缰核介导P物质受体拮抗剂抗抑郁作用及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抑郁症因其发病率的逐年上升及其造成的社会危害,已经成为当今社会生物学及医学界的研究热点,然而传统的抗抑郁药由于其副作用较大限制其在临床的应用。P物质受体拮抗剂(SPA)作为新型的抗抑郁药越来越受到人们的重视,但对于其作用机制还不完全清楚。缰核是位于上丘脑,联系边缘前脑及脑干的一个重要的神经核团,参与了机体应激、睡眠及情绪等多种生理功能的调节,并且与情绪有关的中缝背核(DRN)、海马及下丘脑室旁核等多个中枢核团具有密切的纤维联系,在抑郁症发病及治疗机制中可能具有重要的作用。本课题主要从行为学、电生理学及生物化学等多角度证明了LHb损毁可通过提高DRN内5-HT水平、抑制下丘脑-垂体-肾上腺皮质(HPA)轴的活动改善抑郁症大鼠的抑郁行为。SPA可通过抑制LHb神经元来提高DRN神经元的兴奋性,进而增加抑郁症大鼠脑内5-HT水平,来实现其抗抑郁作用。
At present, the morbidity of depressive disorder is increasing. According to the specialist, the incidence rate of depressive disorder will be the second among all disease at 2020. Clinically effective antidepressant drugs are thought to exert therapeutic effects by facilitating serotonin (5-HT) function suggesting that 5-HT depletion plays a key role in the pathogenesis of depression. A large number of 5-HT cells were observed in the dorsal raphe nucleus (DRN), and their terminals are widely distributed throughout the forebrain. DRN lesions could decrease the level of 5-HT. This result means that the activity changes of DRN plays a key role in the development of depression. At present, the study of depression are all focus on the action of neurotransmitter, seldom on the site of action. The habenular nucleus (Hb), especially, lateral habenula (LHb) is the major relay station between forebrain and midbrain raphe. It is involved in the regulation of many physiological functions. The LHb has a relay function, conveying limbic forebrain input to the DRN structure and exerts a functional inhibition on bioelectrical activity of DRN neurons. Some studies showed that the activity of DRN neurons was changed by stimulating the Hb electrically. At the pesent stage, the treatment of depression was mainly focus on the drugs which could increase 5-HT level in brain, such as serotonin reuptake inhibitor and monoamine oxidase inhibitor. But these drugs have much side effects, so the scientists are finding another drug which has little side effect. Substance P (SP) is a kind of neuropeptide which has closely relationship with depression and anxiety disorders. And it exert its effects by binding to Neurokinin 1 (NK-1) receptor. The SP antagonist and SP receptor are mainly expressed these encephalic regions which have relationship with stress, fear and affection, such as amygdala, hippocampus, hypothalamus and forefrontal cortex. And stress could induce changes of SP in these regions. Administration SP to central nervous system could produce behavior of fear. Stress is an important factor which induce depressive disorder. The gene damage of NK1 receptor and treated by SPA could decrease response of anxous and stress of mice. And the most obviously characteristic of SPA action is no side effects which traditional antidepressant have, such as conscious-sedation, motor neuron damage and sexual disturbance. SPA will be a new antidepressant and will be applicated in clinical. This study will to improve the key role of LHb in the development of depressive disorder, and it is LHb which mediated the antidepressive effect of SPA. To improve the LHb is the site of action of SPA in central nervous system.The result of this stuy showed:
     (1)The immobile time of depressed rats which induced by chronic mild stress (CMS) were increased and the climbing time were deacreased (P<0.001). The activities of CMS rats were decreased obviously compared with that of before stress; The immobile time of depressed rats which induced by clomipramine (CLI) were longer than that of normal rats and the climbing time were shorter than that of normal rats (P<0.001). The activity of CLI rats were lower than that of normal rats. After LHb lesions, the immobile time of CMS rats and CLI rats were all decreased (P<0.05) and the climbing time were all increased (P<0.05). Inhibit LHb by lidocaine also could induce the decreased of immobile time (P<0.001) and the increased of climbing time (P<0.05) of CMS rats. The result were similar with LHb lesions.
     (2)The result of radioimmunodetection showed that the level of blood cortisol of CMS rats were obviously higher than that of normal rats (P<0.01). LHb lesions could induce the decreased of blood cortisol (P<0.05).
     (3)The result of immunohistochemistry showed that the expression of corticotrophic releasing hormone (CRH) were higher than that of normal rats in periventricular nucleus (PVN). The number of CRH cell were increased in PVN of CMS rats.
     (4)The extracellular 5-HT level in DRN of CMS rats and CLI rats were lower than that of normal rats detected by microdialysis (P<0.05). The extracellular 5-HT level in DRN were increased after LHb lesions both in CMS rats and in CLI rats (P<0.05). The extracellular 5-HT level in DRN were not changed in sham rats (P>0.05).
     (5)Local application of lidocaine into LHb induced a significant increase in the extracellular 5-HT level in DRN of CLI group (from 98.2±4.3% of baseline to 170.4±18.1% of baseline, P<0.05). Glu 1.8_g/kg significantly decreased extracellular 5-HT levels in DRN of CLI group (from 98.2±4.3% of baseline to 52.9±8.0% of baseline, P<0.001).
     (6)There are no changes in FST both in CMS rats and in CLI rats after administrated of SP (0.3μg) into LHb (P>0.05). The immobile time were decreased (P<0.01) and the climbing time increased (P<0.05) after administrated SPA (0.3μg) into LHb both in CMS rats and in CLI rats. But there were no changes after adminstrated SPA/SP into LHb (P>0.05).
     (7)The result of extracelluar firing showed that the firing rate of serotonergic neurons in DRN were increased after local microinjection of SPA into LHb (P<0.01). And the firing rate of serotonergic neurons in DRN were decreased after local microinjection of SP into LHb (P<0.01).
     (8)SPA could decreased the firing rate of LHb neurons in slices (P<0.001), and SP could increased the firing rate of LHb neurons in slices (P<0.05).
     (9)The extracellular 5-HT level in DRN were increased 28% compared with that of before administration of SPA into LHb in CMS rats (P<0.05). The extracellular 5-HT level in DRN were increased 30% compared with that of before administration of SPA into LHb in CLI rats (P<0.05). Local microinjection of SPA into LHb could induce the increasing of extracellular 5-HT in DRN both in CMS rats and in CLI rats. According to these results, we can draw the below conclusions:
     (1)The depressed animal model of CMS and CLI were validity, reliability and utility. And they can be used to study depressive disorder.
     (2)LHb lesions could improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus and inhibition hypothalamic-pituitary-adrenocortical axis. From our studies, we conclude that function of the LHb is a crucial factor in the pathogenesis and therapy of depression.
     (3)LHb is the site of action of SPA in central nervous system. SPA could inhibit the activity of LHb neurons. The antidepressive effect of SPA were exerted by directly inhibit LHb to increase extracellular 5-HT level in brain.
引文
1.Vertes RP. A PHA-L analysis of ascending projectioons of the dorsal raphe nucleus in the rat. Jcomp Neurol, 1991, 313:643-668.
    2.Blier P, de Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol Sci, 1994,15:220-226.
    3.Inga Herpfer, Klaus Lieb. Substance P Receptor Antagonists in Psychiatry-Rationale for Development and Therapeutic Potential. CNS Drugs, 2005, 19 (4): 275-293.
    4.Luca Santarelli, Gabriella Gobbi, Pierre C. Debs , Etienne L. Sibille, Pierre Blier, René Hen,and Mark J. S. Heath. Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. PNAS, 2001, 98(4):1912-1917.
    5.De Felipe, C., Herrero, J.F., O’Brien, J.A., Palmer, J.A., Doyle, C.A., Smith, A.J.H., Laird, J.M.A., Belmonte, C., Cervero, F.,and Hunt S. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature (Lond.), 1998, 392:394–397.
    6.Delgado HL, Miller RM et al. Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine:Implications for the role of serotonin in the mechanism of antidepressant action. Biol Psychiatry, 1999, 46:212-220.
    7.Juvancz P. The effect of raphe lesion on sleep in rat. Brain Res, 1980, 194(2):371-376.
    8.Shu Hasegawa, Kyoko Nishi, Arata Watanabe, David H. Overstreet,Mirko Diksic.Brain 5-HT synthesis in the Flinders Sensitive Line rat model of depression: An autoradiographic study. Neurochemistry International, 2006, 48(5):358-366.
    9.Saffroy M,Beaujouan JC,Petitet F,Torrens Y, Glowinski J.Differentiallocalization of H-[Pro9]SP binding sites in the guinea pig and rat brain.Brain Res, 1994, 633:317-325.
    10.Wang RY, Aghajanian GK. Physiological evidence for habenula as major link between forebrain and midbrain raphe. Science, 1977, 197: 89-91.
    11.Andres, K.H., Von Du¨ ring, M., Veh, R.W.. Subnuclear organization of the rat habenular complexes. Journal of Comparative Neurology, 1999, 407, 130–150.
    12.赵华,王绍.L-Glu 分别兴奋大鼠内外侧缰核引起血压和痛阈变化的关系。中国应用生理学杂志。1995,11:357-360.
    13.Zhao H, Wang S. Different effects of L-glutamate microinjection in medial or lateral habenular nucleus on blood pressure. Chin J Neurosci, 1995, 2: 170-173.
    14.Zhao Hua, Rusak B. Circadian firing-rate rhythms and light responses of rat habenular nucleus neurons in vivo and in vitro. Neuroscience; 2005, 132: 519-528.
    15.Wirz-Justice A,Terman M et al.Brightening depression.Science Jan, 2004, 303 (5657):467-469;
    16.Willner P. Validity. Reliability and utility of the chronic mild stress model of depression: a 10-year review and evaluation. Psychopharmacology (Berl), 1997, 134(4):319-329
    17.Caldecott-Hazard S, Mazziotta J, Phelps M. Cerebral correlates of depressed behavior in rats, visualized using 14C-2-deoxyglucose autoradiography. J Neurosicience, 1988, 8: 1951-1961.
    18.Shumake J, Edwards E et al. Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of halpless behavior. Brain Reseach; 2003; 963:274-281.
    19.Herkenham M. Nauta WJH. Effect connections of the habenular nuclei in the rat. J Comp Neurol, 1979, 18:19-48.
    20.Julie G,Hensler. Serotonergic modulation of the limbic system . Neuroscience & Biobehavioral Reviews, 2006, 30(2):203-214.
    21.Gallagher M, Chiba AA.The amygdala and emotion. Curr Opin Neurobiol 1996, 6:221-227.
    22.Zagami MT, Ferraro G, Montalbano ME,Sardo P, La Grutta V. Lateral habenula and hippocampal units: electrophysiological and iontophoretic study.Brain Res Bull; 1995, 36(6):539-43.
    23.刘伟民,王绍. 刺激杏仁基底外侧核对外侧缰核神经元单位放电的影响. 生理学报,1980,39:373.
    24.Rachel KC, Michael JC et al. Substance P (Neurokinin 1) receptor Antagonists Enhance Dorsal Raphe Neuronal Activity. The Journal of Neuroscience; 2002, 22(17):7730-7736.
    25.Wang Shao Liu Minzhi et al. Spontaneous discharges of habenular nucleus and its inhibitory action on nucleus raphe magnus. Science Bulletin; 1980, 25:83-88.
    26.张晓燕、王绍.缰核在 5-羟色胺上行加压通路中的作用。中国药理学报; 1992,13(3):268-70.
    27.徐海燕,于蕾,李华丽,赵华. 中缝背核与缰核间功能联系的电生理学.吉林大学学报(医学版),2006,32(1):35-38.
    28.Henn FA, Vollmayr B, Sartorius A. Mechanisms of depression: the role of neurogenesis. Drug Discov Today: Disease Mech, 2004;1:407–11.
    29.杜巧琳, 王小云. 抑郁症病因研究. 现代中西医结合杂志. 2003, 12(1) :106-108.
    30.Miller, H.L. et al. Clinical and biochemical effects of catecholamine depletion on antidepressant-induced remission of depression. Arch. Gen. Psychiatry, 1996; 53:117–128.
    31.Svensson TH. Brain noradrenaline and the mechanisms of action of antidepressant drugs. Acta Psychiatry Scand Suppl, 2000,402(1):18-27.
    32.代英杰,范骏,孟昭义.抑郁症的神经生化特征及进展[J].中国临床康复,2003,7(30):4126-4127.
    33.易正辉,方贻儒,王祖承.抑郁症神经生化和神经电生理学研究进展[J].中国新药与临床杂志,2005,24(9);676-679.
    34.Abdalla Salem Elhwuegi.Central monoamines and their role in major depression. Progress in Neuro-Psychophamacology & Biological Psychiatry, 2004, 28:435-451
    35. 喻 东 山 . 乙 酰 胆 碱 和 精 神 药 理 [J]. 国 外 医 学 . 精 神 病 学 分 册 ,2003,30(4):193-195.
    36.Rabenstein RL,Caldarone BJ, Picciotto MR. The nicotinic antagonist mecamylamine has antidepressant-like effects in wild-type but not beta2-or alpha7-nicotinic acetylcholine receptor subunit knockout mice [J]. Psychopharmacology (Berl), 2006, 189(3):395-401
    37.Popik P, Kozela F, Krawczyk M. Nicotine and nicotinic receptor antagonists potentiate the antidepressant-like effects of imipratnine and citalopram. Br J Pharmacol, 2003,139(6): 1196-1202.
    38.李晓白,黄继忠,王祖承.抑郁症与谷氨酸传导[J].中国新药与临床杂志,2005,24(8);601-604.
    39.Rosa AO, Lin J,Calixto JB,et al.Involvement of NMDA receptors and L-arginine-nitric oxide pathway in the antidepressant-like effects of zinc in mice [J].Behav Brain Res, 2003,144(1-2).87-93
    40.侯彩兰,贾福军. SP与抑郁症[J].上海精神医学,2005, l7(2):115-117.
    41.Blier P, Gobbi G, Haddjeri N, et al. Impact of substance P receptor antagonism on the serotonin and norepinephrine systems: relevance to the antidepressant/anxiolytic response. J Psychiatry Neurosci, 2004, 29(3): 208-218.
    42.Mitchell AJ.The role of corticotropin releasing factor in depressive illness:a critical review[J]. Neurosci Biobehav Rev, 1998, 22(5): 635-741.
    43.Steoger A,Holsboer F. Nocturnal secretion of prolactin and cortisol and the sleep EEG in patients with major endogenous depression during an acute episode and after full remission[J]. Psychiatry Res, 1997, 72(2):81-8.
    44.Takebayashi M,Kagaya A,Uchitomi Y,et al. Plasma dehydroepiandrosterone sulfate in unipolar major depression. Short communication[J]. J Neural Transm, 1998, 105(4/5):537-542.
    45.Rubin RT, Phillips JJ, McCracken JT, et al. Adrenal gland volume in major depression relationship to basal and stimulated pituitary-adrenal cortical axis function[J]. Biological Psychiatry, 1996, 40(2):89-94
    46.陈昌惠.应激与健康[J].中国心理卫生杂志, 1987, 1(5): 225-229.
    47.Levy EM. Biological measures and celluar immunological function in depressed psychiatric inpatients[J]. Psychiatry Research. 1991; 36(2): 157-167.
    48.Janice K, Kiecolt-Glaer, Laura D, et al. Marital quality, marital disruption and immune funtion. Psychosom Med. 1987; 49(1):13-14.
    49.余西金.应激事件和重性抑郁发作的因果关系[J].国外医学·精神病学分册. 2000; 27(1): 51-52.
    50.全国情感障碍亚型家系研究协作组.单相抑郁与双相情感障碍遗传效应及方式的对照研究[J].中华精神科杂志, 1997, 30(4):199-202。
    51.李端.药理学〔M〕.第四版.北京:人民卫生出版社,1999,127
    52.赵志刚,张星虎,张石革.当代神经精神科用药选择[M].北京:人民卫生出版社, 2003: 45-60.
    53. 张顺国 , 陈敏玲 , 唐跃年 . 抑郁症的药物治疗进展〔 J 〕 . 医药导报,2000,19(4):331.
    54.吕路线,郭本玉,赵靖平.吗氯贝胺治疗抑郁症[J].中国新药与临床杂志, 2001; 20: 1-3
    55.Jureidini JN, Tonkin A.l Clinical practice guidelines for depression in youngpeople [J].Med JAust, 2003; 178: 300-302.
    56.Gurdjian, E.S. Olfactory connections in the albino rat, with special reference to the stria medullaris and the anterior commissure. Journal of Comparative Neurology, 1925, 38:127–163.
    57.河北医学院《人体解剖学》下册,1978,1237。
    58.Geisler, S, Andres, K.H, Veh, RW. Morphologic and cytochemical criteria for the identification and delineation of individual subnuclei within the lateral habenular complex of the rat. Journal of Comparative Neurology, 2003, 458:78–97.
    59.Kim U, Chang SY. Dendritic morphology, local circuitry, and intrinsic electrophysiology of neurons in the rat medial and lateral habenular nuclei of the epithalamus. J COMP NEURO; 2005,483 (2): 236-250.
    60.Cragg, BG. A heat-loss mechanism involving the habenular, interpe- duncular and dorsal tegmental muclei. Nature, 1959 184:1724.
    61.Cragg, BG. The role of the habenular in the respiratory response of the rabbit to warmts or to restraint.Exp. Neurol.1961,4:115-133.
    62.Modianos DT, Hitt JC. Habenular lesions produce decrements feminine, but not masculine, sexal behavior in rates. Behav.Biol, 1974, 10(1), 75-87.
    63.Zouhar RL, Degroot J. Effects of limbit brain lesions on aspects of reproduction in female rats. Anat Rec, 1963,145-358.
    64.Grosman, SP. Hypothalamic and limibic influences on food intake. Feder.Proc, 1968 27, 1349-1359.
    65.Markus Ullsperger and D. Yves von Cramon. Error Monitoring Using External Feedback: Specific Roles of the Habenular Complex, the Reward System, and the Cingulate Motor Area Revealed by Functional Magnetic Resonance Imaging. J Neurosci, 2003, 23(10):4308-4314.
    66.Neckers LM, Schwartz JP, Wyatt RJ, Speciale SG. Substance P afferents from the habenula innervate the dorsal raphe nucleus. Exp Brain Res, 1979;37:619-23.
    67.Ferraro G, Montalbano ME, Sardo P, La Grutta V. Lateral habenular influence on dorsal raphe neurons. Brain Research Bulletin, 1996;41: 47-52.
    68.Amat J, Sparks PD, Matus-Amat P, Griqqs J, Watkins LR, Maiter SF. The role of the habenular complex in the elevation of dorsal raphe nucleus serotonin and the changes in the behavioral responses produced by uncontrollable stress. Brain Res, 2001; 917: 118-126.
    69.Aghajanian GK, Wang RY. Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res, 1977; 122:229-242.
    70.Varga V, Kocsis B, Sharp T. Electrophysiological evidence for convergence of inputs from the medial prefrontal cortex and lateral habenula on single neurons in the dorsal raphe nucleus. Eur J Neurosci, 2003;17: 280-286.
    71.Reisine TD, Soubrie P, Artaud F, Glowinski J. Involvement of lateral habenula-dorsal raphe neurons in the differential regulation of striatal and nigral serotonergic transmission in cats. J Neurosci, 1982;2: 1062-1071.
    72.Sim LJ, Joseph SA. Dorsal raphe nucleus efferents: termination in peptidergic fields. Peptides, 1993;14: 75-83.
    73.Baker KG, HallidayGM,Hornung JP, Geffen LB, Cotton RG,Tork I. Distribution, morphology and number of monoamine-synthesizing and substance P-containing neurons in the human dorsal raphe nucleus. Neuroscience.1991;42:757–75.
    74.Sergeyev V, Hokfelt T, Hurd Y. Serotonin and substance P co-exist in dorsal raphe neurons of the human brain. NeuroReport, 1999;10: 3967-3970.
    75.Conley RK, Cumberbatch MJ, Mason GS, Williamson DJ, Harrison T, Locker K, Swain C, Maubach K, O’Donnell R, Rigby M, Hewson L, Smith D, Rupniak NM. Substance P (Neurokinin 1) Receptor Antagonists Enhance Dorsal Raphe Neuronal Activity. J Neuroscience, 2002; 22: 7730-7736.
    76.Morris JS, Smith KA, Cowen PJ, Friston KJ, Dolan RJ. Covariation of activity in habenula and dorsal raphe nuclei following tryptophan depletion. Neuroimage. 1999;10:163–72.
    77.Alexander Sartorius, Fritz A. Henn. Deep brain stimulation of the lateral habenula in treatment resistant major depression. Medical Hypotheses; 2007, 69:1305-1308.
    78.丛林,李世荣.增生性瘢痕组织中SP及其受体的分布[J].中华医学杂志,1998,78(7):511-511.
    79.贲长恩,李淑庚.组织化学[M].北京:人民卫生出版社,2001.832.
    80.何仲义,李军平 等.SP、神经肽Y和生长抑素在大鼠舌下腺的免疫组织化学观察[J].宁夏医学院学报,2002,24(3):157-158.
    81.张世红,赵晏. SP的免疫调节作用[J].生理科学进展, 2002,33(3): 235-238.
    82.姜恩魁 李志山 常志杰 等.大鼠性周期中下丘脑和垂体SP含量的变化[J].锦州医学院学报,1987,8(4):315-317.
    83.Saria A. The tachykinin NK1 receptor in the brain: pharmacology and putative functions. Eur J pharmaco, 1999, 375(1-3): 51-60
    84.姜恩魁 李志山 常志杰 等.大白鼠垂体SP含量与卵巢孕酮生成关系的研究[J].锦州医学院学报,1988,9(2):108-109.
    85.包新民 舒斯云 等.SP和受体在纹状体边缘区内的分布及其与学习记忆功能的关系[J].第一军医大学学报,2002,22(2):102-106.
    86.邓云川 李世荣 等.SP及其受体对成纤维细胞的作用[J].实用美容整形外科杂志,2002,13(6):317-320。
    87.Lai J P, Douglas SD, Ho W Z. Human lymphocytes express substance P and its receptor. J Neuroimmunol, 1998, 86:80-86.
    88.Weinstock J V, Blum A, Walder J, et al. Eosinophils from granulomas in murine schistosomiasis mansonia produce substance p. J Immunol, 1988, 141:961.
    89.Van Hagen P M, Hofland L J, Ten Bokum AM. Neuropeptides and their receptors in the immune system. Ann Med, 1999, 31(Suppl 2):15-22.
    90.Covas M J, Pinto L A, Victorino R M. Effects of substance P on human T cell function and the modulatory role of peptidase inhibitors. Int J Clin Lab Res, 1997, 27:129-134.
    91.Kawamura N, Tamura H, Obana S, et al. Differential effects of neuropeptides on cytokine production by mouse helper T cell subsets. Neuroimmunomodulation, 1998, 5:9-15.
    92.Hood V C,Cruwys S C,Urban L,et al.Differential role of neurokinin receptors in human lymphocyte and monocyte chemotaxis. Regulatory Peptides, 2000, 96:17-21.
    93.Dianzani C, Lombardi G, Collino M, et al. Priming effects of substance P on calcium changes evoked by interleukin-8 in human neutrophils. J Leukoc Biol, 2001, 69:1013-1018.
    94.Bockmann S, Seep J, Jonas L. Delay of neutrophil apoptosis by the neuropeptides substance P: involvement of caspase cascade. Peptides, 2001, 22:661-670.
    95.Ohshiro H, Suzuki R, Furuno T, et al. Atomic force microscopy to study direct neurite-mast cell (RBL) communication in vitro. Immunol Letters, 2001, 74:211-214.
    96.Battmann T, Parsadaniantz S M, Jeanjean B, et al. In-vivo inhibition of the preovulatory LH surge by substance P and in-vitro modulation of gonadotrophin-releasing hormone-induced LH release by substance P.oestradiol and progesterone in the female rat. J Endocrinology, 1991, 130:169-175.
    97.Larsen P J, Saermark T, Mau S E. Binding of an iodinated substance P analogue to cultured anterior pituitary prolactin and luteinizing hormone-containing cells. J Histochemistry and Cytochemistry, 1992, 40(4):487-493.
    98.Duval P, Lenoir V, Garret C, et al. Reduction of the amplitude of preovalatory LH and FSH surges and of the amplitude of the in vitro GnRH-induced LH release by substance P. Reversal of the effect by RP67580. Neuropharmacology, 1996, 35(12):1805-1810.
    99.Jessop D S, Chowdrey H S, Larsen P J, et al. Substance P:multifunctional peptide in the hypothalamo-pituitary system. Journal of Endocrinology, 1992, 132:331-337.
    100.Mello DM, Marcinichen DR, Madruga D, Branco R, Paschoalini MA, De Lima TC. Involvement of NK1 receptors in metabolic stress markers after the central administration of substance P. Behav Brain Res. 2007, 6;181(2):232-238.
    101.Fiebich BL, HolligA, Lieb K. Inhibition of substance P- induced cytokine synthesis by St. John 's wort extracts. Pharmacopsychiatry, 2001, 34 (suppl 1): S26-S28.
    102.Kramer MS, Cutler N, Feighner J, et al. Distinctmechanism for an- tidepressantactivity by blockade ofcentral substanceP receptors. Science, 1998, 281(5383): 1640-1644.
    103.Geracioti TD, Carpenter LL, Owens MJ, Baker DG, Ekhator NN, Horn PS, Strawn JR, Sanacora G, Kinkead B, Price LH, Nemeroff CB. Elevated Cerebrospinal Fluid Substance P Concentrations in Posttraumatic Stress Disorder and Major Depression. Am J Psychiatry 2006; 163:637–643).
    104.Shults CW, Buck SH, Burcher E, Chase TN, O'Donohue TL. Distinct binding sites for substance P and neurokinin A (substance K): co-transmitters in rat brain. Peptides. 1985; 6(2):343-345.
    105.Norris SK, Boden PR, Woodruff GN. Agonists selective for tachykinin NK1 and NK3 receptors excite subpopulations of neurons in the rat medial habenula nucleus in vitro. Eur J Pharmacol. 1993;234(2-3):223-228.
    106.Rigby M, O'Donnell R, Rupniak NM. Species differences in tachykinin receptor distribution: further evidence that the substance P (NK1) receptorpredominates in human brain. J Comp Neurol. 2005;490(4):335-53.
    107.Ribeiro-da-Silva A, Hokfelt T. Neuroanatomical localisation of substance P in the CNS and sensory neurons. Neuropeptides, 2000,34(5): 256-271.
    108.Richard H argreaves. Imaging substance P receptors(NK1) in the living human brain using positron emission tomography. J clin Psychiat, 2002, 63(suppl11): 18-24.
    109.Deflipe C, Herrero JF, O’Brien JA et al.: Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature, 1998;392(6674):394-397.
    110.Santarelli L, Gobbi G, Debs PC et al. Genetic and pharmacological disruption of neurokinin 1 receptor function decreases anxiety-related behaviors and increases serotonergic function. Proc. Natl. Acad. Sci. 2001;98(4):1912-1917.
    111.Froger N, Gardier AM, Moratalla R, Alberti I, Lena I, Boni C, De Felipe C, Rupniak NM, Hunt SP, Jacquot C, Hamon M, Lanfumey L.
    5-hydroxytryptamine (5-HT)1A autoreceptor adaptive changes in substance P (neurokinin 1) receptor knock-out mice mimic antidepressantinduced desensitization. J Neurosci, 2001;21: 8188–8197.
    112.Ma QP, Bleasdale C. Modulation of brain stem monoamines and gamma-aminobutyric acid by NK1 receptors in rats. Neuroreport,2002;13: 1809–1812.
    113.Commons KG, Valentino RJ. Cellular basis for the effects of substance P in the periaqueductal gray and dorsal raphe nucleus. J Comp Neurol;2002,447: 82–97.
    114.Liu R, Ding Y, Aghajanian GK. Neurokinins activate local glutamatergic inputs to serotonergic neurons of the dorsal raphe nucleus. Neuropsychopharmacology. 2002;27(3):329-340.
    115.Robin Cohen S, Ronald Melzack. The habenula and pain: Repeatedelectrical stimulation produces prolonged analgesia but lesions have no effect on formalin pain or morphine analgesia. Behav Brain Res, 1993;54: 171-178.
    116.Zhao H, Wang S. Different effects of L-glutamate microinjection into medial or lateral habenular nucleus on pain threshold. Sheng Li Xue Bao, 1995;47: 292-296.
    117.Kurumaji A, Umino A, Tanami M, Ito A, Asakawa M, Nishikawa T. Distribution of anxiogenic-induced c-Fos in the forebrain regions of developing rats. J Neural Transm, 2003;110: 1161–1168.
    118.Klemm WR. Habenular and interpeduncularis nuclei: shared components in multiple-function networks. Medical Sci Monit, 2004;10: RA261–273.
    119.Eminy HY Lee, Huang SL. Role of lateral habenula in the regulation of exploratory behavior and its relationship to stress in rats. Behav Brain Res, 1988;30: 265-271.
    120.Kalen P, Pritzel M, Nieoullon A, Wiklund L. Further evidence for excitatory amino acid transmission in the lateral habenular projection to the rostral raphe nuclei: lesion-induced decrease of high affinity glutamate uptake. Neuroscience Letters, 1986;68:35–40.
    121.Sutherland RJ. The dorsal diencephalic conduction system: a review of the anatomy and functions of the habenular complex. Neurosci Biobehav Rev, 1982;6:1–13.
    122.Guiard BP, Froger N, Hamon M, Gardier AM, Lanfumey L. Sustained pharmacological blockade of NK substance P receptors causes functional desensitization of dorsal raphe 5-HT autoreceptors in mice. J. Neurochem. 2005;95(6):1713-1723.
    123.Gobbi G, Blier P. Effect of neurokinin-1 receptor antagonists on serotoninergic, noradrenergic and hippocampal neurons: comparison with antidepressant drugs. Peptides, 2005;26(8):1383-1393.
    124.Rupniak NM, Kramer MS. Discovery of the antidepressantand antiemeticefficacy of substance P receptor (NK1) antagonists. Trends PharmacolSci 1999, 20(12): 485-490
    125.Rupniak NM, Carlson EC, Harrison T, et al. Pharmacologicalblockade or genetic deletion of substance P(NK1) receptors attenuates neonatal vocalisation in guinea-pigs and mice. Neuropharmacology, 2000;39(8): 1413-1421
    126.Hart VD, MGC, Czéh B, et al. Substance P receptorantagonist and clomipramine prevent stress- induced alterations in cerebral metabolites, cytogenesis in the dendate gyrus and hippocampal volume. Molecular Psychiatry, 2002;7(9): 933-941
    127.Fiebich BL, Hollig A, Lieb K. Inhibition of substance P- induced cytokine synthesis by St. John 's wort extracts. Pharmacopsychiatry, 2001, 34(suppl l): S26-S28
    128.Rupniak NMJ, Carlson EJ, Webb JK, et al. Comparison of the phenotype ofNK1R-/-micewith pharmacologicalblockade of the substance P (NK1) receptor in assays for antidepressant and anxiolytic drugs. Behavioloural Pharmacology,2001;12(6-7): 497-508
    129.Roth KA, Katz RJ. Further studies on a novel animal model of depression: Therapeutic effects of a tricyclic antidepressant. Neurosci Biobehav Rev, 1981;5: 253-258.
    130.Vogel G, Neill D, Hagler M, Kors D. A new animal model of endogenous depression: a summary of present findings. Neurosci Biobehav Rev, 1990; 14:85-91.
    131.Cassano P, Hidalgo A, Burgos V, Adris S, Argibay P. Hippocampal upregulation of the cyclooxygenase-2 gene following neonatal clomipramine treatment (a model of depression). Pharmacogenomics J, 2006;6:381-387.
    132.Bhagya V, Srikumar BN, Raju TR, Shankaranarayana Rao BS. Neonatal clomipramine induced endogenous depression in rats is associated withlearning impairment in adulthood. Behav Brain Res. 2008;187(1):190-194.
    133.Porsolt RD, Le Pichon M, Jalfre M. Depression: a new animal model sensitive to antidepressive treatments. Nature, 1977;266: 730–732.
    134.Porsolt RD, Anton G, Blavet N, Jalfre M. Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol, 1978;47: 379–391.
    135.Abel EL, Bilitzke PJ. A possible alarm substance in the forced swimming test. Physiol Behav, 1990;48: 233–239.
    136.Abel EL. Gradient of alarm substance in the forced swimming test. Physiol Behav, 1991;49: 321–323.
    137.Armario A, Gavalda A, Meri O. Force swimming test in rats: Effect of desipramine administration and the period of exposure to the test on struggling behavior, swimming, immobility and defaecation rate. Eur J Pharmacol, 1988;158: 207–212.
    138.Aghajanian, G.K., 1978. Feedback regulation of central monoaminergic neurons: evidence from single-cell recording studies. Essays in Neurochemistry and Neuropharmacology. Wiley, New York, pp. 1–32.
    139.Park, R. M. Intracellular horseradish peroxidase labelling of rapidly firing dorsal raphe projections neurons. Brain Res. 1987; 402:117-130.
    140.Alejandro O. Sodero, Otto A. Orsingher and Oscar A. Ramírez. Altered serotonergic function of dorsal raphe nucleus in perinatally protein-deprived rats: Effects of fluoxetine administration. European Journal of Pharmacology, 2006, 532(3):230-235.
    141.Jin QH, et al. Cardiovascular changes induced by central hypertonic saline are accompanied by glutamate release in awake rats. Am J Physiol. 2001. 281: 1224-1231.
    142.Grippo AJ, Sullivan NR, Damjanoska KJ, Crane JW, Carrasco GA, Shi J, Chen Z, Garcia F, Muma NA, Van de Kar LD. Chronic mild stressinduces behavioral and physiological changes, and may alter serotonin 1A receptor function, in male and cycling female rats. Psychopharmacology, 2005;179: 769-780.
    143.Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev, 1992;16: 525-534.
    144.Willner P. Animal models of depression: validity and applications. Adv Biochem Psychopharmacol, 1995;49: 19-41.
    145.Willner P. Chronic Mild Stress (CMS) Revisited: Consistency and Behavioural-Neurobiological Concordance in the Effects of CMS. Neuropsychobiology, 2005; 52: 90-110.
    146.Katz RJ. Animal model of depression: effects of electroconvulsive shock therapy. Neurosci Biobehav Rev, 1981;5: 273-277.
    147.Javier Velazquez-Moctezuma, Oscar Diaz Ruiz. Neonatal treatment with clomipramine increased immobility in the forced swim test: An attribute of animal models of depression. Pharmacol Biochem Behav, 1992;42:737-739.
    148.Vazquez-Palacios G, Bonilla-Jaime H, Velazquez-Moctezuma J. Antidepressant effects of nicotine and fluoxetine in an animal model of depression induced by neonatal treatment with clomipramine. Prog Neuropsychopharmacol Biol Psychiatry, 2005;29:39-46.
    149.Hansen HH, Sanchez C, Meier E. Neonatal administration of the selective serotonin reuptake inhibitor Lu 10-134-C increases forced swimm- ing-induced immobility in adult rats : A putative animal model of depression ? J Pharmacology and experimental therapeutics. 1997; 283(3):1333-1341.
    150.Catalan R,Gallart JM,Castellanos JM,et al. Plasma corticotr opin- releasing factor in depressive disorders.Biol Psychiatry 1998; 44(l):15.
    151.Sayamwong E. Hammack, Kristen J. Richey, et al. The Role ofCorticotropin-Releasing Hormone in the Dorsal Raphe Nucleus in Mediating the Behavioral Consequences of Uncontrollable Stress. Journal of Neuroscience. 2002; 22(3):1020-1026.
    152.Raadsheer FC, Hoogendijk WJ, Stam FC, Tilders FJ & Swaab DF. Increased number of corticotropin-releasing hormone expressing neurons in the hypothalamic paraventricular nucleus of depressed patients. Clinical Neuroendocrinology. 1994; 60:436–444.
    153.Raadsheer FC, Van Heerikhuize JJ, Lucassen PJ, Hoogendijk WJ, Tilders FJ, Swaab DF. Corticotropin-releasing hormone mRNA levels in the paraventricular nucleus of patients with Alzheimer’s disease and depression. American Journal of Psychiatry.1995; 152:1372–1376.
    154. Hasen?hrl RU, Souza-Silva MA, Nikolaus S, Tomaz C, Brandao ML, Schwarting RK, Huston JP. Substance P and its role in neural mechanisms governing learning, anxiety and functional recovery. Neuropeptides. 2000; 34:272–280.
    155. Kramer MS, Winokur A, Kelsey J, Preskorn SH, Rothschild AJ, Snavely D, et al. Demonstration of the efficacy and safety of a novel substance P (NK1) receptor antagonist in major depression. Neuropsychopharmacology.2004; 29:385–392.
    156.Ronnekleiv OK. Distribution in the macaque pineal of nerve fibers containing immunoreactive substance P, vasopressin, oxytocin, and neurophysins. J Pineal Res, 1988;5:259-71.
    157.Taban CH, Cathieni M. Distribution of substance P-like immunoreactivity in the brain of the newt (Triturus cristatus). J Comp Neurol, 19- 83;216:453-70.
    158.Cuello AC, Emson PC, Paxinos G, Jessell T. Substance P containing and cholinergic projections from the habenula. Brain Res, 1978;149:413-29.
    159.Ronnekleiv OK, Kelly MJ. Distribution of substance P neurons in the epithalamus of the rat: an immunohistochemical investigation. J PinealRes. 1984;1:355-70.
    160.Yang L-M, Hu B, Xia Y-H, Zhang B-L, Zhao H, Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus, Behavioural Brain Research. 2008;188(1):84-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700