认识的局限,极大制约了全身麻醉安全、可控的临床应用及新型麻醉药物的研发。
     应该肯定的一点是:全麻药物是作用于中枢神经系统而产生意识丧失、遗忘、制动等麻醉效应的。一般认为,全麻药物是作用于前额皮层、顶皮层、海马等区域产生镇静和遗忘作用,而脊髓和低位脑干在临床全麻药物的制动效应中起了主导作用。可见,全麻药物对中枢神经系统的作用是多方位、多靶点的,单一的膜脂溶性、离子通道、受体及基因等学说无法完全解释全麻(尤其是吸入麻醉)的复杂效应。
     既往全麻机制研究中已发现大量受体、分子与全麻效应可能相关,但很难将这些分散的结果有机地联系起来。细胞内信号转导系统具有变化迅速,能将大量信号有机串联和整合的特点。本研究中我们拟以目前临床常用的吸入性麻醉剂七氟醚为例,从麻醉时脑内信号转导分子活化水平的变化入手,为探讨吸入麻醉的中枢机制寻找突破口。
     目的
     观察七氟醚麻醉-苏醒过程中脑内ERK1/2、CREB和PKCγ磷酸化水平的变化,以了解这些信号转导分子在全麻机理中的可能作用,为探索吸入麻醉药的中枢神经系统作用靶位和相关信号通路提供资料。
     方法
     第一部分
     1.小鼠七氟醚麻醉-苏醒过程中脑内磷酸化ERK1/2的表达变化
     BALB/c小鼠60只,平均分为5组:正常对照组(Con)、七氟醚麻醉5min组(Sevo-1)、麻醉1h组(Sevo-2)、麻醉1h停药2min组(E-1)和麻醉1h停药1h组(E-2)。各组动物在相应时间点脱臼处死,取脑制样或经灌注固定后取脑切片,行Western blotting或免疫组织化学染色,观察七氟醚麻醉-苏醒过程不同脑区磷酸化ERK1/2 (pERK1/2)水平的变化。
     2.七氟醚麻醉下小鼠的血气电解质状况
     雄性BALB/c小鼠12只,随机分为2组:对照组(Con)和七氟醚麻醉1h组(Sevo-1h),相应时间点开胸心脏采集动脉血,了解麻醉过程中的血气及电解质情况。
     3. MEK1/2拮抗剂SL327对七氟醚麻醉行为的影响
     雄性BALB/c小鼠18只,随机分为3组:Con组;DMSO组:麻醉前1小时腹腔注射25%DMSO,6 ml·kg-1;SL327组:麻醉前1小时腹腔注射溶解于25%DMSO的SL327,30 mg·kg-1。各组小鼠以4%七氟醚诱导,记录翻正反射消失时间,然后以1MAC七氟醚维持麻醉30min后,停止麻醉,高流量氧气洗脱,观察夹尾反射恢复时间。待夹尾反射恢复后,动物断头,取脑制样,Western blotting检测脑内pERK1/2表达水平。
     第二部分
     小鼠七氟醚麻醉-苏醒过程不同脑区磷酸化CREB的表达变化雄性BALB/c小鼠30只,随机分为5组:Con组、Sevo-1组、Sevo-2组、E-1组和E-2组。处理措施同实验1.1。在相应时间点断头,取感觉皮质、海马、脑干行Western blotting测定脑内pCREB表达情况。
     第三部分
     1.磷酸化PKCγ在正常小鼠脑内的免疫组织化学定位雄性BALB/c小鼠8只,脱臼处死,灌流取脑,免疫组织化学染色,观察pPKCγ阳性反应产物在脑内的分布。
     2.小鼠七氟醚麻醉-苏醒过程中脑内磷酸化PKCγ的表达变化
     雄性BALB/c小鼠48只,随机分为4组:对照组(Con)、七氟醚麻醉5min组(Sevo-1)、七氟醚麻醉1h组(Sevo-2)和麻醉1h后停药1h组(E-1h)。在相应时间点断头取样行Western blotting,灌注取脑切片行免疫组织化学染色,以观察七氟醚麻醉-苏醒过程中小鼠脑内pPKCγ的表达变化。
     结果
     第一部分
     1.小鼠七氟醚麻醉-苏醒过程中脑内磷酸化ERK1/2的表达变化
     Western blotting结果:与Con组相比,麻醉后各组动物感觉皮质、海马pERK表达水平下降,苏醒后回升至对照组水平(E-1, E-2),而脑干在麻醉后pERK表达水平上升,且苏醒后仍未降至对照组水平。免疫组织化学染色发现外侧网状核、孤束核、EW核、臂旁外侧核背侧亚核(LPBD)、视上核(SO)、下丘脑室旁核(PVN)、杏仁中央核和终纹床核在Con组弱表达,Sevo-1、Sevo-2及E-1三组表达显著增强(P<0.05),而在E-2组表达减弱,除LPBD、SO、PVN外在其余各核团均恢复至对照组水平。而室周灰质腹外侧部、丘脑室旁核、弓状核则表达相反:Con组高表达,Sevo-1,Sevo-2及E-1三组阳性神经元数量显著减少(P<0.05),E-2组恢复至Con组水平。此外,海马、边缘前皮质、扣带回、运动皮质、感受皮质则表现为Con组高表达,Sevo-1组和Sevo-2组低表达,E-1和E-2组恢复至对照组水平。
     2.七氟醚麻醉下小鼠的血气电解质状况
     1MAC七氟醚麻醉1h,小鼠血气及电解质情况与对照组相比无改变。
     3. MEK1/2拮抗剂SL327对七氟醚麻醉行为的影响
     SL327组与对照组相比,翻正反射消失时间及夹尾反射恢复时间均缩短,而DMSO组与Con组无差异。Western blotting显示:SL327组动物的感觉/运动皮质、海马pERK1/2表达水平均较对照组显著降低(P<0.05),而DMSO组与Con组无差异。
     第二部分小鼠七氟醚麻醉-苏醒过程不同脑区磷酸化CREB的表达变化
     各组间感觉皮质、海马、脑干在麻醉-苏醒过程中pCREB表达无统计学差异。
     第三部分
     1.磷酸化PKCγ在正常小鼠脑内的免疫组织化学定位
     pPKCγ阳性产物主要见于神经元的胞浆和突起中,在正常小鼠脑内表达广泛。仅有少量胶质细胞被染色,着色浅淡。海马CA1区锥体细胞,小脑的浦肯野细胞,大脑新皮质V层细胞,边缘前皮质、岛皮质的深层细胞以及前梨皮质的颗粒层细胞,外侧嗅束核、杏仁基底外侧核和杏仁外侧核的神经元,以及穹窿、锥体束纤维等均有强或较强的pPKCγ表达。吻侧丘脑大多数核团,尾侧丘脑的内侧膝状体核及外侧膝状体的背侧核,脑干耳蜗背侧核的表浅部位,三叉神经感觉核簇及巨细胞网状结构神经元中均有弱阳性表达。
     2.小鼠七氟醚麻醉-苏醒过程中脑内磷酸化PKCγ的表达变化
     Western blotting示海马pPKCγ表达在对照组低表达,麻醉后表达增强,在E-1h组回落至Con组水平。免疫组织化学染色显示:在Con组,锥体束和穹窿中pPKCγ呈高水平表达,而Sevo-1和Sevo-2组表达显著减弱,E-1h组恢复至对照组水平。杏仁基底外侧核pPKCγ表达则不同:在Con组低水平表达,而Sevo-1、Sevo-2和E-1h组均呈现高水平表达(P<0.05)。
     结论
     1.在麻醉-苏醒过程中,脑内某些核团、脑区其pERK1/2水平出现与麻醉表象一致的变化。根据已有知识和资料分析,部分pERK1/2表达升高的核团如LPBD、PVN等可能与麻醉造成的应激反应有关;而另一些pERK1/2水平下调的核团如M、S、Hip等,可能与麻醉引起意识与感觉认知缺失有关。七氟醚麻醉-苏醒过程中,总ERK1/2表达未发生改变,主要是ERK磷酸化水平的上调或下调,提示麻醉主要影响ERK通路的活化水平,而不涉及新的(de novo)蛋白质合成。
     2. MEK-ERK通路特异阻断时,全麻诱导加快,苏醒迅速,从功能行为学上进一步证实了ERK可能在全麻不同时程中介导不同效应,其确切机制尚待进一步深入研究。
     3.作为ERK通路的下游分子之一,pCERB在七氟醚麻醉-苏醒过程中各组间表达无差异,提示CREB通路可能不参与此过程的调节或CREB介导的核内转录机制在所观察的时间点尚未激活。
     4.在正常状态及麻醉-苏醒过程中pPKCγ表达变化的观察显示,传导束中的pPKCγ在七氟醚麻醉时磷酸化水平减弱,提示全麻可能抑制了pPKCγ在轴突中的功能,是否进而影响了轴突转运或兴奋传导尚待进一步研究。
     5.结合本实验室既往研究,七氟醚麻醉-苏醒过程中引起的脑内pERK1/2表达部位及变化趋势与异氟醚十分相似,提示氟醚类麻醉的中枢机制可能有相似之处,ERK可能是其共同的作用分子之一。
General anesthetics have been applied into clinical practice for more than 160 years. However, until now, it is still not fully understood how these general anesthetics induce their complex clinical effects including unconsciousness, amnesia, immobility and which areas and what molecules they are targeted at in the central nervous system. This situation leads to a limitation for the security and controllability of the clinical application of general anesthesia and the development of novel drugs.
     It is well known that general anesthetics induce the effect of unconsciousness, amnesia, immobility, etc, by activating on the central nerve system (CNS). It is believed that the sedation and amnesia effect of inhaled anesthetics may be related to forecortex, parietal cortex and hippocampus, while immobility may be related to spinal cord and lower brain stem. Thus, for the mechanism of general anesthesia, especially for inhalation anesthesia, multiple-target-hypothesis becomes more favorable in contrast to one-target-theory such as lipid theory, ion channel theory, receptor theory and gene theory, etc.
     A large amount of receptors and molecular have been reported to be involved in the production of general anesthesia, but what role they play and how they interact among these molecules is still unclear. Intracellular signal transduction system, which can be actived quickly to transform the information from extramembrane to the intramembrane, even to nucleus, has drawn much attention as to the study on the mechanism of general anesthesia. In this study, the alternation of action of some signal transduction moleculars under sevoflurane anesthesia was investigated to explore the central mechanism of inhalation anesthesia.
     Objective
     Alternations of the expression of phosphorylated ERK1/2, CREB, PKCγduring sevoflurane anesthesia-emergence course were investigated to clarify the role of these signal transduction molecules in mechanism of general anesthesia and to provide basis for the targets of inhaled anesthetics.
     Methods
     Part 1
     1. Male BALB/c mice at 8 weeks of age were randomly divided into five groups: group Sevo-1 and Sevo-2, undergoing sevoflurane anesthesia for 5min and 1h respectively; group E-1 and E-2, receiving sevoflurane anesthesia for 1h and emerged from anesthesia for 2min or 1h, respectively; Animals in group Con, were left untreated. At the end of treatments, the brain of all animals were taken out and processed for determination of phosphorylated ERK1/2 expression by Western blotting and the immunohistochemical staining.
     2. Twelve Male BALB/c mice were randomly divided into two groups: control (Con) and Sevo-1h which was exposured under sevoflurane anesthesia for 1h. At the end of treatments, artery blood samples were collected through left ventricular puncture following opening of the thoracic cavity for the blood gas analysis and assays of electrolytes.
     3. Eighteen Male BALB/c mice were randomly divided into 3 groups: Con, DMSO and SL327. Animals in the latter two groups were given an intraperitoneal injection of 25%DMSO,6 ml·kg-1 and SL327,30ml·kg-1, respectively, 1h before sevoflurane anesthesia. All the mice were anesthetized with 4% sevoflurane and maintained for 30min under 1.0 MAC sevoflurane. After recording the time of loss of righting reflex (LORR) and emergence of clamp-tail reflex, the animal was decapitated and processed for determination of phosphorylated ERK1/2 expressions by Western blotting.
     Part 2
     BALB/c mice at 8 weeks of age were randomly divided into five groups: Con, Sevo-1 and Sevo-2, E-1 and E-2. The treatments were as same as that in part 1. At the end of treatments, the brain of all animals was taken out and processed for Western blotting for determination of phosphorylated CREB expressions.
     Part 3
     1. Eight normal BALB/c mice were sacrificed by cervical dislocation and fixed with perfusion. The brains were sectioned and immunohistochemically stained for pPKCγ.
     2. Forty-eight Male BALB/c mice at 8 weeks of age were randomly divided into four groups: group Sevo-1 and Sevo-2, receiving sevoflurane anesthesia for 5 min and 1h, respectively; E-1h, sevoflurane anesthesia for 1h and emergence for 1h; Con, normal animals without being treated. At the end of treatments, the brain of all animals were taken out and processed for Western blotting and the immunohistochemical staining for determination of phosphorylated PKCγexpressions.
     Results
     Part 1
     1. As shown by Western blotting, the pERK expressions in the mice sensory cortex and hippcampus were decreased after sevoflurane inhalation and restored to the level of control after emergence from anesthesia (E-1, E-2); whereas the expression of pERK in brainstem was increased after sevoflurane inhalation and gradually restored but not back to the level of control after stopping of inhalation. For the immunohistochemistry staining, except LPBD, SO and PVN, the numbers of pERK1/2-like immunoreactive (pERK1/2-ir) neurons in lateral reticular nucleus (LRt), solitary tract nucleus (Sol), Edinger-Westphal nucleus (EW) and dorsal part of lateral parabrachial nucleus (LPBD), supraoptic nucleus (SO), paraventricular thalamic nucleus (PVN), central amygdaloid nucleus (Ce), bed nucleus of the stria terminalis (BST) were significantly increased during sevoflurane anesthesia and then restored to the level of control after emergence compared to the control group in which fewer pERK1/2-ir cells were observed in these nuclei; whereas the numbers of pERK1/2-ir neurons in ventrolateral periaqueductal gray (VLPAG), paraventricular thalamic nucleus (PV), arcuate hypothalamic nucleus (Arc), hippocampus (Hip), prelimbic cortex (PreL), cingulate cortex (Cg), motor cortex (M) and sensory cortex (S), where numerous pERK1/2-ir cells were seen in control group, were significantly decreased during sevoflurane anesthesia and restored to the level of control group again at 2min or 1h after stopping of sevoflurane inhalation.
     2. There is no statistic difference between control and Sevo-1h in each index of blood gas analysis and electrolytes examination.
     3. The time of LORR and the time of emergence of clamp-tail reflex were shorter than that in control after injection of SL327 but not DMSO. Western blotting showed that the pERK expressions in the mice sensory/motor cortex and hippcampus were significantly decreased in SL327 group compared to the control.
     Part 2
     There is no significant difference in the expression of pCREB in sensory cortex, hippcampus and brain stem among different groups.
     Part 3
     1. Phosphorylated PKCγ-like immunoreactivities were widely distributed in discreted area in the mouse brain. The positive products were mainly located in neurons, both perikaria and processes. Strong immunoreactivity staining for pPKCγwas observed in the pyramidal neurons in CA1 of hippocampus, Purkinje cells in cerebellum, the neurons in layer V of neocortex, the deep layers of prelimbic and insular cortex, granular layer of prepiriform cortex, basolateral amygdaloid nucleus, lateral amygdaloid nucleus, as well as fornix and pyramidal tract. In contrast, neurons in most nuclei of rostral thalamus, medial and dorsolateral geniculate nuclei, superficial area of dorsal cochlear nucleus, nucleus of spinal trigeminal tract and gigantocellular reticular nucleus were weakly stained. Few glial cells were faintly stained.
     2. Results of Western blotting showed that the pPKCγexpression in the mice hippcampus was increased after sevoflurane inhalation and down to the level of control after emergence (E-1h). The numbers of pPKCγ-like immunoreactive neurons (pPKCγ-ir) were significantly increased during sevoflurane anesthesia in basolateral amygdaloid nucleus where fewer pPKCγ-ir cells were found in control group, but not down to the level of control after emergence. On the contrary, the positive staining of pPKCγwas significantly decreased during sevoflurane anesthesia in pyramidal tract and fornix where strong pPKCγ-ir staining was found in control group, but restored to the level of control after emergence.
     Conclusion
     1. A significant alternation of expression of pERK1/2 in some brain areas/nuclei in mice was observed during sevoflurane anesthesia and emergence process. As to our knowledge, the increase of the expression of pERK1/2 in certain nuclei, such as LPBD and PVN, may be involved in anesthetics stress; the decrease of the expression of pERK1/2 in other brain areas, such as motor cortex, sensory coxtex and hippocampus, may be involved in the loss of consciousness, sensorium and cognition. During anesthesia and emergence course, only the phosphorylation level of ERK, but not the expression of total ERK1/2, was changed, indicating that general anesthesia probably induces activation of ERK pathway but not the synthesis of protein de novo.
     2. The time of induction and emergence (as shown by LORR and clamp-tail reflex) under sevoflurane anesthesia was shorten after the pathway of MEK-ERK was blocked with intraperitoneal injection of SL327, indicating that ERK perhaps played different roles in different course of general anesthesia course. The precise mechanisms need to be further studied.
     3. There was no significant difference in expression of pCREB among different groups during anesthesia and emergence course, showing that CREB perhaps wasn’t involved in the intracellular events of anesthesia, or, it has not be activated during the time observe.
     4. The expression of pPKCγin neural fiber tracts was decreased during sevoflurane anesthesia and emergence course, indicating that general anesthesia probably suppressed the action of pPKCγin axons. Further studies were needed to clarify whether general anesthesia affect the axonal transport or the conduction of firings on the fibers.
     5. The alternation of the expression of phosphorylated ERK1/2 during sevoflurane anesthesia was similar to that in isoflurane anesthesia in our previous studies, indicating that common mechanisms may be shared by different volatile anesthetics, such as activation of phosphorylated ERK1/2.
引文
1. 庄心良, 曾因明, 陈伯銮. 现代麻醉学. 第3版. 北京:人民卫生出版社, 2003: 6-7
    2. 曹云飞, 俞卫峰, 王士雷. 全麻原理及研究新进展. 北京:人民军医出版社, 2005: 1-3
    3. Dwyer R, Bennett HL, Eger EI, Heilbron D. Effects of isoflurane and nitrous oxide in subanesthetic concentrations on memory and responsiveness in volunteers. Anesthesiology. 1992; 77(5): 888-891
    4. Antognini JF, Carstens E. In vivo characterization of clinical anaesthesia and its components. Br J Anaesth. 2002; 89(1): 156-166
    5. Zeman A. Consciousness. Brain. 2001; 124(Pt 7): 1263-1289
    6. John ER. The neurophysics of consciousness. Brain Res Brain Res Rev. 2002; 39(1): 1-28
    7. Schmahmann JD, Sherman JC. The cerebellar cognitive affective syndrome. Brain. 1998; 121 ( Pt 4)(Pt 4): 561-579
    8. Flohr H. Sensations and brain processes. Behav Brain Res. 1995; 71(1-2): 157-161
    9. Freitas da Rocha A, Pereira A, Jr., Bezerra Coutinho FA. N-methyl-D-aspartate channel and consciousness: from signal coincidence detection to quantum computing. Prog Neurobiol. 2001; 64(6): 555-573
    10. Suzuki R, Porreca F, Dickenson AH. Evidence for spinal dorsal horn hyperexcitability in rats following sustained morphine exposure. Neurosci Lett. 2006; 407(2): 156-161
    11. Bailey AR, Jones JG. Patients' memories of events during generalanaesthesia. Anaesthesia. 1997; 52(5): 460-476
    12. Halliburton JR. Awareness during general anesthesia: new technology for an old problem. Crna. 1998; 9(2): 39-43
    13. Dagtekin O, Berlet T, Delis A, Kampe S. Manually controlled total intravenous anesthesia augmented by electrophysiologic monitoring for complex stereotactic neurosurgical procedures. J Neurosurg Anesthesiol. 2007; 19(1): 45-48
    14. Whitlock JR, Heynen AJ, Shuler MG, Bear MF. Learning induces long-term potentiation in the hippocampus. Science. 2006; 313(5790): 1093-1097
    15. Andrasfalvy BK, Mody I. Differences between the scaling of miniature IPSCs and EPSCs recorded in the dendrites of CA1 mouse pyramidal neurons. J Physiol. 2006; 576(Pt 1): 191-196
    16. Alkire MT, Haier RJ, Fallon JH. Toward a unified theory of narcosis: brain imaging evidence for a thalamocortical switch as the neurophysiologic basis of anesthetic-induced unconsciousness. Conscious Cogn. 2000; 9(3): 370-386
    17. Alkire MT, Haier RJ, Shah NK, Anderson CT. Positron emission tomography study of regional cerebral metabolism in humans during isoflurane anesthesia. Anesthesiology. 1997; 86(3): 549-557
    18. White NS, Alkire MT. Impaired thalamocortical connectivity in humans during general-anesthetic-induced unconsciousness. Neuroimage. 2003; 19(2 Pt 1): 402-411
    19. Antognini JF, Wang XW, Carstens E. Isoflurane action in the spinal cordblunts electroencephalographic and thalamic-reticular formation responses to noxious stimulation in goats. Anesthesiology. 2000; 92(2): 559-566
    20. Antognini JF, Carstens E. Macroscopic sites of anesthetic action: brain versus spinal cord. Toxicol Lett. 1998; 100-10151-58
    21. Franks NP, Lieb WR. Molecular and cellular mechanisms of general anaesthesia. Nature. 1994; 367(6464): 607-614
    22. Crystal GJ, Gurevicius J, Salem MR, Zhou X. Role of adenosine triphosphate-sensitive potassium channels in coronary vasodilation by halothane, isoflurane, and enflurane. Anesthesiology. 1997; 86(2): 448-458
    23. Hirota K, Roth SH. The effects of sevoflurane on population spikes in CA1 and dentate gyrus of the rat hippocampus in vitro. Anesth Analg. 1997; 85(2): 426-430
    24. Irifune M, Sugimura M, Takarada T, Maeoka K, Shimizu Y, Dohi T, Nishikawa T, Kawahara M. Propofol anaesthesia in mice is potentiated by muscimol and reversed by bicuculline. Br J Anaesth. 1999; 83(4): 665-667
    25. Villars PS, Kanusky JT, Dougherty TB. Stunning the neural nexus: mechanisms of general anesthesia. Aana J. 2004; 72(3): 197-205
    26. Lu H, Xu TL. The general anesthetic pentobarbital slows desensitization and deactivation of the glycine receptor in the rat spinal dorsal horn neurons. J Biol Chem. 2002; 277(44): 41369-41378
    27. Humphrey JA, Sedensky MM, Morgan PG. Understanding anesthesia: making genetic sense of the absence of senses. Hum Mol Genet. 2002; 11(10): 1241-1249
    28. Gamo S, Dodo K, Matakatsu H, Tanaka Y. Molecular genetical analysis ofDrosophila ether sensitive mutants. Toxicol Lett. 1998; 100-101329-337
    29. Walcourt A, Scott RL, Nash HA. Blockage of one class of potassium channel alters the effectiveness of halothane in a brain circuit of Drosophila. Anesth Analg. 2001; 92(2): 535-541
    30. 顾健腾, 陶国才. 蛋白质芯片与全身麻醉机制. 国外医学 麻醉学与复苏分册. 2005; 26(4): 203-205
    31. Melien O. Heterotrimeric G proteins and disease. Methods Mol Biol. 2007; 361119-144
    32. Seeman P, Kapur S. Anesthetics inhibit high-affinity states of dopamine D2 and other G-linked receptors. Synapse. 2003; 50(1): 35-40
    33. Nakayama T, Penheiter AR, Penheiter SG, Chini EN, Thompson M, Warner DO, Jones KA. Differential effects of volatile anesthetics on M3 muscarinic receptor coupling to the Galphaq heterotrimeric G protein. Anesthesiology. 2006; 105(2): 313-324
    34. Rebecchi MJ, Pentyala SN. Anaesthetic actions on other targets: protein kinase C and guanine nucleotide-binding proteins. Br J Anaesth. 2002; 89(1): 62-78
    35. Sedwick CE, Altman A. Perspectives on PKCtheta in T cell activation. Mol Immunol. 2004; 41(6-7): 675-686
    36. Suen PC, Wu K, Xu JL, Lin SY, Levine ES, Black IB. NMDA receptor subunits in the postsynaptic density of rat brain: expression and phosphorylation by endogenous protein kinases. Brain Res Mol Brain Res. 1998; 59(2): 215-228
    37. Hemmings HC, Jr., Adamo AI. Effects of halothane and propofol onpurified brain protein kinase C activation. Anesthesiology. 1994; 81(1): 147-155
    38. Proctor WR, Poelchen W, Bowers BJ, Wehner JM, Messing RO, Dunwiddie TV. Ethanol differentially enhances hippocampal GABA A receptor-mediated responses in protein kinase C gamma (PKC gamma) and PKC epsilon null mice. J Pharmacol Exp Ther. 2003; 305(1): 264-270
    39. Fuchs SY, Adler V, Pincus MR, Ronai Z. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci U S A. 1998; 95(18): 10541-10546
    40. Valjent E, Caboche J, Vanhoutte P. Mitogen-activated protein kinase/extracellular signal-regulated kinase induced gene regulation in brain: a molecular substrate for learning and memory? Mol Neurobiol. 2001; 23(2-3): 83-99
    41. Adams JP, Sweatt JD. Molecular psychology: roles for the ERK MAP kinase cascade in memory. Annu Rev Pharmacol Toxicol. 2002; 42135-163
    42. Kandel ER. The molecular biology of memory storage: a dialogue between genes and synapses. Science. 2001; 294(5544): 1030-1038
    43. Sweatt JD. Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol. 2004; 14(3): 311-317
    44. Selcher JC, Atkins CM, Trzaskos JM, Paylor R, Sweatt JD. A necessity for MAP kinase activation in mammalian spatial learning. Learn Mem. 1999; 6(5): 478-490
    45. Birnbaum SG, Varga AW, Yuan LL, Anderson AE, Sweatt JD, Schrader LA. Structure and function of Kv4-family transient potassium channels.Physiol Rev. 2004; 84(3): 803-833
    46. Lu KT, Wang YW, Wo YY, Yang YL. Extracellular signal-regulated kinase-mediated IL-1-induced cortical neuron damage during traumatic brain injury. Neurosci Lett. 2005; 386(1): 40-45
    47. Cheng XP, Wang BR, Liu HL, You SW, Huang WJ, Jiao XY, G. J. Phosphorylation of extracellular signal-regulated kinases 1/2 is predominantly enhanced in the microglia of the rat spinal cord following dorsal root transection. Neuroscience. 2003; 119(3): 701-712
    48. Gioia M, Galbiati S, Rigamonti L, Moscheni C, N. G. Extracellular signal-regulated kinases 1 and 2 phosphorylated neurons in the tele- and diencephalon of rat after visceral pain stimulation: an immunocytochemical study. Neurosci Lett. 2001; 308(3): 177-180
    49. Tan Z, Dohi S, Ohguchi K, Nakashima S, Nozawa Y. Local anesthetics inhibit muscarinic receptor-mediated activation of extracellular signal-regulated kinases in rat pheochromocytoma PC12 cells. Anesthesiology. 1999; 91(4): 1014-1024
    50. Yanagidate F, Strichartz GR. Bupivacaine inhibits activation of neuronal spinal extracellular receptor-activated kinase through selective effects on ionotropic receptors. Anesthesiology. 2006; 104(4): 805-814
    51. Zhong L, Su JY. Isoflurane activates PKC and Ca(2+) -calmodulin-dependent protein kinase II via MAP kinase signaling in cultured vascular smooth muscle cells. Anesthesiology. 2002; 96(1): 148-154
    52. Springell DA, Costin NS, Pilowsky PM, Goodchild AK. Hypotension andshort-term anaesthesia induce ERK1/2 phosphorylation in autonomic nuclei of the brainstem. Eur J Neurosci. 2005; 22(9): 2257-2270
    53. 冯昌栋, 戴体俊. 异氟醚全麻机制的研究进展. 国外医学:麻醉学与复苏分册. 2002; 23(6): 327-329
    54. Lerman J. Inhalational anesthetics. Paediatr Anaesth. 2004; 14(5): 380-383
    55. Constant I, Seeman R, Murat I. Sevoflurane and epileptiform EEG changes. Paediatr Anaesth. 2005; 15(4): 266-274
    56. Fischer A, Sananbenesi F, Spiess J, Radulovic J. Cdk5: a novel role in learning and memory. Neurosignals. 2003; 12(4-5): 200-208
    57. Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem. 2001; 76(1): 1-10
    58. Selcher JC, Weeber EJ, Varga AW, Sweatt JD, Swank M. Protein kinase signal transduction cascades in mammalian associative conditioning. Neuroscientist. 2002; 8(2): 122-131
    59. Bozon B, Kelly A, Josselyn SA, Silva AJ, Davis S, Laroche S. MAPK, CREB and zif268 are all required for the consolidation of recognition memory. Philos Trans R Soc Lond B Biol Sci. 2003; 358(1432): 805-814
    60. Puig NR, Ferrero P, Bay ML, Hidalgo G, Valenti J, Amerio N, Elena G. Effects of sevoflurane general anesthesia: immunological studies in mice. Int Immunopharmacol. 2002; 2(1): 95-104
    61. Zhu ZH, Huang WJ, Wang BR, Song L, Wang X, Duan XL, Ju G. The immunocytochemical localization of phosphorylated extracellular signal regulated kinases1/2 in the mouse brain. Chinese Journal of Neuroanatomy.2005; 21(4): 409-414
    62. Lirk P, Haller I, Myers RR, Klimaschewski L, Kau YC, Hung YC, Gerner P. Mitigation of direct neurotoxic effects of lidocaine and amitriptyline by inhibition of p38 mitogen-activated protein kinase in vitro and in vivo. Anesthesiology. 2006; 104(6): 1266-1273
    63. Tanabe K, Dohi S, Matsuno H, Hirade K, Kozawa O. Midazolam stimulates vascular endothelial growth factor release in aortic smooth muscle cells: role of the mitogen-activated protein kinase superfamily. Anesthesiology. 2003; 98(5): 1147-1154
    64. Khan AM, Watts AG. Intravenous 2-deoxy-D-glucose injection rapidly elevates levels of the phosphorylated forms of p44/42 mitogen-activated protein kinases (extracellularly regulated kinases 1/2) in rat hypothalamic parvicellular paraventricular neurons. Endocrinology. 2004; 145(1): 351-359
    65. Bachtell RK, Tsivkovskaia NO, Ryabinin AE. Strain differences in urocortin expression in the Edinger-Westphal nucleus and its relation to alcohol-induced hypothermia. Neuroscience. 2002; 113(2): 421-434
    66. Almado CE, Machado BH. Respiratory and autonomic responses to microinjection of NMDA and AMPA into the commissural subnucleus of the NTS of awake rats. Brain Res. 2005; 1063(1): 59-68
    67. Yi PL, Tsai CH, Lin JG, Liu HJ, Chang FC. Effects of electroacupuncture at 'Anmian (Extra)' acupoints on sleep activities in rats: the implication of the caud al nucleus tractus solitarius. J Biomed Sci. 2004; 11(5): 579-590
    68. De Luca-Vinhas MC, Macedo CE, Brandao ML. Pharmacologicalassessment of the freezing, antinociception, and exploratory behavior organized in the ventrolateral periaqueductal gray. Pain. 2006; 121(1-2): 94-104
    69. Kantzides A, Badoer E. nNOS-containing neurons in the hypothalamus and medulla project to the RVLM. Brain Res. 2005; 1037(1-2): 25-34
    70. Sinniger V, Porcher C, Mouchet P, Juhem A, Bonaz B. c-fos and CRF receptor gene transcription in the brain of acetic acid-induced somato-visceral pain in rats. Pain. 2004; 110(3): 738-750
    71. Edner A, Essen-Gustavsson B, Nyman G. Muscle metabolic changes associated with long-term inhalation anaesthesia in the horse analysed by muscle biopsy and microdialysis techniques. J Vet Med A Physiol Pathol Clin Med. 2005; 52(2): 99-107
    72. Kerbaul F, Bellezza M, Guidon C, Roussel L, Imbert M, Carpentier JP, Auffray JP. Effects of sevoflurane on hypoxic pulmonary vasoconstriction in anaesthetized piglets. Br J Anaesth. 2000; 85(3): 440-445
    73. Miwa N, Storm DR. Odorant-induced activation of extracellular signal-regulated kinase/mitogen-activated protein kinase in the olfactory bulb promotes survival of newly formed granule cells. J Neurosci. 2005; 25(22): 5404-5412
    74. Brami-Cherrier K, Valjent E, Herve D, Darragh J, Corvol JC, Pages C, Arthur SJ, Girault JA, Caboche J. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci. 2005; 25(49): 11444-11454
    75. Radwanska K, Valjent E, Trzaskos J, Caboche J, Kaczmarek L. Regulationof cocaine-induced activator protein 1 transcription factors by the extracellular signal-regulated kinase pathway. Neuroscience. 2006; 137(1): 253-264
    76. Joo DT, Gong D, Sonner JM, Jia Z, MacDonald JF, Eger EI, 2nd, Orser BA. Blockade of AMPA receptors and volatile anesthetics: reduced anesthetic requirements in GluR2 null mutant mice for loss of the righting reflex and antinociception but not minimum alveolar concentration. Anesthesiology. 2001; 94(3): 478-488
    77. Rojas MJ, Navas JA, Rector DM. Evoked response potential markers for anesthetic and behavioral states. Am J Physiol Regul Integr Comp Physiol. 2006; 291(1): R189-196
    78. Sleigh JW, Steyn-Ross DA, Steyn-Ross ML, Grant C, Ludbrook G. Cortical entropy changes with general anaesthesia: theory and experiment. Physiol Meas. 2004; 25(4): 921-934
    79. Ma J, Leung LS. Limbic system participates in mediating the effects of general anesthetics. Neuropsychopharmacology. 2006; 31(6): 1177-1192
    80. Wu GY, Deisseroth K, Tsien RW. Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci U S A. 2001; 98(5): 2808-2813
    81. Scheving LA, Gardner W. Circadian regulation of CREB transcription factor in mouse esophagus. Am J Physiol. 1998; 274(4 Pt 1): C1011-1016
    82. Schmid RS, Graff RD, Schaller MD, Chen S, Schachner M, Hemperly JJ, Maness PF. NCAM stimulates the Ras-MAPK pathway and CREBphosphorylation in neuronal cells. J Neurobiol. 1999; 38(4): 542-558
    83. Spanagel R. Is there a pharmacological basis for therapy with rapid opioid detoxification? Lancet. 1999; 354(9195): 2017-2018
    84. Ji RR, Kohno T, Moore KA, Woolf CJ. Central sensitization and LTP: do pain and memory share similar mechanisms? Trends Neurosci. 2003; 26(12): 696-705
    85. 姚永兴, 祝继洪, 宋学军, 张励才, 曾因明. 慢性神经病理性疼痛大鼠背根神经节和脊髓背角 pCREB 表达的变化. 中华麻醉学杂志. 2006; 26(2): 173-176
    86. Serova M, Ghoul A, Benhadji KA, Cvitkovic E, Faivre S, Calvo F, Lokiec F, Raymond E. Preclinical and clinical development of novel agents that target the protein kinase C family. Semin Oncol. 2006; 33(4): 466-478
    87. Sasaki Y. New aspects of neurotransmitter release and exocytosis: Rho-kinase-dependent myristoylated alanine-rich C-kinase substrate phosphorylation and regulation of neurofilament structure in neuronal cells. J Pharmacol Sci. 2003; 93(1): 35-40
    88. Teng FY, Tang BL. Axonal regeneration in adult CNS neurons--signaling molecules and pathways. J Neurochem. 2006; 96(6): 1501-1508
    89. Saito N, Shirai Y. Protein kinase C gamma (PKC gamma): function of neuron specific isotype. J Biochem (Tokyo). 2002; 132(5): 683-687
    90. Hirono M, Sugiyama T, Kishimoto Y, Sakai I, Miyazawa T, Kishio M, Inoue H, Nakao K, Ikeda M, Kawahara S, Kirino Y, Katsuki M, Horie H, Ishikawa Y, Yoshioka T, McNamara RK, Hussain RJ, Simon EJ, Stumpo DJ, Blackshear PJ, Abel T, Lenox RH. Phospholipase Cbeta4 and proteinkinase Calpha and/or protein kinase CbetaI are involved in the induction of long term depression in cerebellar Purkinje cells. J Biol Chem. 2001; 276(48): 45236-45242
    91. Chou WH, Messing RO, Aronowski J, Labiche LA, Chevlen E, Saito N, Shirai Y. Protein kinase C isozymes in stroke. Trends Cardiovasc Med. 2005; 15(2): 47-51
    92. Aronowski J, Labiche LA, Chevlen E, Saito N, Shirai Y. Perspectives on reperfusion-induced damage in rodent models of experimental focal ischemia and role of gamma-protein kinase C. Ilar J. 2003; 44(2): 105-109
    93. Ni TS, Wu SX, Li YQ. Co-existence of protein kinase C gamma and calcium-binding proteins in neurons of the medullary dorsal horn of the rat. Neurosignals. 2002; 11(2): 88-94
    94. Wen ZH, Chang YC, Wong CS. Implications of intrathecal pertussis toxin animal model on the cellular mechanisms of neuropathic pain syndrome. Acta Anaesthesiol Sin. 2003; 41(4): 187-196
    95. Chevlen E, Saito N, Shirai Y. Opioids: a review. Curr Pain Headache Rep. 2003; 7(1): 15-23
    96. Vigot R. Cerebellar long-term depression: a mechanism for learning and memory. Med Sci (Paris). 2003; 19(4): 437-441
    97. Galeotti N, Stefano GB, Guarna M, Bianchi E, Ghelardini C. Signaling pathway of morphine induced acute thermal hyperalgesia in mice. Pain. 2006; 123(3): 294-305
    98. Shutoh F, Katoh A, Ohki M, Itohara S, Tonegawa S, Nagao S. Role of protein kinase C family in the cerebellum-dependent adaptive learning ofhorizontal optokinetic response eye movements in mice. Eur J Neurosci. 2003; 18(1): 134-142
    99. Wickley PJ, Ding X, Murray PA, Damron DS. Propofol-induced activation of protein kinase C isoforms in adult rat ventricular myocytes. Anesthesiology. 2006; 104(5): 970-977
    100. Minami K, Gereau RWt, Minami M, Heinemann SF, Harris RA. Effects of ethanol and anesthetics on type 1 and 5 metabotropic glutamate receptors expressed in Xenopus laevis oocytes. Mol Pharmacol. 1998; 53(1): 148-156
    101. Do SH, Kamatchi GL, Washington JM, Zuo Z. Effects of volatile anesthetics on glutamate transporter, excitatory amino acid transporter type 3: the role of protein kinase C. Anesthesiology. 2002; 96(6): 1492-1497
    102. Porter LL. Somatosensory input onto pyramidal tract neurons in rodent motor cortex. Neuroreport. 1996; 7(14): 2309-2315
    103. Yamamori Y, Kishikawa K, Collins JG. Halothane effects on low-threshold receptive field size of rat spinal dorsal horn neurons appear to be independent of supraspinal modulatory systems. Brain Res. 1995; 702(1-2): 162-168

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700