支持多任务集成下料的优化下料技术研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
实施绿色制造与低碳制造是制造业减少资源消耗强度的重要途径,减少物料消耗和能源消耗是企业实施绿色制造的具体手段。优化下料技术是实现减少物料消耗的一项具体实用技术,作为控制原材料利用率的重点环节,通过采用合理的优化下料技术,对减少有限资源的浪费和碳排放起着积极而关键的作用。传统的优化下料注重于排料的数学意义上的最优,但难于解决实际工程应用中大规模多任务集成下料、特殊数据结构适应性、下料过程自动化、系统集成等一系列复杂应用需求问题。论文针对目前企业普遍采用的多工程、多任务集成下料方式,围绕支持多任务集成下料的优化下料技术及应用进行了深入研究。
     首先,在分析多任务集成下料问题特点的基础上,提炼总结了支持多任务集成下料的优化下料需求,建立了多任务集成下料的优化决策过程模型;针对多任务集成下料优化决策过程中所涉及的重要支持技术,建立了支持多任务集成下料的优化下料技术体系,并以关键技术攻关作为研究重点给出了论文的解决思路。
     然后,针对技术体系中的主要关键技术展开了研究,包括多任务大规模零件复杂轮廓信息的自动提取技术、多任务大规模零件的分组优化技术及基于网络的零件分组并行优化下料技术。
     针对多任务集成下料中大规模零件轮廓信息提取过程复杂、提取工作量大等问题,提出了一种零件轮廓分层路由提取的MST生长算法,包括零件轮廓路由拓扑结构的构造和基于有权无向图MST的轮廓劈裂提取。其中,零件轮廓路由拓扑结构的构造包括基于拓扑投影的图纸平面化、节点路由状态定义与特征节点提取和轮廓线重组;基于有权无向图MST的轮廓劈裂提取包括无向图MST求解和轮廓线布尔劈裂。同时,为了实现下料生产对产品设计变更的快速响应,避免传统上更改传递的冗余过程,提出了基于产品模型重建的设计变更快速响应方法。
     针对优化算法在处理多任务集成下料问题时易陷入时间效率和材料利用率矛盾的问题,提出了基于下料特征的多任务大规模零件分组优化策略,将零件的相似性特征和下料配合特征作为分组约束,并利用样本零件的导向作用加速零件分组过程,研究了具体的零件分组优化方法。一方面,为了克服传统无监督聚类算法中聚类中心需事前确定、聚类结果不稳定等缺点,提出了一种K-means与HCM算法相结合的大规模零件分组优化方法;另一方面,利用图论工具对零件的下料特征关联进行分析,提出了一种基于有权无向图MST的大规模零件自适应分组优化方法,并通过应用实例验证了两种方法的可行性和有效性。
     针对目前不同优化方法及其优化软件对不同下料数据优化效果具有不确定性的问题,为了避免零件分组形成的下料子任务优化效果不理想而影响最终下料方案的形成,提出了一种基于网络的零件分组并行优化下料方法,通过集成多种计算资源、多种下料方法,利用开放的网络环境进行零件分组的并行优化求解,重点建立了基于网络的零件分组并行优化下料模型,并给出了零件分组并行优化下料的物理拓扑结构。
     最后,以AutoCAD作为系统的图形支持平台,建立了支持多任务集成下料的优化下料系统的结构体系和功能体系,以国家863/CIMS目标产品“建筑金属结构计算机辅助设计与生产管理集成系统”中的条材/板材优化下料子系统为基础,基于上述研究结论开发了支持多任务集成下料的优化下料系统。
     论文的研究内容是国家自然科学基金项目的重要组成部分,其研究结论和开发的产品是2011年度高等学校科学研究优秀成果奖科学技术进步二等奖获奖项目“支持复杂应用需求的优化下料关键技术及应用”的重要组成内容,软件系统已经在上百家企业中得到推广应用;在减少物料资源消耗、提高企业的生产制造水平方面,取得了较好的应用效果。
Implementation of green manufacturing and low-carbon manufacturing is theimportant way to reduce manufacturing resource consumption, and reducing materialconsumption and energy consumption are the specific means for enterprises toimplement green manufacturing. Cutting stock technology is a practical technology toreduce material consumption, which mainly controls the material utilization ratio.Therefore, by using rational cutting stock technology, the waste of limited resources andcarbon emissions will be greatly reduced. The traditional cutting stock technologyfocuses on the optimal material utilization ratio of pure mathematics, but it is difficult tosolve a series of complex application requirements in practical engineering application,such as integrated cutting stock, adaptability to special data structure, cutting processautomation, system integration, and so on. According to the integrated cutting stockmode commonly used by enterprises, cutting stock technologies for integrated cuttingstock and its application are studied in this thesis.
     Firstly, based on the analysis of the integrated cutting stock problem(ICSP)’scharacteristics, cutting stock requirements for ICSP are summarized. Then, optimizationdecision model for ICSP is established. According to the important supportingtechnologies involved in the optimization decision process, technology system for ICSPis constructed. Solving thought for ICSP is put forward with key technologies asresearch emphasis.
     Secondly, the key technologies in the technology system are studied in detail,including automatic extraction technology of large-scale parts’ complex outline,grouping optimization technology of large-scale parts and parallel optimizationtechnology of parts groups based on network.
     On parts outline extraction, in order to resolve the complicated extraction processand heavy workload problems, MST growing algorithms for parts outline hierarchicalrouting extraction are proposed, which include the construction of outline routingtopology architecture and outline disassembling extraction based on MST of weightedundirected view. Construction of outline routing topology architecture involvesdrawings complanation based on topological projection, the definition of note routingstatus, the extraction of feature notes and outline restructuring. And outlinedisassembling extraction involves the solution of undirected view’s MST and outline boolean disassembling. Meanwhile, in order to realize quick response to design changein cutting stock and to avoid redundant process of traditional change transfer, quickresponse method for design change based on product model reconstruction is putforward.
     On grouping optimization of large-scale parts, aimed at the contradiction of timeefficiency and material utilization ratio in ICSP, grouping optimization strategy oflarge-scale parts based on cutting stock characteristics is proposed. With the strategy,concrete parts grouping methods are further studied with parts’ similarity characteristicsand parts’ combination characteristics as grouping constraints, meanwhile, partssamples are utilized to accelerate grouping process. On the one hand, according to theshortcomings of unsupervised clustering algorithms that clustering centers should bedetermined beforehand and unstable clustering results likely occur, a parts groupingoptimization method based on K-means and HCM is put forward. On the other hand, byanalyzing the association of parts’ cutting stock characteristics with graph theory, a partsgrouping optimization method based on MST of weighted undirected view isestablished. At last, the application examples validate the feasibility and effectiveness ofthe proposed methods.
     On parallel optimization of parts groups, in order to resolve unstable optimizationresults problems when different optimization methods and corresponding optimizationsystems process different data, and to avoid negative influence on final cutting solutioncaused by unsatisfactory optimization results of cutting stock subtasks, a paralleloptimization method for parts groups based on network is given. And to complete thismethod, the parallel optimization model for parts groups based on network and physicaltopological structure for parallel optimization are constructed. By integrating variouscomputing resources and cutting stock methods, the parallel optimization for partsgroups based on open network environment is realized.
     Finally, by selecting AutoCAD as the system’s graphic support platform,architecture and function structure of the system supporting integrated cutting stock areconstructed. Based on cutting stock subsystem of bar and plate which belongs to863/CIMS software product called CAD and production management integrated systemfor architecture metal structure, the cutting stock system using the above researchresults is developed.
     This thesis’s research contents are the important part of the project supported bythe National Natural Science Foundation, and the research results and developed system are also the important part of the winning project called cutting stock key technologiessupporting complex application requirements and its applications. This project has wonthe Second Award of the Scientific and Technological Progress of China's Ministry ofEducation. The system has been applied to hundreds of enterprises, and goodapplication effect is obtained for reducing material consumption and improvingenterprises’ manufacturing level.
引文
[1] Dyckhoff H. A typology of cutting and packing problems[J]. Eur.J.Opl Res,1990,44:145-159
    [2] Brown A R. Optimum Packing and Depletion: The Computer in Spare and Resource UsageProblems[M]. New York, London,1971
    [3]李英华,周兆英,熊沈蜀,等.二维几何排样问题分类编码的研究[J].机械科学与技术,2000,19(3):441-444
    [4]崔耀东.计算机排样技术及其应用[M].北京:机械工业出版社,2004
    [5] Coffman E, Carey M, Johnson D. Approximation algorithms for bin packing-an updatedsurvey[M]. Vienna:Springer-Verlag,1984
    [6]贾志欣.排样问题的分类研究[J].锻压技术,2004,29(4):8-10,11
    [7] Garfinkel R S, Nernhauser G L. Integer Programming[M]. New York:Wiley,1972
    [8]马仲番.线性整数规划的数学基础[M].北京:科学出版社,1998
    [9]卢开澄.组合数学:算法与分析(上、下册)[M].北京:清华大学出版社,1983
    [10] Papadimitriou C H, Steiglitz K著,刘振宏,蔡茂诚译.组合最优化:算法和复杂性[M].北京:清华大学出版社,1988
    [11] Kantorovich L V. Mathematical methods of organizing and planning production[J].Management Science.1960,6(4):366-422
    [12] Paul A E. Linear programming: A key to optimum newsprint product[J]. Pulp and PaperMagazine of Canada,1956,5:145-150
    [13] Eisemann K. The trip loss problem[J]. Management Science,1957,3:279-284
    [14] Herrmann K, Vajda S. Linear programming in trip calculation[J]. The World’s Paper TradeReview,1958,7:28-36
    [15] Garey M R, Johnson D S. Computer and Interactability:A Guide of Theory of NP-Completeness[M]. San Francicso:Freeman and Company,1979
    [16] Gilmore P C, Gomory R E. The theory and computation of knapsack functions[J]. OperationsResearch,1966,14:1045-1074
    [17] Gimore P C, Gomory R E. A linear programming approach to the cutting stock problem-PartII[J]. Operations Research,1963,11:863-887
    [18] Gilmore P C, Gomory R E. Multistage cutting stock problem of two and more dimensions[J].Operations Research,1965,13:94-120
    [19] Gimore P C, Gomory R E. A linear programming approach to the cutting stock[J]. OperationsResearch,1961,9:849-859
    [20] Gau T, et al. Cutgen1:A problem generator for the standard one-dimensional cutting stockproblem[J]. Eur.J.Opl Res,1995,84:572-579
    [21] Fayard D, Zissimopoulos V. An approximation algorithm for solving unstrained two-dimensional knapsack problem[J]. Eur.J.Opl Res,1995,84:562-571
    [22]邢文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,1990
    [23] Yanasse H H. Two-dimensional cutting stock with multiple stock sizes[J]. Journal ofOperational Research Society,1991,42(8):673-683
    [24] Schollmeyer M, Lin J Q, Krishnamurthy K, et a1. Hybrid research for solving nestingProblems[C]. In The World congress on Expert system and operations research for solvingnesting problems, Pergamon Press, NY,1991:1223-1231
    [25] Beasley J E. A population heuristic for constrained two-dimensional non-guillotine cutting[J].European Journal of Operational Research,2004,156(3):601-627
    [26]杨传民,王树人,王心宇,等.基于条块结构的二维斩断切割布局启发性算法[J].农业机械学报,2007,38(10):136-139
    [27] Lee J. In sit u column generation for a cutting2stock problem[J]. Computers and OperationsResearch,2007,34(8):2345-2358
    [28]侯桂玉,崔耀东,黄少丽,等.一种求解圆形件下料问题的启发式算法[J].计算机工程,2010,36(13):227-229
    [29]曹炬,刘毅,凌少东.可焊接的一维排样问题的一种启发式算法[J].中国机械工程,2007,18(2):135-138
    [30] Martello S, Vigo D. Exact solution of the two-dimensional finite bin packing problem[J].Management Science,1998,44(3):388-399
    [31]黄崇斌,胡吉全.板材优化下料矩形综合法[J].起重运输机械,1999,6:28-30
    [32]陈仕军,曹炬.矩形件优化排样的一种启发式算法[J].计算机工程与应用,2010,46(12):230-232,238
    [33]刘岩,阎振华,吕建斌,等.冲裁参数计算排样及板材下料的优化设计[J].太原重型机械学院学报,1995,16(3):252-257
    [34] Fekete S P, Schepers J. A new exact algorithm for general orthogonal d-dimensional knapsackproblems[J]. Springer Lecture Notes in Computer Science,1997,1284:144-156
    [35] Tschoke S, Holthofer N. A new parallel approach to the constrained two-dimensional cuttingstock problem[C]. In Workshop on Algorithms for Irregularly Structured Problems, LNCS.1995:285-299
    [36] Huang W Q, Chen D B, Xu R C. A new heuristic algorithm for rectangle packing[J].Computers&Operations Research,2007,34(11):3270-3280
    [37] Cui Yaodong. Generating optimal T-shape cutting patterns for circular blanks[J]. Computersand Operations Research,2005,32(1):143-152
    [38] Prasad Y K D V, Somasundram S. CASNS-a heuristic algorithm for the nesting of irregularshaped sheet metal blanks[J]. Computer Aided Engineering Journal,1991,4:69-73
    [39] Ghodsi R, Sassani F. Online cutting stock optimization with prioritized orders[J]. AssemblyAutomation,2005,25(1):66-72
    [40] Vahrenkamp R. Random search in the one-dimensional cutting stock problem[J]. EuropeanJournal of Operational Research,1996,95(1):191-200
    [41] Cui Y, Zhao X, Yang Y, Yu P. A heuristic for the one dimensional cutting stock problem withpattern reduction[C]. Proceedings of the Institution of Mechanical Engineers, Part B, Journalof Engineering Manufacture,2008,222(6):677-685
    [42] Michel G, Gilbert L, Frederic S. Heuristics and lower bounds for the bin packing problemwith conflicts[J]. Computer and Operations Research,2004,31(3):347-358
    [43]崔耀东.生成矩形毛坯最优T形排样方式的递归算法[J].计算机辅助设计与图形学学报,2006,18(1):125-127
    [44]杨传民,王树人,王心宇.基于4块结构的斩断切割布局启发性算法[J].机械设计,2007,24(2):25-26
    [45]黄有群,刘嘉敏,朴致淳.剪床排样的计算机辅助设计[J].小型微型计算机系统,1995,16(7):43-47
    [46]徐彦欣.基于产生式规则的二维不规则零件的排料算法[J].小型微型计算机系统,1998,19(10):48-52
    [47] Oliverira J F. Ferrira J S, An improved version of Wang’s algorithm for two-dimensionalcutting problems[J]. Eur.J.Opl Res,1995,84:599-617
    [48] Cui Yaodong. Generating optimal multi-segment cutting patterns for circular blanks in theManufacturing of Electric Motors[J]. European Journal of Operational Research,2006,169(1):30-40
    [49]张玉萍,张春丽,蒋寿伟.皮料优化排样的有效方法[J].软件学报,2005,16(2):316-323
    [50] Beasley J E. Algorithms for Unstrained Two-dimensional Guillotine Cutting[J]. J.Opl Res.Soc,1985,36(4):298-306
    [51]郭俐,崔耀东.有约束单一尺寸矩形毛坯最优排样的拼合算法[J].农业机械学报,2007,38(10):140-144
    [52] Belov G, Scheithauer G. A cutting plane algorithm for the one-dimensional cutting stockproblem with multiple stock lengths[J]. European Journal of Operational Research,2002,141(2):274-294
    [53]刘嘉敏,张胜男,黄有群.二维不规则形状自动排料算法的研究与实现[J].计算机辅助设计与图形学学报,2000,12(7):488-491
    [54]蔡正军,龚坚,刘飞.板材优化下料的数学模型的研究[J].重庆大学学报(自然科学版),1996,19(2):82-88
    [55]黄宜军,施德恒,许启富.钣金CAD中一个较优的排样算法[J].计算机辅助设计与图形学学报,2000,12(5):380-383
    [56]陈文亮,崔英,李磊.基于自动碰撞技术的最优排样算法[J].计算机应用研究,2000,7:38-39,44
    [57] Arenales M, Gramani. Two-staged and constrained two-dimensional guillotine cuttingproblems[C]. Belgium:the16th European Conference on Operational Research,1998
    [58] Alves Claudio, Valerio de Carvalho J M. A stabilized branch-and-price-and-cut algorithm forthe multiple length cutting stock problem[J]. Computers and Operations Research,2008,35(4):1315-1328
    [59] Stadtler H. A one-dimensional cutting stock problem in the aluminium industry and itssolution[J]. Eur. J. Opl Res,1990,44:209-223
    [60] Cui Yaodong, Wang Qiang. Exact and heuristic algorithms for the circle-cutting problem inthe manufacturing industry of electric motors[J]. Journal of Combinatorial Optimization,2007,14(1):35-44
    [61] Paolo Toth. Optimization engineer ing techniques for the exact solution of NP-hardcombinatorial optimization problems[J]. Eur.J.Opl Res,2000,125:222-238
    [62] Vanderbeck F. Exact algorithm for minimizing the number of setups in the one-dimensionalcutting stock problem[J]. Operations Research,2000,48(6):915-926
    [63] Vance P H. Branch-and-Price Algorithms for the One-Dimensional Cutting Stock Problem[J].Computational Optimization and Applications,1998,9:211-228
    [64] Blazewicz J, Walkowiak R. Comparison of tabu search approaches for two-dimensionalirregular cutting[C]. Belgium:the16th European Conference on Operational Research,1998
    [65] Kenyon C, Remila E. Near-optimal solution to a two-dimensional cutting stock problem[J].Mathematics of Operations Research,2000,25(4):645-656
    [66] Kolen A W J. Solving a bi-criterion cutting stock problem with open-ended demand:A casestudy[J]. Journal of the Operational Research Society,2000,51(11):1238-1247
    [67] Dagli C H, Poshyanonda P. New approaches to nesting rectangular panems[J]. Journal ofIntelligent manufacturing,1997,8:177-190
    [68] Hopper E, Turton B. Application of genetic algorithms to packing problems-a review[C].Proceeding of the2nd On-line World Conference on Soft Computing in Engineering Designand Manufacturing. Springer Verlag, London,1997,279-288
    [69] Bo Li, Zhi Yanzhao, Ju Dongli. A hybrid algorithm for nesting problems[C]. Proceedings ofthe Second International Conference on Mcchine and Cybernetics, Xi’an,2003,1424-1429
    [70]梁利东,钟相强.粒子群算法在不规则件排样优化中的应用[J].中国机械工程,2010,21(17):2050-2052,2069
    [71]李明,黄平捷,周泽魁.基于小生境遗传算法的矩形件优化排样[J].湖南大学学报(自然科学版),2009,36(1):46-49
    [72]蒋兴波,吕肖庆,刘成城.求解矩形件优化排样的自适应模拟退火遗传算法[J].计算机辅助设计与图形学学报,2008,20(11):1425-1431
    [73] Fang Hui, Yin Guofu, Li Haiqing, et a1. Application of integer coding accelerating geneticalgorithm in rectangular cutting stock problem[J]. Chinese Journal of Mechanical Engineering(English Edition),2006,19(3):335-339
    [74]李培勇,王呈方,茅云生.基于基因群体的一维优化下料[J].上海交通大学学报,2006,40(6):1015-1018
    [75] Hopper E, Turon B C H. An empirical investigation of meta-heuristic and heuristic algorithmfor a2D packing problem[J]. European Journal of Operational Research,2000,128(1):34-57
    [76] Anand S, Balachandar T, Sharma R. An integrated machine vision based system for solvingthe non-convex cutting stock problem using genetic algorithms[J]. Journal of ManufacturingSystems,1999,18:396-415
    [77] Eberhart R C, Shi Y. Particle swarm optimization: development, applications and resources
    [C]//Proc. Congresson Evolutionary Computation. Seoul,2001:81-86
    [78] Xu J W, Liu J W. A new genetic algorithm based on niche technique and local searchmethod[J]. Journal of University of Science and Technology,2001,18(1):36-38
    [79] Yeung L H W, Tang W K S. A hybrid genetic approach for garment cutting in the clothingindustry[J]. IEEE Transactions on Industrial Electronics,2003,50(3):449-455
    [80] Tang K W, Tang W K S. Metal cutting with hybrid genetic algorithm[C]//Proceedings of the3rd IEEE International Conference Industrial Informatics, Perth,2005:735-739
    [81] Jordan A, Ozawa S, Rulak M. Application of parallel hybrid algorithm in the optimizationtechnique [C]//Proceedings International Conference on Parallel Computing in ElectricalEngineering,2002, PARELEC’02,2002:330-333
    [82] Chen Xiong, Kong Qingsheng, Wu Qidi. Hybrid algorithm for jobshop schedulingproblem[C]//Proceedings of the4th World Congress on Intelligent Control and Automation,2002,2002,3:1739-1743
    [83] Purushothama G K, Jenkins L. Simulated annealing with local searcha hybrid algorithm forunit commitment[J]. IEEE Transactions on Power Systems,2003,18(1):273-278
    [84] Xu Hongbing, Wang Houjun, Li Chunguang. A hybrid algorithm for the assignmentproblem[C]//Proceedings2002International Conference on Machine Learning andCybernetics,2002,2:881-884
    [85] Hopper E, Turton B C H. A review of the application of meta-heuristic algorithms to2D strippacking problems[J]. Artificial Intelligence Review,2001,16(4):257-300
    [86]罗阳.机械制造车间生产作业多智能体规划原理与板材套料优化方法的研究[D].四川大学博士学位论文,2001
    [87]曹炬,胡修彪.大规模矩形件优化排样的遗传算法[J].锻压机械,1999,4:17-20
    [88]孟繁桢,张庆翠.用遗传算法求解最优切割方法[J].应用科学学报,2000,18(3):276-279
    [89]史俊友,冯美贵,苏传生,等.不规则件优化排样的小生境遗传模拟退火算法[J].机械科学与技术,2007,26(7):940-944,949
    [90]贾志欣,殷国富,罗阳.二维不规则零件排样问题的遗传算法求解[J].计算机辅助设计与图形学学报,2002,14(5):467-470
    [91]宋亚男,徐荣华,杨宜民,等.混合算法在排样问题上的应用研究[J].计算机工程与应用,2009,45(34):17-20
    [92]宋亚男,叶家玮,邓飞其,等.基于改进免疫遗传算法的矩形件排样[J].计算机工程与应用,2004,40(12):22-24
    [93]李明,张光新,周泽魁.基于改进遗传算法的二维不规则零件优化排样[J].湖南大学学报(自然科学版),2006,33(2):48-50
    [94]陈勇,唐敏,童若锋,等.基于遗传模拟退火算法的不规则多边形排样[J].计算机辅助设计与图形学学报,2003,15(5):598-603,609
    [95]赵新芳,崔耀东,杨莹,等.矩形件带排样的一种遗传算法[J].计算机辅助设计与图形学学报,2008,20(4):540-544
    [96]宋亚男.二维排样系统的图形匹配、入排控制与碰撞算法研究[D].华南理工大学博士学位论文,2004
    [97]李明.智能优化排样技术研究[D].浙江大学博士学位论文,2006
    [98]王毅,郝重阳.一种排样图像轮廓线生成方法[J].数据采集与处理,2006,21(2):230-233
    [99]薛迎春,孙俊,须文波.求解矩形包络问题的量子行为粒子群优化算法[J].计算机应用,2006,26(9):2068-2070,2073
    [100]李爱平,张丰,刘雪梅.基于包容矩形的优化排样算法及实现[J].计算机工程与应用,2007,43(1):198-200,220
    [101] Jakobs S. On genetic algorithms for the packing of polygons[J]. European Journal ofOperational Research,1996,88:165-181
    [102] Dori D, Ben-Bassat, M. Efficient nesting of congruent convex figures[J]. Communications ofthe ACM,1984,27(3):228-235
    [103]张德富,陈竞驰,刘永凯.用于二维不规则排样的离散临界多边形模型[J].软件学报,2009,20(6):1511-1520
    [104]刘胡瑶,何援军.基于重心NFP的二维不规则形状排样算法[J].中国机械工程,2007,18(6):723-726,731
    [105] Gomes A M, Oliveira J F. A2-exchange heuristic for nesting problems[J]. European Journalof Operational Research,2002,141(2):359-370
    [106] Gomcs A M, Oliveira J F. Solving irregular strip packing problems by hybridising simulatedannealing and linear programming[J]. European Journal of Operational Research,2006,171(3):811-829
    [107] Liu H Y, He Y J. Algorithm for2D irregular-shaped nesting problem based on the NFPalgorithm and lowest-gravity-center princlple[J]. Journal of Zhejiang University-Science A,2006,7(4):570-576
    [108] Belongie S, Malik J, Puzicha J.Shape matching and object recognition using shape contexts[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(4):509-522
    [109] Hu Jwu-Sheng, Su Tzung-Min. Flexible3D object recognition framework using2D views viaa similarity-based aspect-graph approach[J]. International Journal of Pattern Recognition andArtificial Intelligence,2008,22(6):1141-1169
    [110] Sezgin T M, Davis R. Sketch recognition in interspersed drawings using time-based graphicalmodels[J]. Computers and Graphics,2008,32(5):500-510
    [111]张建勋,何玉林,罗书强.零件二维视图轮廓信息和封闭图形信息的自动提取[J].计算机工程与应用,2000,36(10):38-40
    [112]张淮声,张佑生,方贤勇.基于矢量积的二维封闭图形轮廓信息提取方法[J].计算机工程与应用,2002,38(8):93-151
    [113]张树有,谭建荣,彭群生.基于拓扑映射的视图轮廓信息自动获取算法[J].中国图象图形学报,2001,6(10):1016-1020
    [114]林小夏,张树有.基于中点法的复杂图形轮廓信息自组织算法研究[J].中国图象图形学报,2008,13(3):541-546
    [115] Huang H C, Lo S M, Zhi G S, et al. Graph theory-based approach for automatic recognitionof CAD data[J]. Engineering Applications of Artificial Intelligence,2008,21(7):1073-1079
    [116]何平,戴鹏,杨旭东,等.基于等高测度矩阵辨识不规则封闭图形[J].计算机辅助设计与图形学学报,2009,21(5):640-643
    [117]严华,殷国富,宁芊.基于边界矩的机械零件图像轮廓特征提取技术[J].计算机集成制造系统,2008,14(7):1375-1379
    [118]覃斌,阎春平,刘飞.基于转向法的大规模空间封闭图形高效识别[J].计算机工程,2009,35(14):184-186
    [119]阎春平,覃斌,刘飞.图形轮廓提取的图元优先级特征定义及应用[J].计算机辅助设计与图形学学报,2010,22(1):44-50
    [120]阎春平,王宾宾,覃斌,等.应用拓扑投影不变原理的空间图形轮廓提取方法[J].重庆大学学报,2010,33(6):1-5
    [121] Yanasse H H, Limeira M S. A hybrid heuristic to reduce the number of different patterns incutting stock problems[J]. Computers and Operations Research,2006,33(9):2744-2756
    [122] Trkman P, Gradisar M. One-dimensional cutting stock optimization in consecutive timeperiods[J]. European Journal of Operational Research,2007,179(2):291-301
    [123] Gramani Maria Cristina N, Franca Paulo M. The combined cutting stock and lot-sizingproblem in industrial processes[J]. European Journal of Operational Research,2006,174(1):509-521
    [124] Song X, Chu C B, Nie Y Y, et al. An iterative sequential heuristic procedure to a real-life1.5-dimensional cutting stock problem[J]. European Journal of Operational Research,2006,175(3):1870-1889
    [125]阎春平,宋天峰,刘飞.面向可加工性的复杂约束状态下一维优化下料[J].计算机集成制造系统,2010,16(1):191-195
    [126]阎春平,宋天峰,刘飞.面向可制造性的两阶段一维优化下料方法[J].计算机辅助设计与图形学学报,2009,21(12):1785-1790
    [127]高培森. AutoCAD2005中文版基础教程[M].北京:机械工业出版社,2005
    [128]周济. CAD技术在中国制造业中的应用[J].机械与电子,1998,4:9-13
    [129] Kurt Hampe等. AutoCAD应用开发工具大全[M].北京:清华大学出版社,1994
    [130]陈文贤.深入剖析AutoLISP[M].北京:学苑出版社,1994
    [131]梁帆等. AutoCAD开发系统(ADS)C语言教程[M].北京:学苑出版社,1994
    [132]康博创作室. VisualLISP实用教程[M].北京:人民邮电出版社,1999
    [133]邵俊昌,李旭东. AutoCAD ObjectARX2000开发技术指南[M].北京:电子工业出版社,2000
    [134] AutoCAD2000ObjectARX Developer’s Guide. Autodesk Inc,1999
    [135]刘良华,朱东海. AutoCAD2000ARX开发技术[M].北京:清华大学出版社,2000
    [136]李长勋. AutoCAD ObjectARX程序开发技术[M].北京:国防工业出版社,2005
    [137]何援军.投影与任意轴侧图的生成[J].计算机辅助设计与图形学学报,2005,17(4):729-733
    [138]胡延平,马德成,何鸿鹏,等.基于模型重建技术的图形匹配原理与方法[J].大连理工大学学报,2005,45(2):220-225
    [139]杨若瑜,胡笳,蔡士杰.工程图对象识别规则自动获取方法的研究[J].计算机学报,2003,26(10):1234-1240
    [140]郑彦兴,田菁,窦文华.基于Pareto最优的QoS路由算法[J].软件学报,2005,16(8):1484-1489
    [141]陈国龙,郭文忠,涂雪珠,等.求解多目标最小生成树问题的改进算法[J].软件学报,2006,17(3):364-370
    [142]李密青,郑金华,罗彪.一种基于最小生成树的多目标进化算法[J].计算机研究与发展,2009,46(5):803-813
    [143] Broutin N, Devroye L, McLeish E. Note on the structure of Kruskal's algorithm[J].Algorithmica,2010,56(2):141-159
    [144]马露杰,黄正东.基于面壳封闭的B-rep模型分解方[J].计算机学报,2009,32(6):1183-1194
    [145] LU Tong, YANG Huafei, YANG Ruoyu, et al. Automatic analysis and integration ofarchitectural drawings[J]. International Journal on Document Analysis and Recognition,2007,9(1):31-47
    [146]王凌智.能优化算法及其应用[M].北京:清华大学出版社,2000
    [147][美]C.H.Papadimitriou, K.Steiglitz著.刘振宏,蔡茂诚译.组合最优化算法和复杂性[M].北京:清华大学出版社,1988
    [148]华中平,张立.基于线性规划的角钢优化下料算法研究[J].湖北工业大学学报,2005,20(5):15-18
    [149] Yue Q, Cao J, Wang F H. Research and implementation of simulated annealing algorithm inthe large-scale rectangular optimal cutting stock problem[C]//Proceedings of the2007IEEEInternational Conference on Mechatronics and Automation. Los Alamitos:IEEE ComputerSociety Press,2007:1023-1027
    [150]尹震飚,阎春平,刘飞,等.基于零件相似性特征的大规模下料分组优化方法[J].计算机辅助设计与图形学学报,2007,19(11):1442-1446
    [151]龚毅光,王宁生,李鑫.一种零件分组方法的研究[J].哈尔滨工业大学学报,2009,41(3):113-116
    [152]张汝珍,王婉,周雄辉.基于形状分布算法的三维模型相似性研究[J].计算机集成制造系统,2007,13(10):1928-1933
    [153]汪中,刘贵全,陈恩红.一种优化初始中心点的K-means算法[J].模式识别与人工智能,2009,22(2):299-304
    [154]韩晓红,胡彧.K-means聚类算法的研究[J].太原理工大学学报,2009,40(3):236-239
    [155]石云平,辛大欣.基于K-means聚类算法的分析及应用[J].西安工业学院学报,2006,26(1):45-48
    [156]吴海华,李绍滋,林达真,等.基于新型聚类算法Increase K-means的Blog相似度分析[J].厦门大学学报(自然科学版),2009,48(2):194-197
    [157]阎春平,刘飞,刘颖,等.基于ASP模式的多软件协同优化下料方法及其实现技术[J].中国机械工程,2002,13(24):2144-2147
    [158]方辉.大规模板材排样的分布式协同优化方法研究[D].四川大学硕士学位论文,2003
    [159]程文渊,常艳,崔德刚,等.基于分布式计算的复合材料机翼优化设计[J].复合材料学报,2007,24(1):167-171
    [160]阎春平.面向物料资源优化利用的产品设计系统与优化下料技术研究[D].重庆大学博士学位论文,2002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700